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Abstract

Multiagent learning is a necessary yet challenging problem as multiagent systems become more
prevalent and environments become more dynamic. Much of the groundbreaking work in this area
draws on notable results from game theory, in particular, the concept of Nash equilibria. Learners
that directly learn equilibria obviously rely on their existence. Learners that instead seek to play
optimally with respect to the other players also depend upon equilibria since equilibria are, and
are the only, learning fixed points. From another perspective, agents with limitations are real and
common. These may be undesired physical limitations as well as self-imposed rational limitations,
such as abstraction and approximation techniques, used to make learning tractable. This article
explores the interactions of these two important concepts, raising for the first time the question of
whether equilibria continue to exist when agents have limitations. We look at the general effects
limitations can have on agent behavior, and define a natural extension of equilibria that accounts
for these limitations. Using this formalization, we show that the existence of equilibria cannot
be guaranteed in general. We then prove their existence for certain classes of domains and agent
limitations. These results have wide applicability as they are not tied to any particular learning
algorithm or specific instance of agent limitations. We then present empirical results from a specific
multiagent learner applied to a specific instance of limited agents. These results demonstrate that
learning with limitations is possible, and our theoretical analysis of equilibria under limitations is
relevant.

1. Introduction

Multiagent domains are becoming more prevalent as more applications and situations require multi-
ple agents. Learning in these systems is as useful and important as in single-agent domains, possibly
more so. Optimal behavior in a multiagent system may depend on the behavior of the other agents.
For example, in robot soccer, passing the ball may only be optimal if the defending goalie is going to
move to block the player’s shot and no defender will move to intercept the pass. This is complicated
by the fact that the behavior of the other agents is often not predictable by the agent designer, mak-
ing learning and adaptation a necessary component of the agent itself. In addition, the behavior of
the other agents, and therefore the optimal response, can be changing as they also adapt to achieve
their own goals.

Game theory provides a framework for reasoning about these strategic interactions. The game
theoretic concepts of stochastic games and Nash equilibria are the foundation for much of the recent
research in multiagent learning, e.g., (Littman, 1994; Hu & Wellman, 1998; Greenwald & Hall,
2002; Bowling & Veloso, 2002). Nash equilibria define a course of action for each agent, such that
no agent could benefit by changing their behavior. So, all agents are playing optimally, given that
the other agents continue to play according to the equilibrium.



From the agent design perspective, optimal agents in realistic environments are not practical.
Agents are faced with all sorts of limitations. Some limitations may physically prevent certain
behavior, e.g., a soccer robot that has traction limits on its acceleration. Other limitations are self-
imposed to help guide an agent’s learning, e.g., using a subproblem solution for advancing the
ball down the field. In short, limitations prevent agents from playing optimally and possibly from
following a Nash equilibrium.

This clash between the concept of equilibria and the reality of limited agents is a topic of crit-
ical importance. Do equilibria exist when agents have limitations? Are there classes of domains
or classes of limitations where equilibria are guaranteed to exist? This article introduces these
guestions and provides concrete answers. Section 2 introduces the stochastic game framework as a
model for multiagent learning. We define the game theoretic concept of equilibria, and examine the
dependence of current multiagent learning algorithms on this concept. Section 3 enumerates and
classifies some common agent limitations and presents two formal models incorporating the effects
of limitations into the stochastic game framework. Section 4 is the major contribution of the article,
presenting both proofs of existence for certain domains and limitations as well as counterexamples
for others. Section 5 gives an example of how these results affect and relate to one particular mul-
tiagent learning algorithm. We present the first known results of applying an explicitly multiagent
learning algorithm in a setting with limited agents. Finally, Section 6 concludes with implications
of this work and future directions.

2. Stochastic Games

A stochastic games a tuple(n, S, Ay, T, R1. ), Where,
e n is the number of agents,

S is a set of states,

Aj; is the set of actions available to agemtith A being the joint action spacel; x ... x A,,

T is a transition functionS x A x S — [0, 1], such that,

VseSVae A Z:T(s,a,s’)zl7
s'eS

e andR; is a reward function for thé&h agentS x A — R.

This is very similar to the framework of a Markov Decision Process (MDP). Instead of a single
agent, though, there are multiple agents whHos# actiondetermines the next state and rewards to

the agents. The goal of an agent, as in MDPs, is to maximize its long-term reward. Notice, though,
that each agent has its own independent reward function that it is seeking to maximize. The goal of
maximizing “long-term reward” will be made formal in Section 2.2.

Stochastic games can equally thought of as an extension of the concept of matrix games to mul-
tiple states. Two common matrix games are in Figure 1. In these games there are two players; one
selects a row and the other selects a column of the matrix. The entry of the matrix they jointly select
determines the payoffs. Rock-Paper-Scissors in Figure 1(a) is a zero-sum game, where the column
player receives the negative of the row player’s payoff. In the general case (general-sum games; e.g.,



Bach or Stravinsky in Figure 1(b)) each player has an independent matrix that determines its payoff.
Stochastic games, then, can be viewed as having a matrix game associated with each state. The im-
mediate payoffs at a particular state are determined by the matrix eRtfies:). After selecting

actions and receiving their rewards from the matrix game, the players are transition to another state
and associated matrix game, which is determined by their joint action. So stochastic games contain
both MDPs (whem = 1) and matrix games (whei$| = 1) as subsets of the framework.

0 —1 1 2 0
RT(SO,') = 1 0 -1 RT(SO,') = < 0 1 >
—1 1 0
0 1 -1 1 0
Rio)= [ -1 0 1) Ree= (g ))
1 -1 0
(a) Rock-Paper-Scissors (b) Bach or Stravinsky

Table 1: Two example matrix games.

2.1 Policies

Unlike in single-agent settings, deterministic policies, which associate a single action with every
state, can often be exploited in multiagent settings. Consider Rock-Paper-Scissors as shown in
Figure 1(a). If the column player were to play any action deterministically, the row player could
win a payoff of one every time. This requires us to consider stochastic strategies and policies. A
stochastic policy for playet, 7; : S — PD(A;), is a function that maps states to mixed strategies,
which are probability distributions over the player’s actions. We use the nofdtitmbe the set of
all possible stochastic policies available to playeandIl = II; x ... x II,, to be the set of joint
policies of all the players. We also use the notation to refer to a particular joint policy of all
the players except playey andIl_; to refer to the set of such joint policies. Finally, the notation
(m;, m—;) refers to the joint policy where playérfollows 7; while the other players follow their
policy fromr_;.

