An Empirical Study of Coaching

Patrick Riley, Manuela Veloso, and Gal Kaminka
Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213-3891

Abstract. In simple terms, one can say that team coaching in adversarial domains
counsists of providing advice to distributed players to help the team to respond effec-
tively to an adversary. We have been researching this problem to find that creating
an autonomous coach is indeed a very challenging and fascinating endeavor. This
paper reports on our extensive empirical study of coaching in simulated robotic
soccer. We can view our coach as a special agent in our team. However, our coach
is also capable of coaching other teams other than our own, as we use a recently
developed universal coach language with a set of predefined primitives. We present
three methods that extract models from past games and respond to an ongoing
game: (i) formation learning, in which the coach captures a team’s formation by
analyzing logs of past play; (ii) set-plays selection, in which the coach uses a model
of the adversary to direct the players to execute a specific plan; (iii) passing rule
learning, in which the coach learns clusters in space and conditions that define
passing behaviors. We discuss these techniques within the context of experimental
results with different teams. We show that the techniques can impact the perfor-
mance of teams and our results further illustrate the complexity of the coaching
problem.

1 Introduction

As multi-agent systems continue to grow more important, the types of rela-
tionships between agents continue to be studied. One important relationship
that humans often exhibit is still largely lacking among our agents. This re-
lationship is one of a coach or advisor. For example, the lead programmer
in a software development team provides structure, direction, and a problem
decomposition to the other programmers, a professor provides guidance and
advice to her graduate students in search of their Ph.Ds, and parents try to
provide advice to guide their children.

All of these examples have the feature that one person is providing advice
to others. We consider this to be the central feature of a coach relationship.
Autonomous agents could also benefit from this sort of relationship. There-
fore, we lay out a general framework for the “coaching problem” where one
agent’s goal is to provide advice to help other agents perform better.

We have implemented a coach for the Soccer Server System [10], a simu-
lated robotic soccer environment. Notably, because of the creation of a stan-
dard language CLang [15], coaches and teams from researchers around the
world are able to work together. We have worked towards this research goal
of our coach working with a team for which it was not specifically designed.
This was the basis for a small coach competition at RoboCup2001 [5] in which

4 teams competed. We present the techniques of our coach and experiments
involving those 4 teams and their coaches.

2 Environment

The Soccer Server System is a server-client system that simulates soccer
between distributed agents. Clients communicate using a standard network
protocol with well-defined actions. The server keeps track of the current state
of the world, executes the actions which the clients request, and periodically
sends each agent noisy, incomplete information about the world. Agents re-
ceive noisy information about the direction and distance of objects on the
field (the ball, players, goals, etc.); information is provided only for objects
in the field of vision of the agent.

There are 11 independent players on each side as well as a coach agent.
The coach agent sees the position and velocity of all players and the ball, but
does not directly observe the actions or the perceptions of the agents.

Actions must be selected in real-time, with each of the agents having an
opportunity to act 10 times a second. Each of these action opportunities
is known as a “cycle.” Visual information is sent 6 or 7 times per second.
Over a standard 10 minute game, this gives 6000 action opportunities and
4000 receipts of visual information. All units of distance discussed here are
simulated meters, with the whole field measuring 105m x 68m.

The communication model between the coach and players was designed to
require significant autonomy for the players, especially during the active parts
of the games. Basically, the model permits the coach to say one message every
30 seconds (every 300 cycles). Messages are delayed 5 seconds (50 cycles)
before being sent to the players.

The coach messages are in a standard coach language called CLang, which
was developed by a group of members of the simulated soccer community.
Each message basically consists of a set of condition-action rules for the play-
ers. The conditions can include relative and absolute positions of the players
and the ball as well as the play mode and the player currently controlling the
ball. The actions include directions to pass or dribble, move to an area of the
field, and “mark” (take a defensive position) against a player or region.

The exact communication model as well as further technical details can
be found in [15].

3 Coaching Techniques

This section covers the techniques we use to coach simulated robotic soccer.
All of these techniques are designed to learn information about the oppo-
nents and how to play effectively against them. Learning about the team
to be coached the next research step, as discussed in the empirical results
(Section 4).

3.1 Formations by Learning

One important concept in robotic soccer is that of the formation of the team
[18]. The concept of formation used by CLang is embodied in the “home
area” action. The home areas specify a region of the field in which the agent
should generally be. It does not require that the agent never leave that area;
it is just a general directive.

