
Scalable Learning in Stochastic Games

Michael Bowling Manuela Veloso
mhb@cs.cmu.edu veloso@cs.cmu.edu

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213-3891

Abstract

Stochastic games are a general model of interaction between multiple agents.
They have recently been the focus of a great deal of research in reinforcement
learning as they are both descriptive and have a well-defined Nash equilibrium so-
lution. Most of this recent work, although very general, has only been applied to
small games with at most hundreds of states. On the other hand, there are landmark
results of learning being successfully applied to specific large and complex games
such as Checkers and Backgammon. In this paper we describe a scalable learning
algorithm for stochastic games, that combines three separate ideas from reinforce-
ment learning into a single algorithm. These ideas are tile coding for generaliza-
tion, policy gradient ascent as the basic learning method, and our previous work on
the WoLF (“Win or Learn Fast”) variable learning rate to encourage convergence.
We apply this algorithm to the intractably sized game-theoretic card game Goof-
spiel, showing preliminary results of learning in self-play. We demonstrate that
policy gradient ascent can learn even in this highly non-stationary problem with
simultaneous learning. We also show that the WoLF principle continues to have a
converging effect even in large problems with approximation and generalization.

1 Introduction

We are interested in the problem of learning in multiagent environments. One of the
main challenges with these environments is that other agents in the environment may be
learning and adapting as well. These environments are, therefore, no longer stationary.
They violate the Markov property that traditional single-agent behavior learning relies
upon.

The model of stochastic games captures these problems very well through explicit
models of the reward functions of the other agents and their affects on transitions. They
are also a natural extension of Markov decision processes (MDPs) to multiple agents
and so have attracted interest from the reinforcement learning community. The problem
of simultaneously finding optimal policies for stochastic games has been well studied
in the field of game theory. The traditional solution concept is that of Nash equilibria,

1

a policy for all the players where each is playing optimally with respect to the others.
This concept is a powerful solution for these games even in a learning context, since
no agent could learn a better policy when all the agents are playing an equilibria.

It is this foundation that has driven much of the recent work in applying reinforce-
ment learning to stochastic games [12, 9, 17, 11, 2, 8]. This work has thus far only
been applied to small games with enumerable state and action spaces. Historically,
though, a number of landmark results in reinforcement learning have looked at learn-
ing in particular stochastic games that are not small nor are the state easily enumerated.
Samuel’s Checkers playing program [15] and Tesauro’s TD-Gammon [21] are success-
ful applications of learning in games with very large state spaces. Both of these results
made generous use of generalization and approximation, which have not been used in
the more recent work. On the other hand, both TD-Gammon and Samuel’s Checkers
player only used deterministic strategies to play competitively, while Nash equilibria
often require stochastic strategies.

We are interested in scaling some of the recent techniques based on the Nash equi-
libria concept to games with intractable state spaces. Such a goal is not new. Singh and
colleagues’ also described future work of applying their simple gradient techniques to
problems with large or infinite state and action spaces [17]. This paper examines some
initial results in this direction. In Section 2, we describe the formal definition of a
stochastic game and the notion of equilibria. In Section 3, we describe one particular
very large, two-player, zero-sum stochastic game, Goofspiel. Our learning algorithm is
described in Section 4 as the combination of three ideas from reinforcement learning:
tile-coding, policy gradients, and the WoLF principle. In Section 5, we show results of
our algorithm learning to play Goofspiel with self-play. We then conclude with some
future directions for this work.

2 Stochastic Games

A stochastic game is a tuple
���������	��

����� �������	��
������ ���

, where
�

is the number of agents,�
is a set of states,

���
is the set of actions available to agent � (and

�
is the joint action

space
��
���� �!� ���"�

),
�

is a transition function
�#���$�%�'&)(*+� , -

, and
�.�

is a reward
function for the � th agent

�/�0�1&32
. This looks very similar to the MDP framework

except we have multiple agents selecting actions and the next state and rewards depend
on the joint action of the agents. Another important difference is that each agent has its
own separate reward function. The goal for each agent is to select actions in order to
maximize its discounted future rewards with discount factor 4 .