In this work, we make the distinction between the concept of stochastic policies and mixtures
of policies. A mixture of policiesg; : PD(S — A;), is a probability distribution over the set
of deterministic policies. An agent following a mixture of policies selects a deterministic policy
according to its mixture distribution at the start of the game and always follows this policy. This
is similar to the distinction between mixed strategies and behavioral strategies in extensive-form
games (Kuhn, 1953). This work focuses on stochastic policies as they (i) are a more compact
representation requiringl;||S| parameters instead of; |/l parameters to represent tbemplete
space of policies, (ii) are the common notion of stochastic policies in single-agent behavior learning,
e.g., (Jaakkola, Singh, & Jordan, 1994; Sutton, McAllester, Singh, & Mansour, 2000; Ng, Parr, &
Koller, 1999), and (iii) don’t require the artificial commitment to a single deterministic policy at the
start of the game, which can be difficult to understand within a learning context.



2.2 Reward Formulations

There are a number of possible reward formulations in single-agent learning that define the agent’s
notion of optimality. These formulations also apply to stochastic games. We will explore two of
these reward formulations in this articldiscounted rewaréndaverage reward Although, this

work focuses on discounted reward, many of our theoretical results also apply to average reward.

Discounted Reward. In the discounted reward formulation, the value of future rewards is dimin-
ished by a discount factor. Formally, given a joint policyr for all the agents, the value to ageént
of starting at state € S is,

o0

Vi (s) =Y _A'E{rilso=s,7}, 1)

t=0

wherer! is the immediate reward to playeat timet with the expectation conditioned anas the
initial state and the players following the joint poliay

In our formulation, we will assume an initial statg, € S, is given and define the goal of each
agenti as maximizingV;" (sg). This differs from the usual goal in MDPs and stochastic games,
which is tosimultaneouslynaximize the value of all states. We require this weaker goal since our
exploration into agent limitations makes simultaneous maximization unattaihatlis. same dis-
tinction was required by Sutton and colleagues (Sutton et al., 2000) in their work on parameterized
policies, one example of an agent limitation.

Average Reward. In the average reward formulation all rewards in the sequence are equally
weighted. Formally, this corresponds to,

T
, 1
Vit(s) = lim > 7B {rilso = s, 7}, )
t=0

with the expectation defined as in Equation 1. As is common with this formulation, we assume that
the stochastic game &xgodic A stochastic game is ergodic if for all joint policies any state can
be reached in finite time from any other state with non-zero probability. This assumption makes the
value of a policy independent of the initial state. Therefore,

Vs,s' €S V7 (s) =V (s).
So any policy that maximizes the average value from one state maximizes the average value from
all states. These results along with more details on the average reward formulation for MDPs are
summarized by Mahadevan (1996).

For either formulation we will use the notatidfl" to refer to the value of the joint policy to agent
i, which in either formulation is simply;™ (so), wheres, can be any arbitrary state for the average
reward formulation.

1. This fact is demonstrated later by the example in Fact 5 in Section 4. In this game with the described limitation, if
the column player randomizes among its actions, then the row player cannot simultaneously maximize the value of
the left and right states.



2.3 Best-Response and Equilibria

Even with the concept of stochastic policies and well-defined reward formulations, there are still no
optimal policies that are independent of the other players’ policies. We can, though, define a notion
of best-response

Definition 1 For a game, thdest-response functidar player:, BR;(7_;), is the set of all policies
that are optimal given the other player(s) play the joint policy;.. A policyr; is optimal givenr_;
if and only if,

R IR A A

The major advancement that has driven much of the development of game theory, matrix games,
and stochastic games is the notion of a best-response equilibriudasbr equilibrium(Nash, Jr.,
1950).

Definition 2 A Nash equilibriunis a joint policy,m;—1.. ., with
Vi=1,...,n ™ € BRi(m_;).

Basically, each player is playing a best-response to the other players’ policies. So, no player can
do better by changing policies given that all the other players continue to follow the equilibrium

policy.

What makes the notion of an equilibrium interesting is that at least one, possibly many, exist
in all matrix games and stochastic games. This was proven by Nash (1950) for matrix games,
Shapley (1953) for zero-sum discounted stochastic games, Fink (1964) for general-sum discounted
stochastic games, and Mertens and Neyman (1981) for zero-sum average reward stochastic games.
The existence of equilibria of general-sum average reward stochastic games is still an open prob-
lem (Filar & Vrieze, 1997).

In the Rock-Paper-Scissors example in Figure 1(a), the only equilibrium consists of each player
playing the mixed strategy where all the actions have equal probability. In the Bach-or-Stravinsky
example in Figure 1(b), there are three equilibria. Two consist of both players selecting their first
action or both selecting their second. The third involves both players selecting their preferred coop-
erative action with probabilit®/3, and the other action with probability/ 3.

2.4 Learning in Stochastic Games

Learning in stochastic games has received much attention in recent years as the natural extension
of MDPs to multiple agents. The Minimax-Q algorithm (Littman, 1994) was the first reinforcement
learning to explicitly consider the stochastic game framework. Developed for discounted reward,
zero-sum stochastic games, the essence of the algorithm was to use Q-learning to learn the values
of joint actions. The value of the next state was then computed by solving for the value of the
unigue Nash equilibrium of that state’s Q-values. Littman proved that under usual exploration re-
guirements, Minimax-Q would converge to the Nash equilibrium of the game, independent of the
opponent’s play. Other algorithms have since been presented for learning in stochastic games. We
will summarize these algorithms by broadly grouping them into two categoepgiibria learn-
ersandbest-response learnerdhe main focus of this summarization is to demonstrate how the
existence of equilibria under limitations is a critical question to existing algorithms.
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Equilibria Learners. Minimax-Q has been extended in many different ways. Nash-Q (Hu &
Wellman, 1998), Friend-or-Foe-Q (Littman, 2001), Correlated-Q (Greenwald & Hall, 2002) are all
variations on this same theme with different restrictions on the applicable class of games or the
notion of equilibria learned. All of the algorithms, though, seek to learn an equilibrium of the game
directly, by iteratively computing intermediate equilibria. They are, generally speaking, guaranteed
to converge to their part of an equilibrium solution regardless of the play or convergence of the
other agents. We refer collectively to these algorithmeasilibria learners What is important

to observe is that these algorithms depend explicitly on the existence of equilibria. If an agent or
agents were limited in such a way so that no equilibria existed then these algorithms would be, for
the most part, ill-defined.