Our coach represents a formation as an axis aligned rectangle for each
player on the team. From the home areas, agents can also a infer a role in the
team, with the common distinctions of defenders, midfielders, and forwards.

(a) After Phase 1 (b) After Phase 2

Fig. 1. The learning of the CMUnited99 formation from RoboCup2000 games.

All coaching based on formation uses an algorithm for learning the for-
mation of a team based on observation of that team. The algorithm’s input
is the set of locations for each player on a team over one or more games. The
learning then takes place in two phases.

1. The goal of the first phase is, for each agent, to find a rectangle which
is not too big, yet encompasses the majority of the points of where the
agent was during the observed games. The learning is done separately for
each agent with no interaction between the data for each agent. First the
mean position of the agent (¢, ¢y) is calculated, as well as the standard
deviation (sz,sy). We then do a random search over possible rectangles
(o is used a parameter for the search). The rectangles to evaluate are
generated from the following distribution (for the left, right, top, and
bottom of the rectangles), where N(m,o) represents a Gaussian with
mean m and standard deviation o (note that we use a coordinate frame
where (0,0) is in the upper left):

(N(cy — 82,0), N(cz + 82,0),
N(cy = sy,0),N(cy + sy4,0)) (1)

The evaluation function E takes three parameters: v, 3, M. E of rectangle
R is then (where A is the area of R and f is the fraction of points inside
R):

B =2+ - (1- 37 @

All parameters were hand tuned with the following values: ¢ = 10, v =
0.95, 8 =1/3, and M = 900.

. The first phase of learning ignores correlation among the agents. In fact
it quite common for all agents to shift one direction or another as the
ball moves around the field. This tends to cause the average positions
(and therefore the rectangles from phase 1 of the learning) to converge
towards the middle of the field, as shown in Figure 1(a). The second phase
is designed to capture some pairwise correlations among the agents. The
rectangles will be moved around, but their shape will not be changed.
For this phase, conceptually think of a spring being attached between
the centers of the rectangles of every pair of agents. The resting length
for that spring is the observed average distance between the agents. Also,
attach a spring with a resting length of 0 between the center of a rectangle
and its position at the end of phase 1. A hill-climbing search is then done
to find a stable position of the system. Figure 1(b) shows an example
result after the second phase of learning.

Now we describe the details of the algorithm. First, the observed aver-
age distance t;; between every two agents is calculated. Next, for each
pair of agents, a value a;; roughly corresponding the the tension of the
spring in the above description is calculated as follows (w, b, and m are
parameters):

Qi = bxw (3)
aij =bxe™ii (i # j) (4)

Here b is the y-intercept of the a function and m is a slope parameter.
The idea is to make the shorter springs more tense, and therefore have
more impact of the final position of the agent’s rectangle. This stems
from the assumption that the correlated movement of nearby agents is
more important. Since t; = 0 for all i, Eq. (3) (used instead of Eq. (4))
reduces the impact of the connection to the original position, with w being
a parameter which controls that weighting. We used w = 0.5, b = 0.1 and
m = —0.01 here.

At each step of the hill-climbing search, a particular agent p is chosen at
random to have its rectangle shifted. All other rectangles are held fixed.
For all 4, let o; be the original position of rectangle i and let ¢; be the
vector of the center of current position of rectangle i. The evaluation

function is then:

. 2 . 2
app (dist(cp, 0p))” + Z ap; (dist(cp, ¢;) — tp;) (5)

i#p
The gradient of the evaluation function as a function ¢, is easily calculated

and a small step is taken in the direction of the gradient (with learning
rate 0.1).

Formation learning is used in two ways. The first is an instance of im-
itation where we imitate the formation of another team. This is especially
important for the rule learning described in Section 3.3. The other technique
we call “formation based marking.” Here the coach observes the previous
games of the opponent we will play and learns their formation. Each of the
defenders is then assigned one of the forwards of the opponent to mark for
the whole game. Having a static assignment may reduce the flexibility of the
team but the use of coordination by authority and opponent analysis has the
potential to improve the team.

3.2 Set plays

Set plays refer to times of the game when the ball is stopped (due to an out
of bounds call, free kick, or kick off) and one team has time to prepare before
kicking the ball. Our coach takes advantage of this time to make a plan for
the movement of the ball and the agents. This plan is based on refinement of
plan templates with a model of the opponent used in evaluating plan changes.
Details about this process are described elsewhere [14].