Stochastic games are a very natural extension of MDPs to multiple agents. They are
also an extension of matrix games to multiple states. Two example matrix games are in
Figure 1. In these games there are two players; one selects a row and the other selects a
column of the matrix. The entry of the matrix they jointly select determines the payoffs.
The games in Figure 1 are zero-sum games, so the row player would receive the payoff
in the matrix, and the column player would receive the negative of that payoff. In
the general case (general-sum games), each player would have a separate matrix that
determines their payoffs.

Each state in a stochastic game can be viewed as a matrix game with the payoffs

2

� ,���,��, ,�� �� *���, ,
, *���,��, , *
	�

Matching Pennies R-P-S

Figure 1: Matching Pennies and Rock-Paper-Scissors matrix games.

for each joint action determined by the matrices
� � �
� ��� �

. After playing the matrix
game and receiving their payoffs the players are transitioned to another state (or matrix
game) determined by their joint action. We can see that stochastic games then contain
both MDPs and matrix games as subsets of the framework.

Stochastic Policies. Unlike in single-agent settings, deterministic policies in multia-
gent settings can often be exploited by the other agents. Consider the matching pennies
matrix game as shown in Figure 1. If the column player were to play either action de-
terministically, the row player could win every time. This requires us to consider mixed
strategies and stochastic policies. A stochastic policy, ��� � &���� � ��� �

, is a func-
tion that maps states to mixed strategies, which are probability distributions over the
player’s actions.

Nash Equilibria. Even with the concept of mixed strategies there are still no optimal
strategies that are independent of the other players’ strategies. We can, though, define a
notion of best-response. A strategy is a best-response to the other players’ strategies if
it is optimal given their strategies. The major advancement that has driven much of the
development of matrix games, game theory, and even stochastic games is the notion of
a best-response equilibrium, or Nash equilibrium [13].

A Nash equilibrium is a collection of strategies for each of the players such that
each player’s strategy is a best-response to the other players’ strategies. So, no player
can do better by changing strategies given that the other players also don’t change
strategies. What makes the notion of equilibrium compelling is that all matrix games
have such an equilibrium, possibly having multiple equilibria. Zero-sum, two-player
games, where one player’s payoffs are the negative of the other, have a single Nash
equilibrium.1 In the zero-sum examples in Figure 1, both games have an equilibrium
consisting of each player playing the mixed strategy where all the actions have equal
probability.

The concept of equilibria also extends to stochastic games. This is a non-trivial re-
sult, proven by Shapley [16] for zero-sum stochastic games and by Fink [5] for general-
sum stochastic games.

Learning in Stochastic Games. Stochastic games have been the focus of recent re-
search in the area of reinforcement learning. There are two different approaches being

1There can actually be multiple equilibria, but they will all have equal payoffs and are interchange-
able [14].

3

explored. The first is that of algorithms that explicitly learn equilibria through experi-
ence, independent of the other players’ policy [12, 9, 8]. These algorithms iteratively
estimate value functions, and use them to compute an equilibrium for the game. A
second approach is that of best-response learners [4, 17, 2]. These learners explicitly
optimize their reward with respect to the other players’ (changing) policies. This ap-
proach, too, has a strong connection to equilibria. If these algorithms converge when
playing eachother, then they must do so to an equilibrium.

Neither of these approaches, though, have been scaled beyond games with a few
hundred states. Games with a very large number of states, or games with continuous
state spaces, make state enumeration intractable. Since previous algorithms in their
stated form require the enumeration of states either for policies or value functions, this
is a major limitation. In this paper we examine learning in a very large stochastic game,
using approximation and generalization techniques. Specifically, we will build on the
idea of best-response learners using gradient techniques [17, 2]. We first describe an
interesting game with an intractably large state space.

