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Abstract

Robots typically have many sensors which are under-
utilized. This is usually because no simple mathe-
matical models of the sensors have been developed or
the sensors are too noisy to use techniques which re-
quire simple noise models. We propose to use these
underutilized sensors to determine the state of the
environment in which the robot is operating. Being
able to identify the state of the environment allows
the robot to adapt to current operating conditions and
the actions of other agents. Adapting to current op-
erating conditions makes the robot robust to changes
in the environment by constantly adapting to the cur-
rent conditions. This is useful for adapting to dif-
ferent lighting conditions or different flooring con-
ditions amongst many other possible desirable adap-
tations. The strategy we propose for utilizing these
sensors is to group semsor readings into statistical
probability distributions and then compare the prob-
ability distributions to detect repeated states of the
environment.

1 Introduction

It is important that robots be able to identify the
state of the environment in which they are oper-
ating. Without this ability, the robot is unable to
use information that has been acquired previously
about the environment (through instruction or learn-
ing) to improve its behavior. While the robot may be
able to re-adapt to the revisited environmental state,
this will almost certainly take longer than identify-
ing that the state has re-occurred. Identifying the
current environmental state (including the state of
other agents) allows the robot to adapt to the be-
haviors of other agents by recognizing repetition in
their actions.
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In the trivial case, the current state of the environ-
ment can be determined from a single observation.
This case is not very interesting and is handled well
by current techniques. In many systems, however,
a single observation contains very little information
about the current state of the environment. Even all
of the observations at a single point in time are likely
to be insufficient to determine the current state. This
is usually due to each individual sensor reading pro-
viding only a small part of the information and/or
being subject to large levels of noise. For instance,
a single pixel from a camera image (or range from
laser range finder/sonar) gives very little informa-
tion about the state of the world. A complete image
(or range scan) provides a treasure trove of infor-
mation if it can only be extracted. Both of these
problems can be overcome by aggregating the indi-
vidual sensor readings into probability distributions
(over time or space). These probability distributions
must then be compared to detect similar distribu-
tions if repeated states are to be identified. Since the
robot should generalize over nearby states when pos-
sible, it is not enough to simply use statistical tests
to determine similarity. This is due to the nature of
statistical tests in merely determining different/same
rather than giving an indication of the degree of dif-
ference thus preventing the robot from identifying
nearby states.

We applied this thinking to the problem of adapt-
ing to changing lighting conditions. Many practical
color robotic vision systems rely on consistent pixel
readings that allow colors to be segmented without
reference to the surrounding pixel context. Since ac-
tual pixel readings vary with lighting conditions and
the separation between colors is often small, these
systems are highly dependent on consistent lighting
conditions. Changing the lighting conditions involves
recalibrating the vision system for the new condi-
tions. We propose a solution to this problem which
automatically detects the current lighting conditions
and switches to a corresponding human or machine



supplied calibration.

We begin by describing related work in Section 2. In
Section 3, we describe the algorithm for segmenting
the data into different states. In Section 4, we de-
scribe the algorithm we use for converting segmented
data into class labels that identify the current state
of the environment. We describe how this knowledge
is used to improve the performance of robotic vision
by adapting to the current environmental state in
Section 5. We also describe testing procedures and
results in this section. We finish with a discussion of
future work and our conclusions in Sections 6 and 7,
respectively.

2 Related Work

There is a large body of work along many different
lines which is related to our work. This work varies
greatly and has various amounts of overlap with the
work we have done. We are not aware of any work,
however, which combines all of the elements we con-
sider. In particular, we are not aware of any systems
that are based on probability distributions, use la-
belled and unlabelled data, identify the state of a
system, are part of a closed loop system, and are
on-line.