An important difference to be noted is that the plans used in this work
were described as a set of rules in CLang rather than as a Simple Temporal
Network [7]. There were many problems achieving agent coordination using
this rule system, created by the partial information of the agents and the lack
of the agents examining the currently non-matching part of the rule base to
predict future instructions from the coach. The Simple Temporal Network
based plan representation did not encounter these problems.

3.3 Rule Learning

The passing patterns of a team are an important component to how the team
plays the game. Our coach observes the passes of teams in previous games
in order to learn rules which capture some of these passing patterns. These
rules can then be used either to imitate a team, or to predict the passes that
an opponent will do.

The rule learning uses a combination of clustering (using Autoclass C [3])
to create regions on the field and C4.5 [12] to generate rules describing the
passing behaviour of a team. The attributes for the rules are the locations of
the passer and receiver (using the regions learned from clustering) and the

realtive position of all teammates and opponents. The rules from C4.5 are
then transformed into rules in CLang.

To illustrate, we now provide an example of an learned rule. The format
here is almost the format of the CLang language. A few things have been
renamed or left out for clarity.

((and (play_mode play_omn)

(bowner our)
(bpos "PLINCLO")
(ppos our {6} (arc (ball) 23 1000 -180 360))
(ppos opp {10} (arc (ball) 0 1000 151 29)))
(do our {2 - 11} (bto "PLOUTCL1" {p}))
(do our {11} (pos "PLOUTCL1")))
Lines 1-5 are the conditions for the rule and lines 6-7 are the actions. Line 2
says that some player on our team is controlling the ball. Line 3 says that
that the ball in a particular cluster (“PLINCLO” is the name of the cluster).
Lines 4 and 5 are on the position of particular players. Line 4 says that
teammate number 6 is at least 23m away, while line 5 says that the angle
of opponent number 10 is between 151 and 180 degrees. Line 6 instructs all
players on our team (except the goalie who is number 1) to pass the ball
to the a particular cluster. Line 7 instructs a teammate number 11 (whose
home formation position is closest to cluster “PLOUTCL1”) to position itself
in that region.

N O Ut W N

4 Experimental Setup and Results

The language CLang was adopted as a standard language for a coach compe-
tition at RoboCup2001. Four teams competed providing a unique opportunity
to see the effects of a coach designed by one group on the team of another.

We participated in the coach competition, which consisted a single game
in each test case. This section reports on our thorough empirical evaluation of
our coach and the techniques used, which we performed after the competition.
Each experimental condition was run for 30 games and the average score
difference (as our score minus their score) is reported. Therefore a negative
score difference represents losing the game and a positive score difference is
winning. All significance values reported are for a two tailed ¢-test.

We use eight teams for our evaluation. We will use initials (denoted in
parentheses here) for the teams. The teams that understand CLang are:
the DirtyDozen (DD) from University of Osnabriick; and ChaMeleons (CM)
from Carnegie Mellon University. Also from RoboCup2001, we use Gemini
(GEM) from the Tokyo Institute of Technology and Brainstormers (B) from
the University of Karlsruhe. Team descriptions for these teams are avail-
able in [5]. From the RoboCup2000 competition, we use the following teams:
VirtualWerder (VW) from the University of Bremen; ATHumboldt (ATH)
from Humboldt University; and FCPortugal (FCP) from the Universities of

=
o

T T
CMVGEM —+—
DD v GEM ---x--- % ,,,,, A %% i
CMVVW %/

L CMVATH 8- g

Score Difference
o] o B N o N N o [oe]
T

.10 1 1 1 1 1 1
Random No Coach F FS FSR FSRM
CMvGEM DDvGEM CMvVW CMvATH
-6.5 [—7.2,—5.9] -17.2 [—18.1,—16.3] -2.8 [—3.7,—1.9] 1.2 [0.8,1.7]

Fig. 2. The score difference of teams coached by a random coach and various tech-
niques of C-CM. The score differences have been additively normalized to the no
coach values shown in the lower table. All error bars are 95% confidence intervals.
Note that we do not have random coach results for all cases.

Aveiro/Porto (team descriptions can be found in [2]). We also use CMU-
nited99 (CMU99) from Carnegie Mellon [17], which competed at RoboCup99
and RoboCup2000. In order to run these experiments, we slowed the server
down to 3-6 times normal speed so that all agents could run on one machine.