3 Goofspiel

Goofspiel (or The Game of Pure Strategy) was invented by Merrill Flood while at
Princeton [6]. The game has numerous variations, but here we focus on the simple
two-player,

�
-card version. Each player receives a suit of cards numbered

,
through�

, a third suit of cards is shuffled and placed face down as the deck. Each round the
next card is flipped over from the deck, and the two players each select a card placing it
face down. They are revealed simultaneously and the player with the highest card wins
the card from the deck, which is worth its number in points. If the players choose the
same valued card, then neither player gets any points. Regardless of the winner, both
players discard their chosen card. This is repeated until the deck and players hands are
exhausted. The winner is the player with the most points.

This game has numerous interesting properties making it a very interesting step
between toy problems and more realistic problems. First, notice that this game is zero-
sum, and as with many zero-sum games any deterministic strategy can be soundly de-
feated. In this game, it’s by simply playing the card one higher than the other player’s
deterministically chosen card. Second, notice that the number of states and state-action
pairs grows exponentially with the number of cards. The standard size of the game� � ,��

is so large that just storing one player’s policy or � -table would require ap-
proximately 2.5 terabytes of space. Just gathering data on all the state-action transi-
tions would require well over

,!*
��
playings of the game. Table 1 shows the number

of states and state-action pairs as well as the policy size for three different values of
�

.
This game obviously requires some form of generalization to make learning possible.
Another interesting property is that randomly selecting actions is a reasonably good
policy. The worst-case values of the random policy along with the worst-case values of
the best deterministic policy are also shown in Table 1.

This game can be described using the stochastic game model. The state is the
current cards in the players’ hands and deck along with the upturned card. The actions
for a player are the cards in the player’s hand. The transitions follow the rules as

4

� � ��� � �'�����
SIZEOF(� or �) VALUE(det) VALUE(random)

4 692 15150 � 59KB
��� ����� 	

8
��� , *�
 ,�� , *�� � 47MB

��� * ��,!*+� 	
13

,�� ,!*
	

 � , *

 � 2.5TB
����	 �����

Table 1: The approximate number of states and state-actions, and the size of a stochas-
tic policy or � table for Goofspiel depending on the number of cards,

�
. The VALUE

columns list the worst-case value of the best deterministic policy and the random policy
respectively.

described, with an immediate reward going to the player who won the upturned card.
Since the game has a finite end and we are interested in maximizing total reward, we
can set the discount factor 4 to be

,
. Although equilibrium learning techniques such as

Minimax-Q [12] are guaranteed to find the game’s equilibrium, it requires maintaining
a state-joint-action table of values. This table would require

� *+� ,
terabytes to store for

the
� � ,��

card game. We will now describe a best-response learning algorithm using
approximation techniques to handle the enormous state space.

4 Three Ideas – One Algorithm

The algorithm we will use combines three separate ideas from reinforcement learning.
The first is the idea of tile coding as a generalization for linear function approximation.
The second is the use of a parameterized policy and learning as gradient ascent in the
policy’s parameter space. The final component is the use of a WoLF variable learn-
ing rate to adjust the gradient ascent step size. We will briefly overview these three
techniques and then describe how they are combined into a reinforcement learning al-
gorithm for Goofspiel.

4.1 Tile Coding.

Tile coding [19], also known as CMACS, is a popular technique for creating a set
of boolean features from a set of continuous features. In reinforcement learning, tile
coding has been used extensively to create linear approximators of state-action values
(e.g., [18]).

The basic idea is to lay offset grids or tilings over the multidimensional continuous
feature space. A point in the continuous feature space will be in exactly one tile for
each of the offset tilings. Each tile has an associated boolean variable, so the continuous
feature vector gets mapped into a very high-dimensional boolean vector. In addition,
nearby points will fall into the same tile for many of the offset grids, and so share many
of the same boolean variables in their resulting vector. This provides the important
feature of generalization. An example of tile coding in a two-dimensional continuous
space is shown in Figure 2. This example shows two overlapping tilings, and so any
given point falls into two different tiles.

5

�����������
	����
�����������
�����

Figure 2: An example of tile coding a two dimensional space with two overlapping
tilings.