Much work has been done on various components in-
tended to be used to perform useful tasks as part of
an overall system. Classification systems have been
used in artificial intelligence for a long time. The
problem of identifying the state of the environment
can be viewed as a classification problem of iden-
tify a class corresponding to the state of the cur-
rent environment based on labelled examples. More
recently, co-training has been used to improve the
performance of classification systems by using the
structure of unlabelled data to aid in the generaliza-
tion of the labelled data to the full data set. Co-
training in turn is similar to clustering which also
has a lengthy history. The problem can be viewed
as clustering probability distributions although the
problem of assigning labels to the generated clusters
is not addressed by clustering systems. A separate
line of work has focussed on prediction of time series.
The problem of adapting predictions to the system
has been investigated, although in this case the adap-
tation is smooth and not discontinuous. All of these
systems share the property that they are not closed
loop systems and do not use the resulting classifi-
cation to do anything useful. These systems also
assume the data has already been broken up into
probability distributions and only a small number
of the usual techniques can use probability distribu-
tions as primitive data items in the system. Some of
these techniques also assume that there is a one to
one function state clusters to labels, whereas we only

assume a many to one mapping from state clusters to
labels. A final drawback to most of these techniques
is that new classes with new labelled examples can-
not be added on-line.

Assuming a division of the input data into proba-
bility distributions, some classification systems can
be used to generate class labels corresponding to the
current state of the environment. We are not aware
of attempts to use any of these classification systems
to classify probability distributions, however, and it
is unclear whether most of them will work for this
task in practice. One simple technique for classifi-
cation would be to use k nearest neighbors with a
suitable distance metric between probability distri-
butions (see Section 3.3 for one possibility). Other
work has been done with co-training which might
also be applicable here, although most algorithms are
off-line only. Co-training is the use of unlabelled data
along with labelled data to improve the performance
of a learner. Dempster, et.al. [6] introduced the well
known EM approach to using unlabelled data. See
Blum and Mitchell [1] for more recent work on co-
training. A more generic starting point is cluster-
ing algorithms. Almost all of these are off-line algo-
rithms and hence not applicable here. Particularly
fast clustering has the potential to be used on-line,
see Cutting [4] for an example. All clustering algo-
rithms leave undetermined the method of generating
the class labels from the resulting clusters.

Adapting to changing state has been investigated in
the context of time series prediction. One popular
approach is to model the time series data using an
autoregressive model. The state of the system is then
the parameters of the autoregressive model. Adapta-
tion is then done by either allowing the parameters
to drift over time by using a Kalman filter or us-
ing a HMM to model the state of the system. In
the case of the Kalman filter approaches, the state
of the system is never identified as being a repeated
state which makes adaptation slow. In the case of the
HMM approaches, the number of states and a HMM
are given which makes the techniques inapplicable in
the common case where no model is available.

State grouping has been investigated in both re-
inforcement learning and neural network learning.
Chrisman developed a technique for splitting states
in reinforcement learning based on perceptual dis-
tinctions [3]. Chrisman focussed on distinguishing
states with similar perceptions whereas our focus in
on distinguishing different states using noisy percep-
tions. There has also been work on state grouping in
finite state machine induction using neural networks.
Das and Mozer [5] used Gaussian clustering of hid-
den states of recurrent neural networks to identify
distinct states. Pawelzik et.al. [10] used annealing to



cluster hidden states of recurrent neural networks.
All of these techniques are off-line techniques that
slowly converge to the right answer.

The most closely related work is in the area of switch-
ing state-space models. Ghahramani and Hinton [7]
provide a nice framework and overview of approaches
as well as discussing a learning technique for these
models. Kohlmorgen and Lemm [8] have developed
an on-line algorithm for detecting state changes in
sensor data. They focus on learning the model of the
state-space whereas we are interested in both learn-
ing the model and applying it to robotics problems.
The problem of adapting to conditions has also been
investigated in the control of non-linear and jump lin-
ear plants by Cacciatore and Nowlan [2]. They use a
recurrent neural network to learn a gating function
which selects among several base neural networks.
As with most neural networks, training is slow.

