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Abstract
In multiagent domains with adversarial and cooperative team
agents, team agents should be adaptive to the current environ-
ment and opponent. We introduce an online method to pro-
vide the agents with team plans that a “coach” agent generates
in response to the specific opponents. The coach agent can
observe the agents’ behaviors but it has only periodic com-
munication with the rest of the team. The coach uses a Sim-
ple Temporal Network to represent team plans as coordinated
movements among the multiple agents and the coach searches
for an opponent-dependent plan for its teammates. This plan
is then communicated to the agents, who execute the plan
in a distributed fashion, using information from the plan to
maintain consistency among the team members. In order for
these plans to be effective and adaptive, models of opponent
movement are used in the planning. The coach is then able
to quickly select between different models online by using a
Bayesian style update on a probability distribution over the
models. Planning then uses the model which is found to be
the most likely. The system is fully implemented in a sim-
ulated robotic soccer environment. In several recent games
with completely unknown adversarial teams, the approach
demonstrated a visible adaptation to the different teams.

Introduction
Multiagent domains can include team and adversarial
agents. One of the main challenges of such domains is the
coordination and the response of teammates to the adver-
sarial agents. This paper contributes our work to address
this problem. We use the concrete simulated robotic soccer
platform, which is a rich multiagent environment, includ-
ing fully distributed agents in two different teams of up to
eleven agents. Of additional interest is a “coach” agent for
each team. The coach has a centralized view of the world,
and it can communicate with its teammates, but only at oc-
casional times. In the robotic soccer domain, these times
are when the game is stopped for some reason. This type
of scenario is one instance of the Periodic Synchronization
Domains (Stone & Veloso 1999) where team agents can pe-
riodically synchronize their team strategies.

Our work is driven by the goal of significantly improving
the performance of teams of agents through their adaptation
and effective response to different adversarial teams. Indeed
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an excellent robotic soccer team should change strategies
as a function of the adversary that it plays against. Exten-
sive work has been done on adapting the teammates’ be-
havior to their opponents, mainly at the individual low-level
of positioning and interactions between a small number of
agents (Veloso, Bowling, & Stone 1999; Stone, Riley, &
Veloso 2000). The procedure for these positioning adapta-
tions does not change throughout a game, limiting the degree
to which the team adapts to the opponent team’s behaviors.

This paper reports our work on going one additional ma-
jor step towards the adaptive response of teammates to the
opponent, by gathering and responding to the opponents’
behaviors throughout the game. We specifically focus on
responding effectively after the game is stopped, in what
are known as setplay situations. Several preset setplay
plans (Stone, Riley, & Veloso 2000; Stone, Veloso, & Riley
1999; Veloso et al. 1998) have been introduced which in-
deed provide great opportunities to position the teammates
strategically and have been shown to impact the performance
of a team. In this work, we contribute adaptive setplays
which change and improve throughout a game as a function
of and in response to the opponent team’s behavior.

We use our coach agent that compiles the necessary over-
all view of how the opponent team behaves. The coach com-
municates to its teammates a team plan which is executed
and monitored in a fully distributed manner. In a nutshell,
here is the complete overview of our ATAC approach, stand-
ing for Adaptive Team-Adversarial Coaching, as reported
in this paper. The coach agent is equipped with a number of
pre-defined opponent models. These models are probabilis-
tic representations of predicted opponents locations. The
models can then be matched to observed movements of the
opponent agents. The coach continues to gather observa-
tions and when the game is stopped, e.g., due to an out-of-
bound call, the coach rapidly takes advantage of the short
available time to create a team setplay plan that is a function
of the matched modeled opponent’s behavior. The plan is
generated through a hill-climbing search in plan space us-
ing an evaluation function that embeds the predictions of the
opponent model perceived to be the most likely during the
game. The plan generation, in addition to the recognition of
the opponents’ model, notably uses the model to predict the
opponent agents’ behaviors. In addition to this plan creation
algorithm per se, one additional challenge of this research



was the selection and use of an appropriate plan representa-
tion. We use a Simple Temporal Network based represen-
tation that effectively captures the temporal dependencies
between the plan steps, and, most importantly, explicitly
records bounds on the expected execution times of the ac-
tions. The setplay plans, as generated and delivered by the
coach to the teammates, notably include the necessary infor-
mation for the agents to execute and monitor the team plan
in a fully distributed manner. The coach also observes the
execution of the plan generated in order to update the selec-
tion of an appropriate model for the current opponent. Our
overall ATAC approach created a variety of setplay plans in
adaptation to completely unknown opponent teams.

