
COMMUNICATIONS OF THE ACM January 2002/Vol. 45, No. 1 43

GameBots [1] is a virtual reality
platform that allows the creation
and evaluation of intelligent
agents that interact with a rich
3D continuous dynamic envi-

ronment. As opposed to previous test beds that
focus on a single task and environment (such as
soccer simulation [4]), GameBots does not
define a single benchmark task. Instead, the
GameBots platform comes with a wide variety
of predefined tasks and environments and
allows anyone to extend these in various ways,
or create new challenges. This enables multi-
agent systems (MAS) and artificial intelligence
researchers to explore a wide variety of algo-
rithms and techniques, in areas such as spatial

navigation, learning, dynamic resource alloca-
tion, multiagent planning, plan-recognition,
collaboration, distributed adversarial planning,
and human-machine teamwork.

GameBots is composed of two components.
The first of these is a freely-available open
source extension of the commercial Unreal
Tournament game engine [3]. It defines a
socket-based API allowing anyone to create
agents that can participate in any Unreal Tour-
nament games. The second component is a set
of development tools, sample source code, and
nonviolent graphics (replacements for the
default graphics) that form a basic develop-
ment environment to help users get started in
using GameBots.

Gal A. Kaminka, Manuela M. Veloso, Steve Schaffer,
Chris Sollitto, Rogelio Adobbati, Andrew N. Marshall,
Andrew Scholer, and Sheila Tejada

�

A FLEXIBLE
TEST BED FOR
MULTIAGENT TEAM

RESEARCH

GAMEBOTS:

A quick summary of how GameBots works
follows. Gambots supports multiple agents (both
human and synthetic) that interact in a variety of
multi-agent games. Two interesting built-in
games are Domination (where two teams of
agents compete with each other for the control
of selected locations), and Capture-the-Flag
(where two teams of agents attempt to steal each
other’s flag). The Unreal engine features real-
time 3D graphics, as well as sound and agent
movement, in different user-designed terrains.
The commercial game is modifiable using the
built-in programming language to support the
introduction of different games, additional 3D
models, sounds, alternative terrain maps, and
agents with different capabilities.

To turn the commercial software into a test
bed, we modified the game using its published
programming interfaces. Like other MAS test
beds, GameBots clearly defines the sensing and
acting capabilities of agents without restricting
the reasoning processes. This is achieved by
defining socket-based interfaces to which a sin-
gle program (agent) can connect in a
client/server fashion. Through the interface, the
agent program can accept sensory information from
a GameBots server and can send actuation informa-
tion back. In other words, the agent program con-
tains the “brains” of a single agent, and the
GameBots server controls the “body.” The Game-
bots server controls the environment and facilitates
interactions between agents, and between agents

and the environment. These interactions take place
in the context of tasks (typically, games) that are
defined within the test bed software: The agent pro-
grams, through the sensors and actuators, partici-
pate in these games. To achieve their goals, agents
must cooperate or compete with one another in
order to win. The definition of sensor/actuator
interfaces is meant to put agent programs and
human game-players on nearly equal footing, sup-
porting mixed human-machine studies (see Figure
1). Indeed, this capability for exploring mixed
human-agent scenarios is an important characteris-
tic of GameBots.

Another important feature we added to the com-
mercial game was a set of freely available tools and
code libraries that can be useful in building agents
for GameBots. Sample agent code is available in
Tcl/Tk, Java, C/C++, and more. Tools for visualiz-
ing the terrain in which agents interact and for log-
ging agents’ actions are also available. The game
itself comes with a variety of tools supporting the

creation of additional environments, graphics, and
extensions of the tasks. For instance, to address our
own and general educational concerns we have cre-
ated nonviolent versions of the graphics and sound
(see the screen shots in Figures 2 and 3).

There are several features of the commercial game
that we have found particularly useful. First, of

44 January 2002/Vol. 45, No. 1 COMMUNICATIONS OF THE ACM

socket

human
and bot
players

GameBots Server

socket

socket

socket

socket

1

Network

2

3

4

16

bot
player
alone

human
player
alone

Bot
Client

Bot
Client

UT
Client

Bot
Client

UT
Client

GameBots
Module

Unreal
Tournament

Server

Figure 1. GameBots architecture. Agent
programs (Bot Clients) connect through sockets
to the GameBots module, which manages their

sensing and acting. Human players connect
through the normal commercial software

directly to the UT server.