3 Algorithm

In order to understand the on-line algorithm, it helps
to start by considering the off-line version. The basic
problem is to identify the current lighting conditions
from data summarizing what the camera is seeing. It
is desirable to use a small amount of information to
summarize the overall lighting of the scene captured
by the camera to reduce memory and computation
requirements. Simply using the average luminance
(or brightness) of the scene is sufficient for separa-
tion and economical in representation. Of course,
the average luminance of a scene depends highly on
what is being looked at. Therefore, instead of re-
lying on a single measure of average luminance, a
distribution of luminance values over the recent past
is considered. The basic problem then becomes to
segment the time series of average luminance values
into distinct regimes (or regions) which have similar
distributions of average luminance measurements.

Having decided to look for similar distributions of
measurements, it is now necessary to have a way to
determine whether two distributions are in fact the
same distribution and how similar they are. Since
the shape and form of the distribution is unknown,
a non-parametric distance metric is used. The par-
ticular distance metric used is not very important as
long as it is indicative of the difference between two
distributions. Note that statistical difference tests
such as the Kuiper test [9] or Kolmogrov-Smirnov
are inappropriate as they measure the probability of
difference between two distributions but not the dis-
tance between them.

Now that the form of the input data has been de-
termined, it is necessary to consider the form of the
output and the algorithm to use to produce it. For

Procedure Segment(input_space)
Split input_space into n non-overlapping windows
of size w.
Create a leaf node for each window.
Initialize the set S to contain all of the leaf nodes.
while(]S| > 1)
Calculate distance(dist()) between all pairs
of elements of S.
Choose p,q such that
dist(p, q) <= dist(3, j)Vi,j € S.
Create new internal node r with
p and q as children.

S=58—{p, ¢ +{r}

Figure 1: Off-line Segmentation of Data

simplicity, the input data is split into equal size win-
dows of size w. The window size is a parameter of
the system and affects the latency and robustness
of the resulting detection. Larger window sizes are
more robust but have higher latency. The basic idea
for representing the output is to avoid making bi-
nary decisions until the last possible moment. This
is done by representing the division of the input space
by a binary tree where each leaf represents a region
of the input space. Regions which are similar are
stored close to each other in the tree and have com-
mon ancestor nodes. Each internal node stores the
distance between its two children (as reported by the
statistical test). Internal nodes which have internal
nodes as children use the union of all the data in the
leaves when performing comparisons. The resulting
tree can be used to determine the number of modes
of the data by applying a threshold split criterion
to the tree. Alternatively, if the number of different
modes is known, the tree can be used to select a seg-
mentation of the data into the different modes. Thus
the tree can be used for determining the location and
number of modes of the data and, as will be shown
later, determining the current mode of the system
and relating it to available calibrations.

3.1 Off-line Segmentation

The tree is easy to construct with a simple but slow
off-line algorithm. The algorithm starts by divid-
ing the input space into n non-overlapping windows
of size w. Each window is compared to every other
window to get a distance value. The two most sim-
ilar windows are joined together by creating a new
internal node with the two windows as children. This
new internal node is treated as a mega-window which
replaces the two original windows. This leaves n — 1
windows. The process is repeated until all of the
windows have been joined. The pseudo-code for this



Procedure Insert(T:tree, w:window)
let n «— root(7).
let S «— {n}.
let done < false.
while(— done)
let R «— 0.
foreach s € S
let c1,c2 « children(s).
let di « dist(c1,c2).
let d2 « dist(cl,w).
let d8 « dist(w,c2).
ifd2<d1v ds<dl
if d2 < d1
R «— R+ {c1}.
if d3 < d1
R — R+ {c2}.
else R — R + {s}.
done — (R=S5).
S «— R.
Choose b € S that minimizes dist(b,w).
Create a new node o which has as children b and w.
Replace b with o in the tree.
Update the similarity measurements of
all ancestors of o.

Figure 2: On-line Segmentation of Data

algorithm is shown in Figure 1.