Another common trick with tile coding is the use of hashing to keep the number
of parameters manageable. Each tile is hashed into a table of fixed size. Collisions
are simply ignored, meaning that two unrelated tiles may share the same parameter.
Hashing reduces the memory requirements with little loss in performance. This is
because only a small fraction of the continuous space is actually needed or visited while
learning, and so independent parameters for every tile are often not necessary. Hashing
provides a means for using only the number of parameters the problem requires while
not knowing in advance which state-action pairs need parameters.

4.2 Policy Gradient Ascent

Policy gradient techniques [20, 1] are a method of reinforcement learning with function
approximation. Traditional approaches approximate a state-action value function, and
result in a deterministic policy that selects the action with the maximum learned value.
Alternatively, policy gradient approaches approximate a policy directly, and then use
gradient ascent to adjust the parameters to maximize the policy’s value. There are
three good reasons for the latter approach. First, there’s a whole body of theoretical
work describing convergence problems using a variety of value-based learning tech-
niques with a variety of function approximation techniques (See [7] for a summary of
these results.) Second, value-based approaches learn deterministic policies, and as we
mentioned in Section 2 deterministic policies in multiagent settings are often easily
exploitable. Third, gradient techniques have been shown to be successful for simulta-
neous learning in matrix games [17, 2].

We use the policy gradient technique presented by Sutton and colleagues [20].
Specifically, we will define a policy as a Gibbs distribution over a linear combina-
tion of features, such as those taken from a tile coding representation of state-actions.
Let � be a vector of the policy’s parameters and ����� be a feature vector for state

�
and

action
�

then this defines a stochastic policy according to,

� �
� ��� � � ����� ���! "$# � ��� � �!%
�

6

Their main result was a convergence proof for the following policy iteration rule that
updates a policy’s parameters,

� ���
 � � �������	�
��

��� � ��� � � � � � �
� � � �� � ��� � �
� ��� � � (1)

For the Gibbs distribution this is just,

� ���
 � � ���������
�
���� � ��� � � � ����� � �
� ��� � ��� � � � ��� � (2)

Here ��� is an appropriately decayed learning rate and
 ��� �
� � is state
�
’s contribution

to the policy’s overall value. This contribution is defined differently depending on
whether average or discounted start state reward criterion is used. �
� � � � � � � is an inde-
pendent approximation of � ��� � � ��� � with parameters � , which is the expected value of
taking action

�
from state

�
and then following the policy � � . For a Gibbs distribution,

Sutton and colleagues showed that for convergence this approximation should have the
following form,

��� � � � � � � ���� � � � � � # � � � �"! � � � #�# �

As they point out, this amounts to �$� being an approximation of the advantage function,� � � � ��� � � � � � � ��� � �&% � � � � , where
% � �
� � is the value of following policy � from

state
�
. It is this advantage function that we will estimate and use for gradient ascent.

Using this basic formulation we derive an on-line version of the learning rule,
where the policy’s weights are updated with each state visited. The total reward cri-
terion for Goofspiel is identical to having 4 � ,

in the discounted setting. So,
 � � � �is just the probability of visiting state
�

when following policy � . Since we will be
visiting states on-policy, this amounts to updating weights in proportion to how often
the state is visited. By doing updates on-line as states are visited we can simply drop
this term from equation 2, resulting in,

� ���
 � � � ��� � �
� � � � � � �
� � � � � � � �
� ��� � � (3)

Lastly, we will do the policy improvement step (updating �) simultaneously with
the value estimation step (updating �). We will do value estimation using gradient-
descent Sarsa(0) [19] over the same feature space as the policy. Specifically, if at time'

the system is in state
�

and takes action
�

transitioning to state
��(

and then taking
action

� (
, we update the weight vector,� ���
 � � � �*) � �,+ � 4 � � � �
� (��� (� � � � � � � � � ��� (4)

The policy improvement step uses equation 3 where
�

is the state of the system at time'
and the action-value estimates from Sarsa � � � are used to compute the advantage

term, � � � �
� ��� � � � � � � � ��� � � � � � � � � � � � � � � � � �
� ��� �
�
7

4.3 Win or Learn Fast

WoLF (“Win or Learn Fast”) is a method for changing the learning rate to encourage
convergence in a multiagent reinforcement learning scenario [2]. Notice that the gradi-
ent ascent algorithm described does not account for a non-stationary environment that
arises with simultaneous learning in stochastic games. All of the other agents actions
are simply assumed to be part of the environment and unchanging. WoLF provides a
simple way to account for other agents through adjusting how quickly or slowly the
agent changes its policy.