An important first question is what we should compare ourselves to. The
natural response is to not having a coach at all. However, we also need to
understand the magnitude of the impact a coach can have. Therefore, we also
compare to a “random” coach. The random coach is sends a 35 rules with
conditions and actions a random combination of the conditions and actions
of rules generated by the various coaching techniques presented here.

Our experiments aim to separate out the effects of the techniques of our
coach. To do this, we ran a sequence of games with different combinations of
the five techniques: formation (F) (Section 3.1), set plays (S) (Section 3.2),
offensive and defensive rules (R) (Section 3.3), and formation based marking
(M) (Section 3.1).

For playing against GEM, our coach observed one game of B playing
against GEM. Advice was sent to imitate B’s formation and formation based
marking was used against GEM’s formation. Rule learning was also done for
those games. Similarly, our coach learned from 5 games of CMU99 playing
against VW and from 10 games of FCP playing against ATH.

The results from the second set of experiments are shown in Figure 2. The
CMvATH set is different from the others in several respects. No combination
of the techniques resulted in an improvement for CM, and several combina-

tions (F, FSR, FSRM) resulted in significantly worse performance (p < .05)
compared to no coach.

For the other teams, the combination of all techniques (FSRM) is always
significantly better than no coach (p < .000002). Looking at the individual
techniques is also illustrative. Sending a formation sometimes helps the team
(DD v GEM) and sometimes hurts the performance (CM v GEM), even
though exactly the same formation is sent in each case. Clearly, the coach
needs to learn something about the team being coached.

Except for the CM v ATH line, neither the rules nor the formation based
marking make a significant impact on the score difference of the games. The
formation based marking was a minor part of the coach and it is no great
surprise that it’s impact is small. The rule learning, however, was the most
ambitious of the coaching techniques used. There are several reasons why the
rules may have failed to have a large impact. The number of examples from
which to learn varied considerably, from 51 to 1638) and so did the accuracy of
the rules on the reserved test set (35%—75%). Some preliminary experiments
indicate that changing the input attributes could improve the performance.
The attributes are currently based on the player numbers, where sorting the
player’s by distance to the passer may be useful. However, the rules must be
expressible in the coach language CLang, which can not easily express the
notion of “the 3rd closest opponent is between 10m and 20m away and at an
angle of between 90 and 260 degrees.”

5 Related Work

The area of imitation has been studied under many different names. There
has been extensive research in the robotics literature on learning a task by
imitating a human being, called variously “teaching by guiding,” “learning
by watching,” “programming by demonstration,” and “imitation learning.”
Bakker and Kuniyoshi have a recent survey [1] and Dautenhahn emphasizes
the biological connection [6]. Similarly, an area commonly called behavioral
cloning deals with learning a control strategy for a task [16,19]. Imitation
is only one possible aspect of successfully coaching. In particular for this
work, we are imitating aspect of agent interaction (passing), not simply agent
interaction with the environment.

Some work has also been done in creating agents capable of receiving
advice. For example, the RATLE system by Maclin and Shavlik [8] can in-
corporate advice generally specified as if-then rules (similar to the language
we use here) into a reinforcement learning agent. Their results in Pengo, a
grid and blocks world, also suggest that the learning agents need to be able
to refine advice to achieve high performance. Clouse [4] find a similar results
in a discrete driving task. They created an automated trainer to improve the
learning speed of the learning agent. If the trainer gives too much advice, the
learner can fail to converge.

Previous research in Intelligent Tutoring Systems (ITS) has examined how
to give advice to human beings. For example, Miller, et. al. [9] consider how
to give advice to students who are constructing arguments based on scientific
data. The system works by comparing the structure of the student’s argument
(explicitly given by the student) to known patterns. The CAST system [11]
trains humans to act in a team. Here, a coach agent provides advice based
on tracking belief state of the human being coached. The primary difference
between the ITS literature and this research is that tutoring systems generally
rely on a fairly rigid and predefined task structure. Deviations from that
structure are the focus of the advice. Here, we have no such predefined plan
or structure.

The ISAAC system [13] is an automated game analysis tool for simulated
robotic soccer. It does off-line analysis of games at several levels. It employs
a local adjustment approach to suggest small changes (such as “shoot when
closer to the goal”) to a team’s designer in order to improve performance. The
suggestions are backed up by examples from the games analyzed and provided
in a format useful for the designers to examine. However, ISAAC’s suggestion
are provided to the designer of the team, not to the agents themselves; there
is no automated effect on the team.