The Environment

ATAC is fully implemented in the Soccer Server Sys-
tem (Noda et al. 1998) as used in RoboCup (Kitano et al.
1997). The Soccer Server System is a server-client system
which simulates soccer between distributed agents. Clients
communicate using a standard network protocol with well-
defined actions. The server keeps track of the current state
of the world, executes the actions which the clients request,
and periodically sends each agent noisy, incomplete infor-
mation about the world. Agents receive noisy information
about the direction and distance of objects on the field (the
ball, players, goals, etc.); information is provided only for
objects in the field of vision of the agent.

There are 11 independent players on each side, as well
as a “coach” agent who has a global view of the world, but
whose only action is to send short messages to the players
while the ball is out of play.

Actions must be selected in real-time, with each of the
agents having an opportunity to act 10 times a second. Each
of these action opportunities is known as a “cycle.” Visual
information is sent 6 or 7 times per second. Over a stan-
dard 10 minute game, this gives 6000 action opportunities
and 4000 receipts of visual information. In order to handle
the real-time constraints, efficient abstraction of important
information is needed.

The agents can communicate, but the communication is of
limited bandwidth and unreliable. Further, only agents close
to the player who is talking will be able to hear the message.
The coach is able to communicate with all of the players on
the field, when communication from the coach is available.

A few points which are especially related to this work
should be noted. The score and global clock are the only
shared state features. For all other information, the agents
must rely on their own local view. Because of noise in local-
ization and sensing of objects, there is inconsistent knowl-
edge of the locations of objects. It is possible to make this
information mostly consistent among the agents, but it takes
time for the agents to communicate. Another crucial point
of our special interest is the presence of an active and intel-
ligent opponent team.

Technical details about the Soccer Server System can be
found at (Rob 2001).

Multi-Agent Plans
Plan Representation
A pictorial representation of the type of plan generated is
shown in Figure 1. A teammate starts with the ball at the
bottom of the figure. It passes the ball up and to the right,
and simultaneously the middle teammate moves to receive
the pass. Also, the other teammate at the top of the figure
simultaneously moves to position itself to receive the next
pass. When the middle teammate starts that pass, the top
agent moves to receive it.

First Pass

Second Pass

Ball Teammate Opponent

Figure 1: An Example Plan

A plan is represented as a Simple Temporal Network, as
introduced in (Dechter, Meiri, & Pearl 1991). A Simple
Temporal Network (or STN for short) is a directed graph that
represents the temporal constraints between events. Each
node in the graph represents an event, and each edge repre-
sents a temporal constraint between the events.

For example, in Figure 2, there are “Start Pass”, “Start
Goto”, “End Pass”, “End Goto”, and “Initial Position”
nodes, representing the beginning and ending of events.
Each node also has information associated with it (not
shown) about which agent is responsible for bringing about
this event and details about the event. For example, a “Start
Goto” node is labeled with the location where the agent
should go. Note also that the “Initial Position” node is a
privileged node which must be executed by all of the agents
first. The edges’ labels are of the form

� �������
. For an edge

from event �	� to ��
 , this means that ��
 must occur at least
�

time steps after �	� , but no more than
�

time steps. Note that
these values can be negative (which means that � 
 can occur
before � � ), as well as infinity.

The nodes represent events which the agents must bring
about through their actions. Events in general have the fol-
lowing properties:
Type Specifies a domain-specific type of event. The types

of events we use are described below. The type deter-
mines several important properties for the plan execution,
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Figure 2: An Example Simple Temporal Network (STN)

including precondition monitors and execution test func-
tions.

Agents Indicates which agent(s) are responsible for bring-
ing about the occurrence of this event.

Node Pointer Some nodes require pointers to other nodes
in the plan. These pointers are not edges in the graph.
They are a way for a single copy of information (such as
an agent list) to exist in the network and have that infor-
mation easily accessible by several nodes.

Additional Data Other information may be required for
particular applications. In this work, many events also
have locations associated with them. Details on how these
locations are used are indicated below.