Since only the rate of learning is changed, algorithms that are guaranteed to find (lo-
cally) optimal policies in non-stationary environments retain this property even when
using WoLF. In stochastic games with simultaneous learning, WoLF has both theoreti-
cal evidence (limited to two-player, two-action matrix games), and empirical evidence
(experiments in matrix games, as well as smaller zero-sum and general-sum stochastic
games) that it encourages convergence in algorithms that don’t otherwise converge [2].
The intuition for this technique is that a learner should adapt quickly when it is doing
more poorly than expected. When it is doing better than expected, it should be cau-
tious, since the other players are likely to change their policy. This implicitly accounts
for other players that are learning, rather than other techniques that try to explicitly
reason about their action choices.

The WoLF principle naturally lends itself to policy gradient techniques where there
is a well-defined learning rate, � � . With WoLF we replace the original learning rate
with two learning rates � � � � ��� � to be used when winning or losing, respectively.
One determination of winning and losing that has been successful is to compare the
value of the current policy

% � �
� � to the value of the average policy over time
%��� �
� � .With the policy gradient technique from Section 4.2, we can define a similar rule that

examines the approximate value, using � � , of the current weight vector � with the
average weight vector over time

�� . Specifically, we are “winning” if and only if,�
� � �
� ��� � � � � � �
� ��� ��� �

� � � � � � � �� � � � �
� � � � � (5)

When winning in a particular state, we update the parameters for that state using � � � ,
otherwise ��� � .
4.4 Learning in Goofspiel

We combine these three techniques in the obvious way. Tile coding provides a large
boolean feature vector for any state-action pair. This is used both for the parameteri-
zation of the policy and for the approximation of the policy’s value, which is used to
compute the policy’s gradient. Gradient updates are then performed on both the policy
using equation 3 and the value estimate using equation 4. WoLF is used to vary the
learning rate �	� in the policy update according to the rule in inequality 5. This com-
position can be essentially thought of as an actor-critic method [19]. Here the Gibbs
distribution over the set of parameters is the actor, and the gradient-descent Sarsa(0) is
the critic. Tile-coding provides the necessary parameterization of the state. The WoLF
principle is adjusting how the actor changes policies based on response from the critic.

8

My Hand 1 3 4 5 6 8 11 13
Quartiles * * * * *

Opp Hand 4 5 8 9 10 11 12 13
Quartiles * * * * *

Deck 1 2 3 5 9 10 11 12
Quartiles * * * * *

Card 11
Action 3

� ������������������������������������

��, ��� � �+� ���!, ������	� � ���!,!*+� , , � ,��
� ���, � �+�����!,!*+� , �
� �
, , � �

� (Tile Coding)

TILES ��� *��!,��

����

Table 2: An example state-action representation using quartiles to describe the players’
hands and the deck. These numbers are then tiled and hashed with the resulting tiles
representing a boolean vector of size

,!*

.

The main detail yet to be explained and where the algorithm is specifically adapted
to Goofspiel is in the tile coding. The method of tiling is extremely important to the
overall performance of learning as it is a powerful bias on what policies can and will
be learned. The major decision to be made is how to represent the state as a vector
of numbers and which of these numbers are tiled together. The first decision deter-
mines what states are distinguishable, and the second determines how generalization
works across distinguishable states. Despite the importance of the tiling we essentially
selected what seemed like a reasonable tiling, and used it throughout our results.