Best-Response LearnersAnother class of algorithms is the clasbesét-response learnershese
algorithms do not explicitly seek to learn equilibria, instead seeking to learn best-responses to the
other agents. The simplest example of one of these algorithms is Q-learning (Watkins, 1989). Al-
though not an explicitly multiagent algorithm, it was one of the first algorithms applied to multiagent
environments (Tan, 1993; Sen, Sekaran, & Hale, 1994). Another less naive best-response learning
algorithm is WoLF-PHC (Bowling & Veloso, 2002), which varies the learning rate to account for the
other agents learning simultaneously. Other best-response learners include Fictitious Play (Robin-
son, 1951; Vrieze, 1987), Opponent-Modeling Q-Learning (Uther & Veloso, 1997), Joint Action
Learners (Claus & Boutilier, 1998), and any single-agent learning algorithm that learns optimal
policies. Although these algorithms have no explicit dependence on equilibria, there is an important
implicit dependence. If algorithms that learn best-responses converge when playing each other, then
it must be to a Nash equilibrium (Bowling & Veloso, 2002). Therefore, Nash equilibria are, and
are the only, learning fixed points. In the context of agent limitations, this means that if limitations
cause equilibria to not exist, then best-response learners could not converge.

This is exactly one of the problems faced by Q-learning in stochastic games. Q-learning is
limited to deterministic policies. This deterministic policy limitation can, in fact, cause no equilibria
to exist (see Fact 1 in Section 4.) So there are many games for which Q-learning cannot converge
when playing with other best-response learners, such as other Q-learners.

In summary, both equilibria and best-response learners depend on the existence of equilibria. The
next section explores agent limitations that are likely to be faced in realistic learning situations.
In Section 4, we then present our main results examining the effect these limitations have on the
existence of equilibria, and consequently on both equilibria and best-response learners.

3. Limitations

The solution concept of Nash equilibria depends on all the agents playing optimally. From the
agent development perspective, agents have limitations that prevent this from being a reality. The
working definition of limitation in this article ignything that can restrict the agent from learning

or playing optimal policies Broadly speaking, limitations can be classified into two categories:
physical limitations and rational limitations. Physical limitations are those caused by the interaction

2. It should be noted that in the case of Minimax-Q, the algorithm and solution concept are still well-defined. A policy
that maximizes its worst-case value may still exist even if limitations make it such that no equilibria exist. But, this
minimax optimal policy might not necessarily be part of an equilibrium. Later, in Section 4, Fact 5, we present an
example of a zero-sum stochastic game and agent limitations where the minimax optimal policies exist but do not
comprise an equilibrium.



of the agent with its environment and are often unavoidable. Rational limitations are limitations
specifically chosen by the agent designer to make the learning problem tractable, either in memory
or time. We briefly explore some of these limitations informally before presenting a formal model
of limitations that attempts to capture their effect within the stochastic game framework.

3.1 Physical Limitations

One obvious physical limitation is that the agent simply is broken. A mobile agent may cease to
move or less drastically may lose the use of one of its actuators preventing certain movements.
Similarly, another agent may appear to be “broken” when in fact the motion is simply outside its
capabilities. For example, in a mobile robot environment where the “rules” allow robots to move
up to two meters per second, there may be a robot that isn’t capable of reaching that speed. An
agent that is not broken, may suffer from poor control where its actions aren't always carried out as
desired, e.g., due to poorly tuned servos, inadequate wheel traction, or high system latency.

Another common physical limitation is hardwired behavior. Most agents in dynamic domains
need some amount of hard-wiring for fast response and safety. For example, many mobile robot
platforms are programmed to immediately stop if an obstacle is too close. These hardwired actions
prevent certain behavior by the agent, which is often unsafe but is potentially optimal.

Sensing is a common area of agent limitations containing everything from noise to partial ob-
servability. Here we’ll mention just one broad category of sensing problems: state aliasing. This
occurs when an agent cannot distinguish between two different states of the world. An agent may
need to remember past states and actions in order to properly distinguish the states, or may simply
execute the same action in both states.

3.2 Rational Limitations

Rational limitations are a requirement for agents to learn in even moderately sized problems. Tech-
niques for making learning scale, which often focus on near-optimal solutions, continue to be pro-
posed and investigated in single-agent learning. They are likely to be even more necessary in multi-
agent environments which tend to have larger state spaces. We will examine a few specific methods.

In domains with sparse rewards one common technique is reward shaping, e.g., (Mataric, 1994).
A designer artificially rewards the agent for actions the designer believes to be progressing toward
the sparse rewards. This can often speed learning by focusing exploration, but also can cause the
agent to learn suboptimal policies. For example, in robotic soccer moving the ball down the field is
a good heuristic for goal progression, but at times the optimal goal-scoring policy is to pass the ball
backwards to an open teammate.

Subproblem reuse also has a similar effect, where a subgoal is used in a portion of the state
space to speed learning, e.g., (Hauskrecht, Meuleau, Kaelbling, Dean, & Boutilier, 1998; Bowling
& Veloso, 1999). These subgoals, though, may not be optimal for the global problem and so prevent
the agent from playing optimally. Temporally abstract options, either provided (Sutton, Precup, &
Singh, 1998) or learned (McGovern & Barto, 2001; Uther, 2002), also enforce a particular sub-
policy on a portion of the state space. Although in theory, the primitive actions are still available
to the agents to play optimal policies, in practice abstraction away from primitive actions is often
necessary in large or continuous state spaces.

Parameterized policies are receiving a great deal of attention as a way for reinforcement learning
to scale to large problems, e.g., (Williams & Baird, 1993; Sutton et al., 2000; Baxter & Bartlett,



2000). The idea is to give the learner a policy that depends on far less parameters than the entire
policy space actually would require. Learning is then performed in this smaller space of parameters

using gradient techniques. This simplifies and speeds learning at the expense of possibly not being
able to represent the optimal policy in the parameter space.

3.3 Models of Limitations

This enumeration of limitations shows that there are a number and variety of limitations with which
agents may be faced, and they cannot be realistically avoided. In order to understand their impact
on equilibria we model limitations formally within the game theoretic framework. We introduce
two models that capture broad classes of limitatiomglicit gamesandrestricted policy spaces

Implicit Games. Limitations may cause an agent to play suboptimally, but it may be that the
agentis actually playing optimally in a different game. If this new game can be defined within the
stochastic game framework we call this theolicit game in contrast to the original game called the
explicit game For example, reward shaping adds artificial rewards to help guide the agent’s search.
Although the agent is no longer learning an optimal policy in the explicit game, it is learning an
optimal policy of some game, specifically the game with these additional rewards added to that
agent'sR; function. Another example is due to broken actuators preventing an agent from taking
some action. The agent may be suboptimal in the explicit game, while still being optimal in the
implicit game defined by removing these actions from the agent’s actiod sélye can formalize

this concept in the following definition.