In the robotic soccer domain, we use the following events:
Initial Position

� � � ��� � � � 
 ��� 
 ��������� Describes which agents
(
� � ��� 
 ������� ) are involved in the set play and the locations

on the field where they should start (
� � ��� 
 ������� ). This is

also the root node for execution; this event must occur
before any other. This node is completed when the play
begins.

Start Goto
� �������

Specifies the location
�

to which agent
�

should start moving. This node is completed once the
agent has begun to move to

�
. This node is also used to

indicate the receiver of a pass.

End Goto
�
	��

Represents the conclusion of the move began
by the “Start Goto” node pointed to by

	
. This node is

completed when the agent gets to the location
�

(from the
“Start Goto” node).

Start Pass
� �������

Represents an agent
�

kicking the ball to
a location

�
(where another agent should receive it). It is

completed once the ball leaves the agent’s virtual foot.

End Pass
�
	 � ��	 
 � Represents the conclusion of a pass. In

particular,
	 � points to a “Start Pass” node (for the kicker)

and
	 
 points to a “Start Goto” node (for the receiver).

This event is completed when the receiver controls the
ball.

Clear Ball(
�����

) Represents an agent
�

kicking the ball to a
location

�
. This differs from a “Start Pass” node because

no particular agent is expected to get the ball. There is no
associated end node, because the plan is always complete
after a “Clear Ball” node executes.
Plan execution basically consists of the agents performing

the events (being careful to respect the temporal constraints,
see below), and observing the world to know the current
state of the plan. Once the agent is no longer responsible
for bringing about the occurrence of any events in the plan
(i.e. it is not in the agent list for any uncompleted node), it
considers its role complete.

The authors are not aware of any other work where STNs
are used as a multi-agent plan representation. However,
there are several features of STNs which make them appeal-
ing for multi-agent plans.
 The network very naturally represents the parallelism of

agents’ actions. The temporal constraints express some
basic needed coordination between the agents.


 Temporal constraints can be used to help agents detect
failures in the plan. For example, in the top three nodes
of the plan in Figure 2, if the agent intended to receive the
pass has not received the ball by 25 cycles after the ball
was kicked, then the plan is declared failed. The agent
can then abort the plan and use other reactive behaviors.


 If an event � is not ready to execute because of temporal
constraints, the network represents which event(s) are pre-
venting � from being ready. This means that if an agent is
responsible for executing an event that is not ready, it can
determine where in the world to look to see the event hold-
ing � (the event which is preventing � from being ready).
For example, in some cases a “Start Goto” node is con-
strained to occur after a “Start Pass” node. The agent for
the “Start Goto” node knows that it must look at the agent
which is starting the pass in order to determine when to
start moving.

Plan Execution

Muscettola, Morris, & Tsamardinos have described a “dis-
patching execution” algorithm for STN execution (Muscet-
tola, Morris, & Tsamardinos 1998). This allows easy and ef-
ficient propagation of temporal constraints through the net-
work at the cost of adding edges. The first step is to construct
the “all-pairs” closure of the STN (i.e. make an edge from
every node

�
to every other node

�
whose length is the short-

est path from
�

to
�
). Muscettola et al describe a method to

then prune some of those edges to reduce the time require-
ments of plan execution, which is important for STNs con-
sisting of thousands of nodes. However, since we are work-
ing with networks of tens of nodes instead of thousands, we
do not prune any edges.

Our execution algorithm extends the dispatching execu-
tion algorithm to the multi-agent case. We use the dispatch-
ing algorithm (unchanged) to maintain information about



time bounds for executions of events. The agents execute
the following steps at every cycle:

1. Global Monitors: Each agent checks the world state for
conditions which indicate plan failure, such as the oppos-
ing agents controlling the ball.

2. Node Completion: Each agent looks at every node to de-
termine if the conditions for that event being completed
have occurred. For example, an “End Pass” event has oc-
curred if the receiving agent has control of the ball. That
information is passed to the dispatching execution algo-
rithm and a check is done for out of order execution or
other violated temporal constraints.

3. Find Node to Execute: Each agent locates the node
�

which it is next required to execute. If there is no such
node, the agent’s role in the plan is complete. We re-
quire that the nodes for a particular agent be fully ordered,
which means that at any time at most one node for an
agent will be ready to execute.