We represent a set of cards, either a player’s hand or the deck, by five numbers,
corresponding to the value of the card that is the minimum, lower quartile, median,
upper quartile, and maximum. This provides information as to the general shape of the
set, which is what is important in Goofspiel. The other values used in the tiling are the
value of the card that is being bid on and the card corresponding to the agent’s action.
An example of this process in the 13-card game is shown in Table 2. These values are
combined together into three tilings. The first tiles together the quartiles describing
the players’ hands. The second tiles together the quartiles of the deck with the card
available and player’s action. The last tiles together the quartiles of the opponent’s
hand with the card available and player’s action. The tilings use tile sizes equal to
roughly half the number of cards in the game with the number of tilings greater than
the tile sizes to distinguish between any integer state values. Finally, these tiles were
all then hashed into a table of size one million in order to keep the parameter space
manageable. We don’t suggest that this is a perfect or even good tiling for this domain,
but as we will show the results are still interesting.

9

5 Results

One of the difficult and open issues in multiagent reinforcement learning is that of
evaluation. Before presenting learning results we first need to look at how one evaluates
learning success.

5.1 Evaluation

One straightforward evaluation technique is to have two learning algorithms learn
against eachother and simply examine the expected reward over time. This technique is
not useful if one’s interested in learning in self-play, where both players use an identical
algorithm. In this case with a symmetric zero-sum game like Goofspiel, the expected
reward of the two agents is necessarily zero, providing no information.

Another common evaluation criterion is that of convergence. This is true in single-
agent learning as well as multiagent learning. One strong motivation for considering
this criterion in multiagent domains is the connection of convergence to Nash equilib-
rium. If algorithms that are guaranteed to converge to optimal policies in stationary
environments, converge in a multiagent learning environment, then the resulting joint
policy must be a Nash equilibrium of the stochastic game [2].

Although, convergence to an equilibrium is an ideal criterion for small problems,
there are a number of reasons why this is unlikely to be possible for large problems.
First, optimality in large (even stationary) environments is not generally feasible. This
is exactly the motivation for exploring function approximation and policy parameter-
izations as described in Section 4. Second, when we account for the limitations that
approximation imposes on a player’s policy then equilibria may cease to exist, making
convergence of policies impossible [3]. Third, policy gradient techniques learn only
locally optimal policies. They may converge to policies that are not globally optimal
and therefore necessarily not equilibria.

Although convergence to equilibria and therefore convergence in general is not a
reasonable criterion we would still expect self-play learning agents to learn something.
In this paper we use the evaluation technique used by Littman with Minimax-Q [12].
We train an agent in self-play, and then freeze its policy, and train a challenger to find
that policy’s worst-case performance. This challenger is trained using just gradient-
descent Sarsa and chooses the action with maximum estimated value with � -greedy
exploration. Notice that the possible policies playable by the challenger are the deter-
ministic policies (modulo exploration) playable by the learning algorithm being eval-
uated. Since Goofspiel is a symmetric zero-sum game, we know that the equilibrium
policy, if one exists, would have value zero against its challenger. So, this provides
some measure of how close the policy is to the equilibrium by examining its value
against its challenger.

A second related criterion will also help to understand the performance of the al-
gorithm. Although policy convergence might not be possible, convergence of the ex-
pected value of the agents’ policies may be possible. Since the real desirability of
policy convergence is the convergence of the policy’s value, this is in fact often just as
good. This is also one of the strengths of the WoLF variable learning rate, as it has been

10

shown to make learning algorithms with cycling policies and expected values converge
both in expected value and policy.

5.2 Experiments

Throughout our experiments, we examined three different learning algorithms in self-
play. The first two did not use the WoLF variable learning rate, and instead followed
a static step size. “Fast” used a large step size �	� � *+� , �

; “Slow” used a small step
size ��� � *+� * *��

; “WoLF” switched between these learning rates based on inequality 5.
In all experiments, the value estimation update used a fixed learning rate of) � *�� �

.
These rates were not decayed, in order to better isolate the effectiveness apart from ap-
propriate selection of decay schedules. In addition, throughout training and evaluation
runs, all agents followed an � -greedy exploration strategy with � � *�� * 	

. The initial
policies and values all begin with zero weight vectors, which with a Gibbs distribution
corresponds to the random policy, which as we have noted is reasonably good.