Definition 3 Given a stochastic gam@:, S, A;.. ., T, Ri...) the tuple(n,S, A1, T, Ry..») is
an implicit game if and only if it is itself a stochastic game and there exist mappings,

Ti * S x AZ — .Ai,
such that,
Vs, e SVa; € Ay T(s,{ai)_y ,,8) =T(s,(1:(5,0:));y ,,>5)-

Reward shaping and broken actuators can both be captured within this model. For reward shap-
ing the implicit game ign, S, A1, T, Rl,_n), WhereRi adds the shaped reward into the original
reward,R;. In this case the mappings are just the identity,(s,a) = a. For the broken actuator
example, le) € A; be some null action for agentand leta? € 4; be some broken action for
agenti that under the limitation has the same effect as the null action. The implicit game, then, is
(n,S, A1..n, T, R1._,), where,

. N T(s, <a? a_ > if a; = ai-’
T(s,a8) = { T(s,a,s) otherwise
A _ R(s, <a ,a_ Z>) if a; = aé’
Bi(s,a) = { R(s,a) otherwise ’
and,
(5,a) = a? if a = ai-’
TS5 =9 o otherwise



Limitations captured by this model can be easily analyzed with respect to their effect on the
existence of equilibria. Using the intuitive definition of equilibria as a joint policy such that “no
player can do better by changing policies,” an equilibrium in the implicit game achieves this defi-
nition for the explicit game. Since all stochastic games have at least one equilibrium, so must the
implicit game, and therefore the explicit game when accounting for the agents’ limitations also has
an equilibrium.

On the other hand, many of the limitations described above cannot be modeled in this way.
None of the limitations of abstraction, subproblem reuse, parameterized policies, or state aliasing
lend themselves to be described by this model. This leads us to our second, and in many ways more
general, model of limitations.

Restricted Policy Spaces.The second model is that oéstricted policy spacesvhich models
limitations as restricting the agent from playing certain policies. For example, a fixed exploration
strategy restricts the player to policies that select all actions with some minimum probability. Pa-
rameterized policy spaces have a restricted policy space corresponding to the space of policies that
can be represented by their parameters. We can define this formally.

Definition 4 A restricted policy spacir playeri is a non-empty and compact subdét,C II;.

The assumption of compactnéssay at first appear strange, but it is not particularly limiting, and
is critical for any equilibria analysis.

It should be straightforward to see that parameterized policies, exploration, state aliasing (with
no memory), and subproblem reuse all can be captured as a restriction on policies the agent can
play. Therefore they can be naturally described as restricted policy spaces. On the other hand, the
analysis of the existence of equilibria under this model is not at all straightforward. Since restricted
policy spaces capture most of the really interesting limitations we have discussed, this is precisely
the focus of the next section.

Before moving on to this analysis, we summarize our enumeration of limitations in Table 2. The
limitations that we have been discussed are listed as well as denoting the model that most naturally
captures their effect on agent behavior.

4. Existence of Equilibria

In this section we define formally the conceptrestricted equilibria which account for agents’
restricted policy spaces. We then carefully analyze what can be proven about the existence of re-
stricted equilibria. The results presented range from somewhat trivial examples (Facts 1, 2, 3, and 4)
and applications of known results from game theory and basic analysis (Theorems 1 and 5) to results
that we believe are completely new (Theorems 2, 3, and 4), as well as a critical counterexample to
the wider existence of restricted equilibria (Fact 5). But all of the results are in a sense novel since
this specific question has received no direct attention in the game theory nor the multiagent learning
literature.

3. Sincell; is a subset of a bounded set, the requirementTthas compact merely adds that the limit point of any
sequence of elements from the set is also in the set.



Physical Limitations Implicit Games | Restricted Policies
Broken Actuators X X
Hardwired Behavior X X

Poor Control X

State Aliasing X

Rational Limitations Implicit Games | Restricted Policies
Reward Shaping or Incentives X

Exploration X X

State Abstraction/Options X
Subproblems X
Parameterized Policy X

Table 2: Common agent limitations. The column check-marks correspond to whether the limitation
can be modeled straightforwardly using implicit games and/or restricted policy spaces.

4.1 Restricted Equilibria

We begin by defining the concept of equilibria under the model of restricted policy spaces. First we
need a notion of best-response that accounts for the players’ limitations.

Definition 5 Arestricted best-responéa playeri, BR;(7_;), is the set of all policies froi; that
are optimal given the other player(s) play the joint policy;.

We can now use this to define an equilibrium.

Definition 6 A restricted equilibriunis a joint policy,m;—1...., where,
T € ﬁz(ﬂ'_z)

So no player can within their restricted policy space do better by changing policies given that all
the other players continue to follow the equilibrium policy.

4.2 Existence of Restricted Equilibria

We can now state some results about when equilibria are preserved by restricted policy spaces, and
when they are not. Unless otherwise stated (as in Theorems 2 and 4, which only apply to discounted
reward), the results presented here apply equally to both the discounted reward and the average
reward formulations. We will separate the proofs for the two reward formulations when needed.
The first four facts show that the question of the existence of restricted equilibria does not have a
trivial answer.

Fact 1 Restricted equilibria do not necessarily exist.
Proof. Consider the Rock-Paper-Scissors matrix game with players restricted to the space of de-

terministic policies. There are nine joint deterministic policies, and none of these joint policies are
equilibria. O
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Fact 2 There exist restricted policy spaces such that restricted equilibria exist.

Proof. One trivial restricted equilibrium is in the case where all agents have a singleton policy
subspace. The singleton joint policy therefore must be a restricted equilibrium. O

Fact 3 If 7* is a Nash equilibrium ana* < II, thenr* is a restricted equilibrium.

Proof. If 7* is a Nash equilibrium, then we have
Vie{l..n}V¥mell; V& > xfi<“’”ii>.
Sincell; C II;, then we also have
Vie{l..n}Vmell, V7 > Vf’””’i»,

and thusr* is a restricted equilibrium. O
On the other hand, the converse is not true; not all restricted equilibria are of this trivial variety.

Fact 4 There exist non-trivial restricted equilibria that are neither Nash equilibria nor come from
singleton policy spaces.