4. Node Precondition Monitor: Some event nodes have
constraint monitors (or preconditions) on their execution.
For example, the “Start Pass” node requires that the agent
believes the teammate intended to receive the ball will be
able to get it. This decision is based on a learned decision
tree (Stone 2000) or other analytic methods (McAllester
& Stone 2000). If

�
has such constraints, they are veri-

fied here.

5. Watch Constraining Node: If temporal constraints
(from the dispatching algorithm) indicate that

�
is not

ready to execute because another node
���

must execute
first, then the agent looks to the location on the field where���

should execute.

6. Wait for Time: If temporal constraints (from the dis-
patching algorithm) indicate that

�
is not ready to exe-

cute simply because more time needs to pass, the agent
scans the field to monitor the state of the world.

7. Execute Node: Otherwise, the agent works towards exe-
cuting

�
. This may consist of kicking the ball, turning

towards a target, running to a point, etc. All of these
behaviors uses the reactive CMUnited99 (Stone, Riley,
& Veloso 2000) layer to get robust performance of such
commands as “get the ball” or “kick the ball hard in di-
rection � .”
Several features of the soccer simulation environment are

different from the other environments in which STNs have
typically been used. We chose to use STNs because of
their rich temporal expressibility. Much previous work (such
as (Intille & Bobick 1999)) has more limited temporal ex-
pressibility in plans. First, and most importantly is the multi-
agent aspect. STNs have typically been used solely to help
in the scheduling of interrelated tasks, not in the coordina-
tion between agents. A related problem caused by noisy,
partial observability is that the agents may have different
ideas about when an event actually occurred. Further, even
the agent which is executing an event can not precisely con-
trol when the event will occur. For example, the motion of
kicking in a particular direction is a complicated series of
turns, dashes, and weak and powerful kicks. There is no

obvious way to predict how long it will take the reactive
CMUnited99 behavior to execute to completion. Lastly, all
execution is noisy in space also. If an agent tries to kick in
a particular direction, the ball will only approximately head
that direction. This means the agents have to be flexible in
plan execution to what actually occurs. If the temporal con-
straints are too tight, even mostly normal executions will be
aborted.

In short, we use the STN plan to track two separate ques-
tions: “What should each agent be doing at each time step?”
and “What have all the other agents done up to this time
step?” In most STN applications, only the first question is
addressed; the executor is assumed to be the only agent.
Morris and Muscettola (Morris & Muscettola 2000) have
considered allowing there to be some uncertainty in the tem-
poral execution of some events. However, they are more
concerned with guaranteeing that execution will be success-
ful, while we are more interested in the optimistic possibility
that there is still some valid execution in the given temporal
constraints. Also, they do not address the multi-agent as-
pects which are important to this work.

Plan Creation
We divide the process of plan creation into four steps:

1. Waypoint Planning: This module plans the ball’s tra-
jectory as a series of straight line segments (i.e. passes).
Constraints are put on the length of the segments, but
agent movements are not part of this step.

2. Role Making: Given the planned trajectory for the ball,
this step creates roles for agents.

3. STN Compilation: This step takes the output from the
role making step and turns it into a Simple Temporal Net-
work.

4. Agent Instantiation: At this point, actual agents are as-
signed to the roles in the plan.

Waypoint Planning
In order to plan the waypoints, we use models of opponent
movement. The next section fully describes these models,
but for the purposes of this section, we can just that say that
waypoint planning is a path planning problem with straight-
line segments, and dynamic, probabilistic obstacles (the ob-
stacles are the opponents). The sense of “probabilistic” here
is that the obstacles are not fixed regions, but rather we have
a probability distribution over their locations.

Part of what makes this problem challenging is that it is
not even clear what it means to have a solution. There may
be one path that is extremely long, and goes through an ob-
stacle with very low probability, and another path that is
much shorter but has a higher probability of going through
an obstacle. To decide which path is better requires a trade-
off in the length and safety of the path. Further, we do not
have a single goal position, but rather an ordered set of po-
sitions.

These constraints make it difficult to apply many of the
traditional path planning methods, such as those described
by Latombe(1991). Planning methods which deal with un-
certainty do not usually handle obstacles whose location is



only probabilistic. Rather, they are more focused on dealing
with noisy execution when following the path. Approaches
which deal with moving obstacles do not address uncertainty
in obstacle location.

The
���

algorithm, developed by Stentz (1994) was also
considered. However,

���
is mostly useful for replanning

when obstacles are observed to move, not handling the up-
front probabilistic movements we model here.