6 Conclusion

We have presented a general description of the coaching problem. We believe
the coaching problem can provide a good way to decompose the goal of
achieving good performance for agents in many domains, especially multi-
agent and adversarial ones.

Further, we have implemented a coach for a simulated robotic soccer do-
main. The coach uses techniques derived from some of the general coaching
methods given. Several coaches and coachable teams were created by re-
searchers around the world for the RoboCup2001 coach competition. The
CLang standard coach language was used to allow the coaches to work with
teams with which they were not designed. This allows a much more inter-
esting test of a coach since a variety of teams can be coached. We ran an
extensive set of experiments to understand the effects of the coaching tech-
niques presented here. The experiments represent 630 games and over 20 days
of computer time. The experiments justify that coaching can help teams im-
prove in this domain. All of our coaching techniques are based on learning
about the adversary and not on understanding the functioning of the team
to be coached. Our results support the need for a coach to understand its
team.

We believe that, given our thorough experimental study, the work pre-
sented here is a significant step in the project of understanding an advice-
based relationship between automated agents. This research raises many in-
teresting question which we will continue to pursue.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

P. Bakker and Y. Kuniyoshi. Robot see, robot do : An overview of robot
imitation. In AISB96 Workshop on Learning in Robots and Animals, pages
3-11, Brighton,UK, 1996.

T. Balch, P. Stone, and G. Kraetzschmar, editors. RoboCup-2000: Robot Soccer
World Cup IV. Springer Verlag, Berlin, 2001.

P. Cheeseman, J. Kelly, M. Self, J. Stutz, W. Taylor, and D. Freeman. Auto-
class: A bayesian classification system. In ICML-88, pages 54—64, San Francisco,
June 1988. Morgan Kaufmann.

J. Clouse. Learning from an automated training agent. In D. Gordon, editor,
Working Notes of the ICML ’95 Workshop on Agents that Learn from Other
Agents, Tahoe City, CA, 1995.

A. B. S. Coradeschi and S. Tadokoro, editors. RoboCup-2001: Robot Soccer
World Cup V. Springer Verlag, Berlin, 2002.

K. Dautenhahn. Getting to know each other—artificial social intelligence for
autonomous robots. Robotics and Autonomous Systems, 16:333-356, 1995.

R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial
Intelligence, 49:61-95, 1991.

R. Maclin and J. W. Shavlik. Creating advice-taking reinforcement learners.
Machine Learning, 22:251-282, 1996.

M. S. Miller, J. Yin, R. A. Volz, T. R. Ioerger, and J. Yen. Training teams
with collaborative agents. In ITS-2000, pages 63-72, 2000.

I. Noda, H. Matsubara, K. Hiraki, and I. Frank. Soccer server: A tool for
research on multiagent systems. Applied Artificial Intelligence, 12:233-250,
1998.

M. Paolucci, D. D. Suthers, and A. Weiner. Automated advice-giving strategies
for scientific inquiry. In ITS-96, pages 372-381, 1996.

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Mateo, CA, 1993.

T. Raines, M. Tambe, and S. Marsella. Automated assistant to aid humans in
understanding team behaviors. In Agents-2000, 2000.

P. Riley and M. Veloso. Planning for distributed execution through use of
probabilistic opponent models. In IJCAI-2001 Workshop PRO-2: Planning
under Uncertainty and Incomplete Information, 2001.

RoboCup Federation, http://sserver.sourceforge.net/. Soccer Server
Manual, 2001.

C. Sammut, S. Hurst, D. Kedzier, and D. Michie. Learning to fly. In ICML-92,
Aberdeen, 1992. Morgan Kaufmann.

P. Stone, P. Riley, and M. Veloso. The CMUnited-99 champion simulator team.
In Veloso, Pagello, and Kitano, editors, RoboCup-99: Robot Soccer World Cup
III, pages 35—48. Springer, Berlin, 2000.

P. Stone and M. Veloso. Task decomposition, dynamic role assignment, and
low-bandwidth communication for real-time strategic teamwork. Artificial In-
telligence, 110(2):241-273, June 1999.

D. Suc and I. Bratko. Skill reconstruction as induction of LQ controllers with
subgoals. In IJCAI-97, pages 914-919, 1997.