Proof. Consider the Rock-Paper-Scissors matrix game from Figure 1. Suppose the column player is
forced, due to some limitation, to play “Paper” exactly half the time, but is free to choose between
“Rock” and “Scissors” otherwise. This is a restricted policy space that excludes the only Nash
equilibrium of the game. We can solve this game using the implicit game model, by giving the
limited player only two actionss; = (0.5,0.5,0) ands, = (0, 0.5,0.5), which the player can mix
between. This is depicted graphically in Figure 1. We can solve the implicit game and convert
the two actions back to actions of the explicit game to find a restricted equilibrium. Notice this
restricted equilibrium is not a Nash equilibrium. O

Notice that the Fact 4 example has a convex policy space, i.e., all linear combinations of policies
in the set are also in the set. Also, notice that the Fact 1 counterexample has a non-convex policy
space, This suggests that restricted equilibria may exist as long as the restricted policy space is
convex. We can prove this for matrix games, but unfortunately it is not generally true for stochastic
games.

Theorem 1 When|S| = 1, i.e. in matrix games, ifl; is convex, then there exists a restricted
equilibrium.

Proof. One might think of proving this by appealing to implicit games as was used in Fact 4. In
fact, if IT; was a convex hull of dinite number of strategies, this would be the case. In order to
prove it for any convexI; we apply Rosen’s theorem about the existence of equilibria in concave
games (Rosen, 1965). In order to use this theorem we need to show the following:

1. TI; is non-empty, compact, and convex.

2. V™ as a function over € II is continuous.

3. For anyr ¢ TI, the function overr] € TI; defined a§/1.<7r"’7r”"> is concave.

11



R —Restricted Policy Spa
o Nash Equilibrium
e Restricted Equilibriurr

P = S
Explicit Game Implicit Game
0 -1 1 -3 0
Payoffs 1 0 -1 % _%
-1 1 0 0 %
ilibri 1 11 1 11 1 2 2 1
Nash Equilibrium (3:33)(333) (0,3.3).(33)
Restricted Equilibrium (0, 3, §> (3,1, %>

Figure 1: Example of a restricted equilibrium that is not a Nash equilibrium. Here, the column
player in Rock-Paper-Scissors is restricted to playing only linear combinations of the

strategies; = (3,3,0) ands, = (0,3, 3).

Condition 1 is by assumption. In matrix games, whére- {so}, we can simplify the definition of
a policy’s value from Equations 1 and 2.
1

Vro= 3" Ri(s, a)ITy (50, a1), 3)
1- v a€A

wherey = 1 for the average reward formulation. Equation 3 shows that the value is a multilinear

function with respect to the joint policy and therefore is continuous. So Condition 2 is satisfied.

Observe that by fixing the policies for all but one player Equation 3 becomes a linear function over
the remaining player’s policy and so is also concave satisfying Condition 3. Therefore Rosen’s
theorem applies and this game has a restricted equilibrium. d

Fact 5 For a stochastic game, evenllf; is convex, restricted equilibria do not necessarily exist.

Proof. Consider the stochastic game in Figure 2. This is a zero-sum game where only the payoffs
to the row player are shown. The discount faetar (0, 1). The actions available to the row player
areU andD, and for the column playek or R. From the initial state, the column player may select
eitherL or R which results in no rewards but with high probability.- €, transitions to the specified

state (regardless of the row player’s action), and with low probabilityansitions to the opposite

state. Notice that this stochasticity is not explicitly shown in Figure 2. In each of the resulting states
the players play the matrix game shown and then deterministically transition back to the initial state.
Notice that this game is unichain, where all the states are in a single ergodic set, thus satisfying the
average reward formulation requirement.

12
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Figure 2: An example stochastic game where convex restricted policy spaces don't preserve the
existence of equilibria.

Now consider the restricted policy space where players have to play their actions with the same
probability in all states. So,

I, = {Tri €IL;|Vs, s € SVae A m(s,a) = m(s/,a)} ) 4)

Notice that this is a convex set of policies. That is, if policigsandz, are inIl; (according to
Equation 4), then for any € [0, 1], z3 must also be ifl;, where,

x3(s,a) = ari(s,a) + (1 — a)za(s, a). (5)

This can be seen by examining(s’, a) for anys’ € S. From Equation 5, we have,

r3(s’,a) = axi(s,a)+ (1 —a)za(s,a) (6)
= Ole(S, a) + (1 - a):L’Q(S, a) (7)
= x3(s,a). (8)

Thereforezs is in II; and hencél; is convex.
This game, though, does not have a restricted equilibrium. The four possible joint deterministic
policies, (U, L), (U, R), (D, L), and(D, R), are not equilibria. So if there exists an equilibrium
it must be mixed. Consider any mixed strategy for the row player. If this strategy playith
probability less thar% then the unique best-response for the column player is to Iplafygreater
than% then the unigue best-response is to playf equalthen the unigue best-responses are to play
L or R deterministically In all cases all best-responses are deterministic, so this rules out mixed
strategy equilibria, and so no equilibria exists. d
Convexity is not a strong enough property to guarantee the existence of restricted equilibria.
Standard equilibrium proof techniques fail for this example due to the fact that the player's best-
response sets are not convex, even though their restricted policy spaces are convex. Notice that
the best-response to the row player mixing equally between actions is to play either of its actions
deterministically. But, linear combinations of these actions (e.g., mixing equally) are not best-
responses.
This intuition is proven in the following lemma.
Lemma 1 For any stochastic game, I; is convex and for all_; € TI_;, BR;(7_;) is convex,
then there exists a restricted equilibrium.
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Proof. The proof relies on Kakutani’s fixed point theorem. We first need to show some facts about
the restricted best-response function. First, remembefthatnon-empty and compact. Also, note
that the value (with both discounted and average reward) to a player at any state of a joint policy
is a continuous function of that joint policy (Filar & Vrieze, 1997, Theorem 4.3.7 and Lemma
5.1.4). Therefore, from basic analysis (Gaughan, 1993, Theorem 3.5 and Corollary 3.11), the set of
maximizing (or optimal) points must be a non-empty and compact seBE56r_;) is non-empty
and compact.

Define the set-valued functiof, : IT — TI,

F(ﬂ') = X?:l ﬁz(ﬂ'_l)

We want to showf™ has a fixed point. To apply Kakutani’s fixed point theorem we must show the
following conditions to be true,

1. II is a non-empty, compact, and convex subset of a Euclidean space,
2. F(m) is non-empty,

3. F(m) is compact and convex, and

4. F'is upper hemi-continuous.

Since the Cartesian product of nhon-empty, compact, and convex sets is non-empty, compact, and
convex we have condition (1) by the assumptiondlpn By the facts ofBR; from above and the
lemma’s assumptions we similarly get conditions (2) and (3).