In order to plan in this challenging domain, we decided to
directly write an evaluation function for paths and use hill-
climbing on a set of paths to find a locally optimal path. We
first describe the hillclimbing algorithm and then describe
the evaluation function.

Our path planning algorithm is then as follows:
�

:= Set of starting paths
while (there is time left)

Pick a random path
	�� �

Pick a random point � on
	

Randomly set � to true or false�
small displacement vector 	
Make path

	 �
by moving � by 	

If (A)
In

	 �
move pts. after � by 	

If
	 �

has higher value, set
	�
 	 �

Note that sometimes (decided by the variable � ) we move
only a single point in a hillclimbing step and sometimes we
move the entire tails of paths. We found experimentally that
using both techniques allows us to escape more local min-
ima.

The hillclimbing runs for a fixed number of cycles.
Halfway through that time the set

�
is reduced to just the

path with the current best evaluation. This allows the sec-
ond half of the hillclimbing to focus on improving a single
path as much as possible.

The set of starting paths are preset and depend on the lo-
cation of the ball. This allows us to very effectively incorpo-
rate domain knowledge into the planner. An example of such
knowledge is that it is better to get the ball downfield and for
the ball not to be in front of our own goal. We effectively
give a set of possible “shapes” for the path and the waypoint
planner optimizes among and around those choices.

The crucial part for the hillclimbing method is the evalu-
ation function. We use the following weighted factors:
 Ball control at end

If the last segment of the path is a pass, we are in control
of the ball at the end of the play (this has value 1.0). If the
last segment of the pass is a send (kicking the ball down-
field with no specific agent designated to get the ball), this
has value 0.0.


 Ball’s end location
The value here depend on whether we are in control of
the ball at the end of the play. In general getting the ball
near the goal and the opponent’s baseline has high value,
and just getting the ball further downfield is also of high
value. A sample of the function is shown in Figure 3.


 Length of path

Figure 3: Sample evaluation function for the final location
of the ball. Darker is a higher evaluation. The top figure is
for a pass (where we control the ball) and the bottom is for
a send (where the ball is kicked to no particular agent at the
end of the play)

Plans that are too long have a lower chance of succeeding
and plans that are too short do not add much over reactive
behaviors. Therefore, plans with length 3 (i.e. 3 passes or
2 passes and a send) have the highest value and the value
degrades from there.


 Average path danger

 Maximum path danger

Evaluation of these characteristics is implemented in two
different ways. Note that high value here represents a high
degree of pass safety.
The first method samples the probability distributions of
all the players in a triangle from the start of the pass to
the end of the pass (see Figure 4). In order to deal with
the problem that all probabilities tend to decrease as the
length of the pass increases, we multiply the probability
by a factor which grows as the time grows. We call this
new quantity the “occupancy” of the triangle. The av-
erage and maximum values here are just 1.0 minus the
average/maximum occupancy of all the passes.
The second method uses just the means of the distribu-
tions of the opponents to estimate the probability of a
pass’s success. This method (McAllester & Stone 2000)
is used during the game play to evaluate many different
passing options. It was designed to be run extremely
quickly, improving the speed of the hillclimbing steps.
However, distributional information (such as the variance)
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Figure 4: Sampling the Probability Distributions for Pass
Danger

is ignored by only looking at the mean of the distributions.
The average danger is the average pass success proba-
bility while the maximum value is actually the minimum
pass probability.
The second method is much faster and was therefore used
at the RoboCup2000 competition. It is still unclear if ei-
ther method outperforms the other on overall plan quality
however.
The opponent models (described in the next section) need

to know the starting locations for the players. We use the
current player locations as the opponent starting locations.
Then, throughout the hillclimbing process we periodically
look at where the opponents have moved and reevaluate all
of the plans. There is still the problem that once our team
hears the plan and begin to move, the opponents can move.

Hillclimbing has a good anytime characteristic in that as
soon as our time for this step of planning is up, we have a
plan ready to return (namely the best one so far). It also al-
lows easy application of domain knowledge by giving intel-
ligent seeds. Unfortunately, hillclimbing is also somewhat
time consuming and likely will not return the optimal an-
swer, either because of lack of time or a local maxima.

STN Generation
Once given a target path for the ball, an STN is constructed
that instructs the agents in a way to make the ball follow that
trajectory.