Figure 2. A screen shot of the nonviolent graphics and
3D models developed for GameBots. The graphics

include male and female wizards that tag each other
using a range of magical and humoristic wands,

ranging from the bubble wand that shoots bubbles at
the target (shown in the figure) to the “goo wand”

that slimes opponents with green goo.

course, is its programming interfaces that allow dras-
tic redesigns of the multiagent tasks (which we use as
benchmarks). This means that when new bench-
marks are introduced in GameBots, the effort

involved in creating the infrastructure for building
and connecting the agent does not have to be
repeated: The agents continue to interact with the
same test bed software, but can now engage in a new
game. Indeed, the Unreal Tournament gaming com-
munity has enjoyed extending the game for years,
and thus many modifications, replacement graphics,
and additional terrain areas are freely available.
Other useful features include the built-in game
server, which can be deployed once and left running,
supporting continued usage by researchers or stu-
dents without administrative overhead. The plat-
form runs on Linux, Windows, and the Macintosh
OS, and is capable of real-time play over the Inter-
net, allowing distributed development and friendly
competition with other researcher groups. Some
such competitions have already taken place.

Several different universities and research organi-
zations are utilizing GameBots in their research and
education activities. At Carnegie Mellon University,
GameBots is being used in undergraduate research
projects. SRI uses GameBots in multiagent planning
and believability research. GameBots is currently
being used in Ph.D. and Master’s thesis investiga-
tions of planning in the U.K. and Mexico. Exploit-

ing GameBot’s flexibility, Evans [2] created a virtual
Clue game (also known as Cluedo) in which the
famous board game characters come to life to inter-
act with the human players. In addition, some

friendly competitions have already
taken place. Given the attention
GameBots has received from teach-
ers of programming, AI, and MAS
courses, there are plans for end-of-
semester competitions that will
serve to motivate students and focus
researchers. Announcements about
such events, as well as all software,
tools, and documentation, are avail-
able at www.cs.cmu.edu/~galk/
GameBots/. Our team is committed
to continuing its development of the
GameBots platform and the agent
development environment.

References
1. Adobbati, R., Marshall, A.N., Scholer, A.,

Tejada, S., Kaminka, G.A., Schaffer, S., Sollitto,
C. GameBots: A 3D virtual world test bed for
multiagent research. In Proceedings of the Second
International Workshop on Infrastructure for
Agents, MAS, and Scalable MAS, (Montreal,
Canada, 2001).

2. Evans, T. Cluedo. Master’s Thesis, Centre for
Virtual Environments, ISI, University of Salford,
2001.

3. Gerstmann, J. Unreal tournament: Action game of the year, 1999.
GameSpot; www. gamespot.com/features/1999/p3_01a.html

4. Kitano, H., Tambe, M., Stone, P., Veloso, M., Coradeschi, S., Osawa,
E., Matsubara, H., Noda, I., and Asada, M. The RoboCup synthetic
agent challenge ‘97. In Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence, (Nagoya, Japan, 1997).

Gal A. Kaminka (galk@cs.cmu.edu) is a post doctoral fellow in
the Computer Science Department at Carnegie Mellon University in
Pittsbugh, PA.
Manuela M. Veloso (veloso@cs.cmu.edu) is an associate professor
in the Computer Science Department at Carnegie Mellon University.
Steve Schaffer (steve.schaffer@jpl.nasa.gov) is a member of the
Artificial Intelligence technical staff at NASA Jet Propulsion Laboratory.
Chris Sollitto is a recent graduate of the Computer Science
Department at Carnegie Mellon University.
Rogelio Adobbati (rogelio@isi.edu) is a recent graduate of the
Information Sciences Institute at the University of Southern California.
Andrew N. Marshall (amarshal@isi.edu) is a staff member in
the Information Sciences Institute at the University of Southern
California.
Andrew Scholer (ascholer@usc.edu) is a Master’s student in the
Information Sciences Institute at the University of Southern California.
Sheila Tejada (tejada@isi.edu) is a Ph.D. candidate in the
Information Sciences Institute at the University of Southern California.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 2002 ACM 0002-0782/02/0100 $5.00

c

COMMUNICATIONS OF THE ACM January 2002/Vol. 45, No. 1 45

Figure 3. This screen shot shows the effect of using
the bubble wand to “shoot” a bubble at the blue wizard.

A bubble-like sound accompanies the action.