What remains is to show condition (4). Consider two sequentes z € Il andy’ — y € 11
such thatyj ¢/ € F(27). It must be shown that € F(z), or justy; € BR;(x). Letv bey;’s value
againstz. By contradiction assume there existg;awith higher valuey’ thany;; let§ = v’ — v.
Since the value function is continuous we can choos¥ darge enough that the value gffagainst
2 differs from’ by at most /44, and the value of; against:¥ differs fromv by at most /4, and
the value ofy¥ against:V differs fromy; againstz”¥ by at most§/4. The comparison of values of
these various joint policies is shown in Figure 3. Adding all of these together, we have a pointin the
sequencg/g»N whose value against® is less than the value gf againstz”. Soy? ¢ BR;(z"),
and thereforg™ ¢ F'(z™) creating our contradiction.

Wor)  Gha") ) ) )
v’ v

—6/4 5/4 5/4

Figure 3: An illustration of the demonstration by contradiction that the best-response functions are
upper hemi-continuous.

We can now apply Kakutani’s fixed point theorem. So there existsII such thatr € F(x).
This meansr; € BR;(7_;), and therefore this is a restricted equilibrium. O

4. This value is arbitrarily selected and is only required to be strictly smallerdtf@n
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The consequence of this lemma is that, if we can prove that the sets of restricted best-responses
are convex then restricted equilibria exist. As we have stated earlier this was not true of the coun-
terexample in Fact 5. The next four theorems all further limit either the restricted policy spaces or
the stochastic game to situations where the best-response sets are provably convex. We will first
examine a specific class of restricted policy spaces, and then examine specific classes of stochastic
games.

4.2.1 A SUBCLASS OFRESTRICTEDPOLICIES

Ouir first result for general stochastic games uses a stronger notion of convexity for restricted policy
spaces.

Definition 7 A restricted policy spacH; is statewise conveif it is the Cartesian product over all
states of convex strategy sets. Equivalently, if forallzy € II; and all functionsx : § — [0, 1],
the policyzs(s,a) = a(s)zi(s,a) + (1 — a(s))z2(s, a) is also inIl;.

Theorem 2 In the discounted reward formulation, If; is statewise convex, then there exists a
restricted equilibrium.

Proof. With statewise convex policy spaces, there exist optimal policies in the strong sense as
mentioned in Section 2. Specifically, there exists a policy that can simultaneously maximize the
value of all states. Formally, for any_; there exists a; € II; such that,

VseSvVr e, V™ (s) > Vi<’r5’””"> ().

Suppose this were not true, i.e., there were two policies each which maximized the value of different
states. We can construct a new policy that in each state follows the policy whose value is larger for
that state. This policy will maximize the value of both states that those policies maximized, and due
to statewise convexity is also ;. We will use that fact to redefine optimality to this strong sense
for this proof.

We will now make use of Lemma 1. First, notice the lemma’s proof still holds even with this new
definition of optimality. We just showed that under this redefinitiBR,;(7_;) is non-empty, and
the same argument for compactnes8&f;(7_;) holds. So we can make use of Lemma 1 and what
remains is to prove th&R;(7_;) is convex. Sincer_; is a fixed policy for all the other players this
defines an MDP for playern(Filar & Vrieze, 1997, Corollary 4.2.11). So we need to show that the set
of polices from the player’s restricted set that are optimal for this MDP is a convex set. Concretely,
if 1,22 € II are optimal for this MDP, then the poliess(s, a) = az1(s,a) + (1 — a)za(s, a) is
also optimal for anyx € [0, 1]. Sincez; andz are optimal in the strong sense, i.e., maximizing
the value of all states simultaneously, then they must have the same per-state value.

Here, we will use the notatioli”(s) to refer to the value of policy: from states in this fixed
MDP. The value function for any policy satisfies the Bellman equations, specifically,

VseS VE(s) = Zx(s,a) (R(s,a) + ’}/ZT(&G,S/)VI(S/)) . 9)

a S

For x5 then we get the following,

V#(s) = Zazg(s,a) (R(s,a) +72T(s,a,5')V$3(s')> (10)

S
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= Z(awl(s, a) + (1 — a)xa(s,a)) (R(s, a) + 'yZT(s, a, s')V”(s')) (11)

a s/

= ale(s,a) (R(s,a) +’yZT(s,a,s’)V“3(s/)> +

s

(1—a) ng(s, a)) (R(s, a) + ’yZT(s, a,s Vs (s’)) : (12)
a s/

Notice thatl’*3(s) = V*1(s) = V*2(s) satisfies these equations. $phas the same values as

andx,, and is therefore also optimal. Therefd®&;(r_;) is convex, and from Lemma 1 we get

the existence of restricted equilibria under this stricter notion of optimality, which also makes the

policies a restricted equilibria under our original notion of optimality, that is only maximizing the

value of the initial state. O

4.2.2 SIBCLASSES OFSTOCHASTIC GAMES

Unfortunately, most rational limitations that allow reinforcement learning to scale are not statewise
convex restrictions, and usually have some dependence between states. For example, parameterized
policies involve far less parameters than the number of states, which can be intractably large, and
so the space of policies cannot select actions at each state independently. Similarly subproblems
force whole portions of the state space to follow the same subproblem solution. Therefore, these
portions of the state space do not select their actions independently . One way to relax from statewise
convexity to general convexity is to consider only a subset of stochastic games.

Theorem 3 Consider no-control stochastic games, where all transitions are independent of the
players’ actions, i.e.,

Vs,s' € SVa,bec A T(s,a,s") =T(s,b,s).
If II; is convex, then there exists a restricted equilibrium.

Proof (Discounted Reward).This proof also makes use of Lemma 1, leaving us only to show that
BR;(7_;) is convex. Just as in the proof of Theorem 2 we will consider the MDP defined for player
1 when the other players follow the fixed poligy ;. As before it suffices to show that for this MDP,
if 1,22 € II are optimal for this MDP, then the poliess(s, a) = az1(s,a) + (1 — a)za(s,a) is
also optimal for anyy € [0, 1].