The first step is “Role Making.” A separate role is cre-
ated for executing each needed pass (i.e. each intersection
of straight line segments). A role consists of all of the lo-
cations which the agent will need to move to and where it
will kick the ball. Complication from the offsides rule1 are
handled here.

Next an STN is generated from the list of roles and loca-
tions. This is largely just a change in representation since
some basic ordering constraints are present in the output of
the previous step. However, upper and lower bounds are

1The offsides rule in soccer (and modelled in the Soccer Server)
means that a player on one team can not be closer to the opponent
goal than the last defender when the ball is kicked. This means
that the agents must be aware of when a pass starts in order to stay
onsides correctly.

added based on parameters such as average player speed and
maximum and minimum kick power. These parameters are
obtained by from empirical experiments.

For the “Agent Instantiation step”, each agent indepen-
dently does a greedy matching of agents to roles. This
is based on the (consistent) notion of the current forma-
tion of the team to and distances of home formation posi-
tions to starting role position. Formation information and
consistency is obtained through the Locker Room Agree-
ment (Stone & Veloso 1999).

Opponent Models
In order to perform the planning described in the previous
section, we need a model of the opponents’ movements,
specifically to compute the path “danger” (in terms of the
ball being intercepted by the opposing team) in the evalua-
tion function. Because of the short time span in a simulated
soccer game, we decided to fix models ahead of time and to
choose between them during the game. Selecting a model
should be much faster than trying to actually create a model
online.

Conceptually, we want an opponent model to represent
how an opponent plays defense during setplays. We expect
that a wide range of decision making systems of the oppo-
nent can be roughly captured by a small set of models. In
order to handle the uncertainty in the environment and to
allow models to represent more information than just a sim-
ple predicted location, we use probabilistic models. Given
the recent history of the ball’s movement (from the start of
the set play for example) and the player’s initial location, the
model should give, for each player, a probability distribution
over locations on the field.

Let
	

be the number of players on a team. Let
�

be the
set of positions on the field, discretized to 1m. We represent
the ball movement as a sequence of locations on the field (an
element of

� �
)2 A location for each player is a sequence of

positions on the field (an element of
���

).
An opponent model defines a probability distribution for

each player over the end locations on the field for that player,
given the ball movement � � � � and a set of starting po-
sitions

� � ���
for all the players. If � is a probability

distribution over locations on the field, an opponent model�
is a function:
��� � �	�

���

ball movement

� � �	�
����
initial pos.

� � �	�

���
probability distribution

for each player

(1)

In particular, for an opponent model
�

, the probability for
player � being at end location

���
:

� � � ����� � � � �
(2)

is calculated by choosing the � th probability distribution out-
put by the model and calculating the probability of the loca-
tion

���
according to that distribution.

2We will use the notation ��� to denote ��� �!�!�
�"� ( � repeated#
times); in other words, a sequence of

#
elements of � . ��$ will

denote % �'&�( � � .



Notice that each player’s distribution may depend on the
starting positions of all the opponent players. In order to
avoid having to recursively model what the opponents are
modeling about our movements and our locations, we do
not allow the opponents distributions to depend on our own
player locations. This greatly simplifies the planning de-
scribed in the above section. The ball movement � is the
planned ball movement. The starting positions for the play-
ers are their current locations. We then have a probability
distribution for each player, which is the probabilistic obsta-
cle for the path planning.

Model Selection

Given a set of opponent models, it is still a challenge to
decide which model best describes the opponent. In other
words, which opponent model should we use in order to get
the best plans from our planner? We assume that the op-
ponent has chosen one of our models at the beginning of
the game and is then independently generating observations
from that model. We can then use a naive Bayes classifier.

We maintain a probability distribution over the models.
The original distribution (the prior) is set by hand. Then,
whenever a planning stage is entered, the model with the
highest probability is used. Upon observing a plan execu-
tion, we use observations of that execution to update our
probability distribution over the models.

We start with a probability distribution over the set of
models

� � � ������� � ����� (known as the prior) and then ob-
serve. An observation is a triple of starting locations for all
the players

� � � �
, a ball movement � � � � , and ending

locations for all of the players � � ��� . We want to use that
observation to calculate a new probability distribution, the
posterior. That distribution then becomes the prior for the
next observation update.