3.2 On-line Segmentation

The main obstacle to building the tree on-line is to
find an efficient way to insert a new window into
the growing tree. The first strategy tried was to
simply start at the root and follow the branch with
which the new window was most similar. This was
done recursively until a leaf node was reached or the
two children of the node were more similar to each
other than to the node being inserted. This algo-
rithm works reasonably but sometimes fails to find
the best place in the tree to insert the new window.
This usually happens because the top levels of the
tree contain mixtures of very different modes and
the new window tends to look very different from all
of them. This inherently has a lot of noise compared
to the distance signal produced by the actual simi-
larity. A more robust algorithm has been developed
which improves on the naive algorithm by trying a
few different branches of the tree to find the best
place to insert the new window. The pseudo-code
for the insertion is shown in Figure 2.

In practice this algorithm seems to only have to con-
sider about 10% of the nodes, since the nodes in the
tree tend to have very similar children after travers-
ing a very short depth down the tree.

Procedure PropagateClassesUp(n:node)
if leaf(n)
for ¢ «— 0 to num_classes — 1
n.ClassCnts[c] «—
count(n. Ezamples.hand_label=c).
n.class «— argmax,(n.class_cnts[c]).
else
foreach child of n.Children
PropogateClassesUp(child).
n.ClassCnts « 0.
foreach child of n.Children
n.ClassCnts « n.ClassCnts +
child. ClassCnts.
n.class «— argmax,(n.class_cntsc]).

Procedure PropagateClassesDown(n:node,last:class)
if n.class =UnknownClass
n.class < last.
foreach child of n.Children
PropogateClassesDown( child,n.class).

Procedure DetermineClasses( T tree)
Clear class label of all nodes in T.
let n — root(7).
PropagateClassesUp(n).
PropagateClassesDown(n,UnknownClass).

Figure 3: Labelling Classes

3.3 Distance Metric

The distance metric used is a very simple measure of
the average distance the data points from one distri-
bution would need to be moved in order to match the
data points of a second distribution. A cumulative
probability distribution is formed for both distribu-
tions, call them f(z) and g(z). Let f'(p) and ¢'(p)
by the inverse of f(x) and g(z) respectively. Then
the average distance points must be moved to make
one distribution match the other is given by

/ () — ¢ ()ldp

=0
4 Labelling Classes

Next, the class of the current window must be deter-
mined so that the robot can decide what the current
state of the environment is. This is done by labelling
the class of every node in the tree from scratch each
time a window/node is added to the tree (see Fig-
ure 3). The algorithm starts by labelling each leaf
with any labelled examples with the most common
class label in that leaf. Note that the may be many
very different states that correspond to the same la-
bel. These labels are then propagated up the tree



assigning each node the most common label found in
its subtree. The remaining unlabelled subtrees are
labelled with the label of their parent. The class of
the most recent window is taken as the class of the
current state of the environment.

5 Application

The algorithm was applied to the task of automat-
ically selecting vision thresholds by automatically
identifying the current state of the lighting and using
the matching thresholds. Robots are usually limited
to working in a specific lighting condition for which
they are trained. This occurs because thresholds are
often used in robotics because they are fast, leav-
ing more processing available for other non-vision
tasks. By automatically selecting amongst several
pre-trained thresholds, a robot can better adapt to
the current lighting conditions of the environment
it finds itself in. Rather than have to find a set of
thresholds that generalize across all lighting condi-
tions, by applying the state identification technique
described above, the robot can have several thresh-
olds each of which generalizes over a much smaller
region of the state space of all possible lighting con-
ditions. Since it is possible to find thresholds which
generalize over reasonable amounts of the lighting
state space, this allows the robot to adapt to a large
variety of situations. The resulting more special-
ized thresholds also give better performance than the
more general thresholds at any given lighting level.

We measured the ability of a robot to correctly iden-
tify colors in an image under different lighting condi-
tions using both the algorithm described above and
simply using one set of thresholds throughout.