Again we use the notation™ () to refer to the traditional value of a polieyat states in this
fixed MDP. SinceT (s, a, s') is independent ofi, we can simplify the Bellman equations (Equa-
tion 9) to

a

VEi(s) = Zm(s, a)R(s,a) + fyz Zx(s, a)T(s,a,s)V*(s') (13)
= ZCL‘(S, a)R(s,a) + ’yZT(S, L SHVE(S). (14)

For the policyzs, the value of state is then,

V#(s) = aZwl(s,a)R(s, a)+ (1 —a) ng(s, a)R(s,a) +
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7ZT s, 8 )V (s). (15)

Using equation 14 for both; andx, we get,

Vi(s) = a(V(s vZT 5,8 V() +

(1= a)(V72(s) =7 Y T(s,- 8 )V2(s)) +

0% Z T(s,-,s)V*(s) (16)
= aV®(s)+ (1—a>V“( )+
72T 5,,8) (VZ(s') — aV™(s') — (1 — a)V?2(s")) (17)

Notice that a solution to these equation¥i% (s) = aV*1(s) + (1 —a)V?*2(s). Thereforel *3(sg)
is equal toV*1(sy) andV*2(sq), which are equal since both are optimal. Spis optimal, and
BR; () is convex. Applying Lemma 1 we get that restricted equilibria exist. d

Proof (Average Reward).An equivalent definition to Equation 2 of a policy’s average reward is,

Vi(s) =d"(s) > _w(s,a)R(s,a), (18)
whered™ (s) defines the distribution over states visited while followin@fter infinite time. For a
stochastic game or MDP that is unichain we know that this distribution is independent of the initial
state. In the case of no-control stochastic games or MDPs, this distribution becomes independent
of the actions and policies of the players, and depends solely on the transition probabilities. So
Equation 18 can be written,

Vi (s) = d(s) > _m(s,a)R(s,a). (19)

As before, we must show th&R,;(7_;) is convex to apply Lemma 1. Consider the MDP defined
for playeri when the other players follow the poliey ;. It suffices to show that for this MDP, if
x1, 2 € II are optimal for this MDP, then the poliay (s, a) = az1(s, a) + (1 — a)xa(s, a) is also
optimal for anya € [0, 1]. Using Equation 19, we can write the valuexgfas,

Vis(s) = d(s) ) ws(s,a)R(s,a) (20)
= d(s) Z (azx1(s,a) + (1 — a)za(s,a)) R(s,a) (21)
= d(s) (Z azi(s,a)R(s,a) + Y (1 — a)za(s, a)R(s, a)> (22)
= « (d(s) le(s,a)R(s,a)> (1—-a) ( Z:vg (s,a)R(s,a) ) (23)
= aV" (s) + (1 — a)V;"2(s). (24)



Thereforers has the same average rewardrasandz, and so is also optimal. SBR;(7_;) is
convex and by Lemma 1 there exists an equilibrium. O

We can now merge Theorem 2 and Theorem 3 allowing us to prove existence of equilibria for a
general class of games where only one of the player’s actions affects the next state.

Theorem 4 Consider single-controller stochastic games (Filar & Vrieze, 1997), where all transi-
tions depend solely on player 1's actions, i.e.,

Vs,s' € SVa,bc A a1 =by = T(s,a,s') =T(s,b,35).

In the discounted reward formulation Iif; is statewise convex arﬁll-# is convex, then there exists
a restricted equilibrium.

Proof. This proof again makes use of Lemma 1, leaving us to showBRafr_;) is convex. For
i = 1 we use the argument from the proof of Theorem 2. #e# 1 we use the argument from
Theorem 3. O

The previous results have looked at stochastic games whose transition functions have particu-
lar properties. Our final theorem examines stochastic games where the rewards have a particular
structure. Specifically we address team games, where the agents all receive equal payoffs.

Theorem 5 For team games, i.e.,
Vi,je{l,...,n}Vse SVa e A Ri(s,a) = Rj(s,a),
there exists a restricted equilibrium.

Proof. The only constraints on the players’ restricted policy spaces are those stated at the beginning
of this section: non-empty and compact. SihEés compact, being a Cartesian product of compact
sets, and player one’s value in either formulation is a continuous function of the joint policy, then
the value function attains its maximum (Gaughan, 1993, Corollary 3.11). Specifically, there exists
7* € II such that,

vrel VT >V

SinceV; = V1 we then get that the policy* maximizes all the players’ rewards, and so each must
be playing a restricted best-response to the others’ policies. O

4.3 Summary

Facts 1 and 5 provide counterexamples that show the threat limitations play to equilibria. Theo-
rems 1, 2, 4, and 5 give us four general classes of stochastic games and restricted policy spaces
where equilibria are guaranteed to exist. The fact that equilibria do not exist in general raises
concerns about equilibria as a general basis for multiagent learning in domains where agents have
limitations. On the other hand, combined with the model of implicit games, the presented theoreti-
cal results lays the initial groundwork for understanding when equilibria can be relied on and when
their existence may be in question. These contributions also provide some formal foundation for
applying multiagent learning in limited agent problems.
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5. Learning with Limitations

In Section 2, we highlighted the importance of the existence of equilibria to multiagent learning
algorithms. This section presents results of applying a particular learning algorithm to a setting
of limited agents. We use the best-response learner, WoLF-PHC (Bowling & Veloso, 2002). This
algorithm is rational, that is, it is guaranteed to converge to a best-response if the other players’
policies converge. In addition, it has been empirically shown to converge in self-play, where both
players use WoLF-PHC for learning. In this article we apply this algorithm in self-play to matrix
games, both with and without player limitations. Since the algorithm is rational, if the players
converge their converged policies must be an equilibrium (Bowling & Veloso, 2002).

The specific limitations we examine fall into both the restricted policy space model as well as
the implicit game model. One player is restricted to playing strategies that are the convex hull of a
subset of the available strategies. From Theorem 1, there exists a restricted equilibrium with these
limitations. For best-response learners, this amounts to a possible convergence point for the players.
For the limited player, the WoLF-PHC algorithms modified slightly so that the player maintains Q-
values of its restricted set of available strategies and performs its usual hill-climbing in the mixed
space of these strategies. The unlimited player is unchanged and completely uninformed of the
limitation of its opponent.

5.1 Rock-Paper-Scissors

The first game we examine is Rock-Paper-Scissors. Figure 4 shows the results of learning when
neither player is limited. Each graph shows the mixed policy the player is playing over time. The
labels to the right of the graph signify the probabilities of each action in the game’s unique Nash
equilibrium. Observe that the players’ strategies converge to this learning fixed point.