Consider one updating cycle of an observation � 

� � � � � � �

. We want
� � � � � � � . Using Bayes’ rule we get
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� � � � (3)

We make the following assumptions, in order to simplify
equation 3.

1. The players movements are independent. That is, the
model may generate a probability distribution for player �
based on everyone’s starting locations. However, what the
actual observation is for player � (assumed to be sampled
from this probability distribution) is independent from the
actual observations of the other players.

2. The probability of a particular starting position and ball
movement are independent of the opponent model. This
assumption is questionable since the ball movement (i.e.
plan) generated depends on the opponent model.

� � � � � � � 
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� � � � �
(from eq. 3)
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 � � � � � � � � � � � � � � � 
 � � � � � � � � ����� � � � � � � � � � � � �
	 
�� �

what opponent model calculates (eq. 2)� � � � � �� � � �	 

� �
norm. constant

� � � � �
	 
�� �

prior

(assump. 1)

The term labeled “norm. constant” is a normalization con-
stant. That is, it does not depend on which model is being
updated, so we don’t have to explicitly calculate those terms.
We calculate the remaining terms and then normalize the re-
sult to a probability distribution.

Of course, the opponent hasn’t actually chosen one of our
models from which to generate observations. However, if
any model approximates their behavior closely, that model
should still be the most likely model.

One problem in this approach is that probabilities for
models get arbitrarily close to zero. Because of limited nu-
merical representation, these probabilities may get rounded
to exactly zero in the updating. This can especially be a
problem if an opponent behaves like one model for a while
and then changes to another.

We use a form of weight sharing to handle this problem.
At the end of every update cycle, a small probability mass
(0.1 in our case) is added to every model and then the distri-
bution is renormalized. This prevents any model’s probabil-
ity from going to 0, while not changing which model is most
likely on any one update.

Empirical Results
We created several opponents models to use for testing. In
all of the models used, the distribution of each players fi-
nal position is represented by a 2-dimensional Gaussian with
equal variance in all directions. The standard deviation is an
affine function of time (since the beginning of the setplay).
The mean is computed as discussed below.

We used five models for the empirical evaluation. Nat-
urally, the mean of each player’s final distribution is com-
puted relative to the initial position as follows:
No Movement At the initial position of the player

All to Ball Moved towards the ball at a constant speed

All Defensive Moved towards the defensive side of the field
at a constant speed

All Offensive Moved towards the offensive end of the field
at a constant speed

One to Ball This model is slightly different from the oth-
ers. The ball’s movement is broken down into cycles.
At each cycle, whichever player is closest to the ball is



moved slightly closer. Note that since the ball can move
faster than the players, which player is closest to the ball
can change several times during the ball’s movement. The
final positions of the players are the means of the distri-
butions.

Figure 5: Example of the area between paths

Plan Set
Median
Area
Difference

Number of
Compar-
isons

Planning seeds 315 138
Across opponent models 138 223
Within one opponent
model

0 6625

Within one opponent
model (unique plans)

116 3073

Table 1: Median area differences among several sets of
plans. The area difference roughly captures the variation
among the plans.

In order to evaluate the differences in the plans produced
using opponent models, we compare paths by looking at the
area between them. For example, in Figure 5, the shaded
area is the area between the solid and dotted paths. We use
this area because it expresses in simple terms how different
two paths are. Hence the median area difference between a
set of plans expresses roughly how much variation there is
in a set of plans.

First we look at the variation in our planning seeds. This
gives some idea of the maximum range we could expect
plans to vary. As shown in Table 1, the median area dif-
ference in 315. Then, we compare the plans generated when
the only variation is which opponent model is used for plan-
ning. Using a different opponent model for planning gives
a median area difference of 138. Not surprisingly, this is
somewhat lower than the median difference between the
planning seeds. The evaluation of a path depends strongly
upon the starting positions of the agents. The seeds are de-
signed to roughly cover all possible starting positions of the

opponents, so the variation of the hillclimbing seeds will be
higher.

The variation of the plans observed by using two differ-
ent models for planning is also higher than the variation ob-
served for using just a single model. We ran our system on
a set of problems 53 times in order to understand the varia-
tion in the plan returned by the hillclimbing approach. Not
surprisingly, the median area is 0, since the same plan is re-
turned many times. If we restrict our attention to just the
set of unique plans returned over these 53 trials, the median
area of 116 is still smaller than the median area between
plans returned by different models. This suggests that, as
expected, the model used causes more variation in the out-
put of the planner than simply results from random variation
in the hillclimbing.