5.1 Test Methodology

The robot was placed in front of a set of objects with
easy to confuse colors (red, pink, orange, and yellow)
which we are interested in segmenting. The robot
was started with lighting conditions matching the
thresholds used to allow it to auto-center the cam-
era on the objects. The robot recorded the colors it
saw every fourth frame to a log file along with a few
raw images from the camera. The lighting conditions
were changed between three different brightness lev-
els on a schedule timed by a stopwatch. The baseline
(no adaptation, always use bright thresholds) and
the test case (adaptation via algorithm above) had
to be run in two separate trials due to hardware lim-
itations. One of the raw images was selected from
the log and hand labelled by a human. The robot’s
performance was then graded based on the number
of pixels that robot classified correctly out of the pix-
els labelled as a color by the human. The robot was
not penalized for the few pixels that were not colored
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Figure 4: Image Segmentation Results. The results
with adaptation are shown in solid black. The re-
sults using only the bright thresholds are shown with
dashed lines.

that the robot thought were one of the colors. This
is because most of these misclassifications are easily
filtered out and the threshold generating algorithm
tends not to produce many of these errors.

5.2 Results

The results of testing the robot on its image seg-
mentation performance are shown in Figure 4. In
all cases, the algorithm presented chose the correct
thresholds after a small delay (to collect enough
data). The run with no adaptation used bright
thresholds throughout and so did very well in bright
conditions, fair in medium conditions, and poorly in
dim conditions. The sequence of lighting conditions
used can be seen clearly in the performance of the
no adaptation case (bright, dim, mid, bright, mid,
bright, dim). There is a small amount of registra-
tion error between the transitions of the two runs
due to starting the stop watch at slightly different
times. Notice that when the robot is adapting to
conditions, the robot performs poorly for a small pe-
riod of time before performance approves again. This
corresponds to the robot collecting enough informa-
tion to determine that the lighting conditions have
indeed changed (enough time for a window transition
plus one full window’s worth of data). The strange
looking performance at the beginning of the adap-
tation run is largely an artifact of the test setup.
Performance starts high (after the robot is well fo-
cused on the objects) and then drops suddenly before
improving again. This is due to the training data be-
ing provided in the order bright, medium, dim so the
robot starts off thinking the lighting conditions were
most recently dim. The sudden drop is when the



first radio packet reaches the robot and switches the
thresholds to dim. The delay before switching back
is due to the robot gathering data which takes extra
long since fewer radio packets are being sent since
the robot is still starting up.

As can be seen in the figure, the adaptation dra-
matically improves the performance of the robot in
segmenting the image without degrading the perfor-
mance when the lighting conditions are consistent.
This improvement in color segmentation of the im-
age carries over to an improvement in object identi-
fication which in turn improves the performance of
the robot in almost every task.

6 Future Work

Now that we have made the important step of devel-
oping a complete functional system which improves
robot performance, we plan on many improvements
and extensions to the algorithm. We plan to extend
the algorithm to handle multi-dimensional data in
both the input space (the space that gets divided)
and the output space (the space that gets used for
comparisons). Although the algorithm is already
quite fast, we also plan to further improve the run-
ning speed of the algorithm to ensure that the run-
ning time eventually reaches a constant plateau. We
would like to use the identified states as input to a
Markov Model learning algorithm to give the robot
an even better understanding of its world.

We plan on applying the framework to more tasks. In
particular, we plan on applying the framework to au-
tomatic identification and recover from stuck states
(falling over while walking in particular). We also
would like to apply the framework to segmentation
of images into regions with similar textures.

7 Conclusion

We have demonstrated a proof of concept system
showing that sensors can be used to identify the
state of the environment and/or system and that
this state identification can be used to improve the
performance of robots. This is an important first
step which will form a base for many future im-
provements and advances. Naturally, as with any
new line of work, there are many improvements that
can be made to the algorithm to improve its per-
formance and generality. Yet, despite these possible
improvements, the algorithm already performs very
useful tasks that are difficult, if not impossible, to
do with existing methods. The identification of re-
peated states is also the first step in generating a
Markov (or higher order) model of the world. In
particular, we have shown how the algorithm can be
used to improve the robustness/performance of the

robot in the face of varied lighting conditions. This is
a task that sorely needs to be solved to make robotics
practical since lighting conditions vary constantly as
the robot moves about any reasonably sized envi-
ronment. The techniques described in this paper
demonstrate how the robot can usefully adapt to its
environment.
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