In our first experiment we trained the learner in self-play for 40,000 games. After
every 5,000 games we stopped the training and trained a challenger against the agent’s
current policy. The challenger was trained on 10,000 games using Sarsa(0) gradient
ascent with the learning rate parameters described above. The two policies, the agent’s
and its challenger, were then evaluated on 1,000 games to estimate the policy’s worst-
case expected value. This experiment was repeated thirty times for each algorithm.

The learning results averaged over the thirty runs are shown in Figure 3 for card
sizes of

�
,
�
, and

, �
. The baseline comparison is with that of the random policy, a

very competitive policy for this game. All three learners improve on this policy while
training in self-play. The initial dips in the

�
and

, �
card games are due to the fact

that value estimates are initially very poor making the initial policy gradients not in
the direction of increasing the overall value of the policy. It takes a number of training
games for the delayed reward of winning cards later to overcome the initial immediate
reward of winning cards now. Lastly, notice the affect of the WoLF principle. It con-
sistently outperforms the two static step size learners. This is identical to affects shown
in non-approximated stochastic games [2].

The second experiment was to further examine the issue of convergence and the
affect of the WoLF principle on the learning process. Instead of examining worst-case
performance against some fictitious challenger, we now examine the expected value
of the player’s policy while learning in self-play. Again the algorithm was trained in
self-play for 40,000 games. After 50 games both players’ policies were frozen and
evaluated over 1,000 games to find the expected value to the players at that moment.
We ran each algorithm once on just the

, �
card game and plotted its expected value

over time while learning.
The results are shown in Figure 4. Notice that expected value of all the learning

algorithms seem to have some oscillation around zero. We would expect this with
identical learners in a symmetric zero-sum game. The point of interest though is how
close these oscillations stay to zero over time. The WoLF principle causes the policies
to have a more constant expected value with lower amplitude oscillations. This again
shows that the WoLF principle continues to have converging affects even in stochastic
games with approximation techniques.

11

� � �

-2.2

-2.1

-2

-1.9

-1.8

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

0 10000 20000 30000 40000

V
al

ue
 v

. W
or

st
-C

as
e

O
pp

on
en

t

Number of Training Games

WoLF
Fast
Slow

Random

� � �

-10

-9

-8

-7

-6

-5

-4

-3

-2

0 10000 20000 30000 40000

V
al

ue
 v

. W
or

st
-C

as
e

O
pp

on
en

t

Number of Training Games

WoLF
Fast
Slow

Random

� � ,��

-26

-24

-22

-20

-18

-16

-14

-12

0 10000 20000 30000 40000

V
al

ue
 v

. W
or

st
-C

as
e

O
pp

on
en

t

Number of Training Games

WoLF
Fast
Slow

Random

Figure 3: Worst-case expected value of the policy learned in self-play.

12

Fast

-15

-10

-5

0

5

10

15

0 10000 20000 30000 40000

E
xp

ec
te

d
V

al
ue

 W
hi

le
 L

ea
rn

in
g

Number of Games

Slow

-15

-10

-5

0

5

10

15

0 10000 20000 30000 40000

E
xp

ec
te

d
V

al
ue

 W
hi

le
 L

ea
rn

in
g

Number of Games

WoLF

-15

-10

-5

0

5

10

15

0 10000 20000 30000 40000

E
xp

ec
te

d
V

al
ue

 W
hi

le
 L

ea
rn

in
g

Number of Games

Figure 4: Expected value of the game while learning.

13

6 Conclusion

We have described a scalable learning algorithm for stochastic games, composed of
three reinforcement learning ideas. We showed preliminary results of this algorithm
learning in the game Goofspiel. These results demonstrate that the policy gradient ap-
proach using an actor-critic model can learn in this domain. In addition, the WoLF
principle for encouraging convergence also seems to hold even when using approxima-
tion and generalization techniques.