Player 1 (Unlimited) Player 2 (Unlimited)
1 T 1 T
P(Rock) —— P(Rock) ——
P(Paper) - P(Paper) -
0.8 P(Scissors) - ---- 8 08 f P(Scissors) - - - - - ]

1 Rock 1 Rock
P mesTT Paper === Paper
Scissors Scissors
O 1 1 0 1 1
0 100000 200000 300000 0 100000 200000 300000
E(Reward) =0 E(Reward) =0

Figure 4: WoLF-PHC in Rock-Paper-Scissors. Neither player is limited.

Figure 5 shows the results of restricting player 1 to a convex restricted policy space, defined
by requiring the player to play “Paper” exactly half the time. This is the same restriction as shown
graphically in Figure 1. The graphs again show the players’ strategies over time, and the labels
to the right now label the game’s restricted equilibrium, which accounts for the limitation (see
Figure 1). The player’s strategies now converge to this new learning fixed point. If we examine the
expected rewards to the players, we see that the unrestricted player gets a higher expected reward in
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the restricted equilibrium than in the game’s Nash equilibriagé (compared td.) In summary,
both players learn optimal best-response policies with the unrestricted learner appropriately taking
advantage of the other player’s limitation.

Player 1 (Limited) Player 2 (Unlimited)
1 T 1 T
P(Rock) —— P(Rock) ——
P(Paper) - P(Paper) -
08 P(Scissors) ----- 1 08 - P(Scissors) ----- 1
SR 4 Scissors
0.6 1 0.6 - 1
Paper '\,{
] 04 1Y ]
Rock R 4 Paper
‘. 1 scissors 02 \
ok : : 0 : : Rock
0 100000 200000 300000 0 100000 200000 300000
E(Reward) = -0.167 E(Reward) = 0.167

Figure 5: WoLF-PHC in Rock-Paper-Scissors. Player 1 must play “Paper” with proba}bility

5.2 Colonel Blotto

The second game we examined is “Colonel Blotto” (Gintis, 2000), which is also a zero-sum matrix
game. In this game, players simultaneously allot regiments to one of two battlefields. If one player
allots more armies to a battlefield than the other, they receive a reward of one plus the number of
armies defeated, and the other player loses this amount. If the players tie, then the reward is zero
for both. In the unlimited game, the row player has four regiments to allot, and the column player
has only three. The matrix of payoffs for this game is shown in Figure 6.

4 2 1 0

1 3 0 -1

Rl(So,a) == —2 2 2 =2
-1 0 3 1

0 1 2 4

Figure 6: Colonel Blotto Game. The row player’s rewards are shown; the column player receives
the negative of this reward.

Figure 7 shows experimental results with unlimited players. The labels on the right signify
the probabilities associated with the Nash equilibrium to which the players’ strategies converge.
Player 1 is then given the limitation that it could only allot two of its armies, the other two would
be allotted randomly. This is also a convex restricted policy space and therefore by Theorem 1
has a restricted equilibrium. Figure 8 shows the learning results. The labels to the right corre-
spond to the action probabilities for the restricted equilibrium, which was computed by hand. As in
Rock-Paper-Scissors, the players’ strategies converge to the new learning fixed point. Similarly, the
expected reward for the unrestricted player resulting from the restricted equilibrium is considerably
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higher than that of the Nash equilibriu o —14/9), as the player takes advantage of the other’s
limitation.

Player 1 (Unlimited) Player 2 (Unlimited)
. 1 . ;
P(3-0) ——
P(2-1) -eeeeees
0.8 | P(1-2) ----- J
P(0-3) ——
0.6 b
b
& 4-0, 0-4 0.4 421,12
0.2 1 0.2
RN TeerTTTIT T 3-0,0-3
0 3-1,1-3 0 : :
0 400000 800000 1.2e+06 0 400000 800000 1.2e+06
E(Reward) = 1.56 E(Reward) = -1.56
Figure 7: WoLF-PHC in Colonel Blotto. Neither player is limited.
Player 1 (Limited) Player 2 (Unlimited)
1 7 1 T
P(4-0) —— P(3-0) ——
P(3-1) weeeeeeeees 172 JE—
0.8 P(2-2) ----- 1 0.8t P(1-2) ----- 1
P(1-3) —— P(0-3) ——
P(0-4) ——
0.6 1
3-0, 0-3
3-1, 2-2,
1-3
4-0,0-4
0 : : 0 2-1,1-2
0 100000 200000 300000 0 100000 200000 300000
E(Reward) =0 E(Reward) =0

Figure 8: WoLF-PHC in Colonel Blotto. Player one is forced to randomly allot two regiments.

There is one final observations about these results. In Section 3 we discussed the use of rational
limitations to speed learning. Even in these very small single-state problems, our results demon-
strate that limitations can be used to speed learning. Notice that convergence occurs more quickly
in the limited situations where one of the players has less parameters and less freedom in its policy
space. In the case of the Colonel Blotto game this is a dramatic difference. (Notice the x-axes differ
by a factor of four!) In games with very large state spaces this will be even more dramatic. Agents
will need to make use of rational limitations to do any learning at all, and similarly the less restricted
agents will likely be able to benefit from take advantage of the more limited learners.

6. Conclusion

Nash equilibria is a crucial concept in multiagent learning both for algorithms that directly learn
equilibria and algorithms that learn best-responses. Agent limitations, though, are unavoidable in
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realistic settings and can prevent agents from playing optimally or playing the equilibrium. In
this article, we introduce and answer two critical questions: Do equilibria exist when agents have
limitations? Not necessarily. Are there classes of domains or classes of limitations where equilibria
are guaranteed to exist? Yes.

We have proven that for some classes of stochastic games and agent limitations equilibria are
guaranteed to exist. We have also given counterexamples that help understand why equilibria do not
exist in the general case. In addition to these theoretical results, we demonstrate the implications of
these results in a real learning algorithm. We present empirical results that show that learning with
limitations is possible, and equilibria under limitations is relevant.

There are two main future directions for this work. The first is continuing to explore the theoret-
ical existence of equilibria. We have proven the existence of equilibria for some interesting classes
of stochastic games and restricted policy spaces. We have also established in Lemma 1 a key cri-
terion, the convexity of best-response sets, as the basis for further theoretical results. But are there
other general classes of games and limitations for which equilibria exist?

The second direction is the practical application of multiagent learning algorithms to real prob-
lems when agents have real limitations. The theoretical results we have presented and the empirical
results on simple matrix games, give a foundation as well as encouraging evidence. There are still
challenging questions to answer. How do specific limitations map on to the models that we explored
in this article? Do equilibria exist in practice? What is the goal of learning when equilibria do not
exist? This article lays the groundwork for exploring these and other important learning issues that
are relevant to realistic multiagent scenarios.
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