Related Work
A great deal of work has been done in the area of plan recog-
nition. For example, Tambe(1996) has explored tracking the
high-level intentions of agent teams. This can be useful to
infer events which are not directly observable by an agent.
However, his work requires knowledge of the workings of
the other agent through operator hierarchies. We would like
to be able to relax that requirement for behavior recognition.

Other such as Charniak and Goldman(1993) have explic-
itly looked at dealing with uncertainty in the observations for
plan recognition. They use Bayesian networks to maintain
probability distributions over possible plans which could
have generated the observed behavior.

Devaney and Ram (Devaney & Ram 1998) have worked
on identifying behaviors in the sort of two dimensional spa-
tial environment which we use here. In particular they
looked at the movement of military troops during battle to
identify behaviors through a combination of “plan recog-
nition, pattern recognition, and object tracking.” However,
they are more focused on the problem of identifying partic-
ular repeated patterns of movement among the large amount
of given movement data rather than trying to select a partic-
ular model which captures all of the agents’ movements.

Perhaps the most similar work to ATAC is by Intille and
Bobick (1999). They give a framework for recognizing
plays in American football. The plays are given in terms
for goals for the agents and limited temporal constraints be-
tween actions. Further, similar to (Charniak & Goldman
1993), they use Bayesian style networks to incorporate ob-
served information.

One important difference between ATAC and other plan
and behavior recognition work is that we are specifically fo-
cusing on using the recognized information for purposes for
predicting and adapting to future behavior. We assume that
the opponents will behave similarly to how they performed
in the past (in terms of our models), and use that information
to develop a plan.

Another area of related work is in plan representation.
Doyle, Atkinson, & Doshi(1986) have examined inserting
perceptual expectations into plans based on preconditions
and post-conditions. We attach similar conditions to each
parameterized action or event of the agents.



Temporal constraints have been used by Intille and Bo-
bick(1999) to help in plan recognition. However, the tempo-
ral representation we use here is much richer and is used in
execution as well as in plan monitoring.

Currently, we only detect plan failure when preparing to
execute a specific action or when a temporal constraint is
violated. Reece and Tate(1994) have worked on how to add
monitors to plan execution to allow for earlier detection of
execution problems. This would be a useful addition to the
STN representation here.

Conclusion and Future Work

We have presented the ATAC system for team coaching
which is adaptive to the current adversary. The main con-
tributions of this work are:

1. We present a Simple Temporal Network(Dechter, Meiri,
& Pearl 1991) based plan representation and execution
algorithm for multi-agent plans. The plan representation
expresses temporal coordination and monitoring in a dis-
tributed fashion.

2. We give an algorithm for generating a multi-agent plan
for agent movements in the given plan representation.

3. We present a method for adaptation to adversarial strate-
gies based on a naive Bayes classifier over fixed opponent
models. This method could potentially be applied to any
case where a reasonable range of probabilistic models can
be determined before interacting with the adversary.
In the games at RoboCup2000, it was evident that our

team benefited from adaptive setplays. Our ATAC approach
created a variety of setplay plans in adaptation to completely
unknown opponent teams. More targeted empirical com-
parison on the impact of the technique is challenging but
it is part of our ongoing work. We have just completed an
set of extensive empirical experiments of soccer coaching
techniques which demonstrate that the set play planning de-
scribed here is an important component a full set of coach
abilities (Riley, Veloso, & Kaminka 2002).

During execution, the agents do not take advantage of op-
portunities which may occur. For example if an agent ends
up with a good shot on the goal, but the plan is for it to pass,
it will pass the ball anyway. Storing alternate plans and intel-
ligently adding monitors for these plans as in (Veloso, Pol-
lack, & Cox 1998) could make the plan execution usefully
opportunistic.

Simple Temporal Networks is a promising basis for multi-
agent plans. While the the representation richly expresses
temporal constraints, it could benefit from a more explicit
synchronization representation in terms of the observations
expected for particular nodes.

In this work, the opponent models were written by hand,
but all of the algorithm here could work with models which
are learned by observation of opponents. We plan to con-
tinue to explore the area of generating and using opponent
models for fast recognition of behaviors, in order to further
exhibit adaptive, intelligent responses in our agents.
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