There are a number of directions future work. Within the game of Goofspiel, it
would be interesting to explore alternative ways of tiling the state-action space. This
could likely increase the overall performance of the learned policy, but would also
examine how generalization might affect the convergence of learning. Might certain
generalization techniques retain the existence of equilibrium, and is the equilibrium
learnable? Another important direction is to examine these techniques on more do-
mains, with possibly continuous state and action spaces. Also, it would be interesting
to vary some of the components of the system. Can we use a different approximator
than tile-coding? Do we achieve similar results with different policy gradient tech-
niques (e.g. GPOMDP [1]). These initial results, though, show promise that gradient
ascent and the WoLF principle can scale to large state spaces.

References

[1] Johnathan Baxter and Peter L. Bartlett. Reinforcement learning in POMDP’s via
direct gradient ascent. In Proceedings of the Seventeenth International Confer-
ence on Machine Learning, pages 41–48, Stanford University, June 2000. Morgan
Kaufman.

[2] Michael Bowling and Manuela Veloso. Multiagent learning using a variable
learning rate. Artificial Intelligence, 2002. In Press.

[3] Michael Bowling and Manuela M. Veloso. Existence of multiagent equilibria
with limited agents. Technical report CMU-CS-02-104, Computer Science De-
partment, Carnegie Mellon University, 2002.

[4] Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in
cooperative multiagent systems. In Proceedings of the Fifteenth National Confer-
ence on Artificial Intelligence, Menlo Park, CA, 1998. AAAI Press.

[5] A. M. Fink. Equilibrium in a stochastic
�

-person game. Journal of Science in
Hiroshima University, Series A-I, 28:89–93, 1964.

[6] Merrill Flood. Interview by Albert Tucker. The Princeton Mathematics Commu-
nity in the 1930s, Transcript Number 11, 1985.

[7] Geoff Gordon. Reinforcement learning with function approximation converges to
a region. In Advances in Neural Information Processing Systems 12. MIT Press,
2000.

14

[8] Amy Greenwald and Keith Hall. Correlated Q-learning. In Proceedings of the
AAAI Spring Symposium Workshop on Collaborative Learning Agents, 2002. In
Press.

[9] Junling Hu and Michael P. Wellman. Multiagent reinforcement learning: Theo-
retical framework and an algorithm. In Proceedings of the Fifteenth International
Conference on Machine Learning, pages 242–250, San Francisco, 1998. Morgan
Kaufman.

[10] Harold W. Kuhn, editor. Classics in Game Theory. Princeton University Press,
1997.

[11] Michael Littman. Friend-or-foe Q-learning in general-sum games. In Proceedings
of the Eighteenth International Conference on Machine Learning, pages 322–328,
Williams College, June 2001. Morgan Kaufman.

[12] Michael L. Littman. Markov games as a framework for multi-agent reinforcement
learning. In Proceedings of the Eleventh International Conference on Machine
Learning, pages 157–163. Morgan Kaufman, 1994.

[13] John F. Nash, Jr. Equilibrium points in
�

-person games. PNAS, 36:48–49, 1950.
Reprinted in [10].

[14] Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. The MIT
Press, 1994.

[15] A. L. Samuel. Some studies in machine learning using the game of checkers. IBM
Journal on Research and Development, 11:601–617, 1967.

[16] L. S. Shapley. Stochastic games. PNAS, 39:1095–1100, 1953. Reprinted in [10].

[17] Satinder Singh, Michael Kearns, and Yishay Mansour. Nash convergence of gra-
dient dynamics in general-sum games. In Proceedings of the Sixteenth Conference
on Uncertainty in Artificial Intelligence, pages 541–548. Morgan Kaufman, 2000.

[18] Peter Stone and Rich Sutton. Scaling reinforcement learning toward Robocup
soccer. In Proceedings of the Eighteenth International Conference on Machine
Learning, pages 537–534, Williams College, June 2001. Morgan Kaufman.

[19] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning. MIT Press,
1998.

[20] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Pol-
icy gradient methods for reinforcement learning with function approximation. In
Advances in Neural Information Processing Systems 12. MIT Press, 2000.

[21] Gerald J. Tesauro. Temporal difference learning and TD–Gammon. Communica-
tions of the ACM, 38:48–68, 1995.

15

