
Stochastic Search for Signal Processing Algorithm Optimization

Bryan Singer and Manuela Veloso
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

Email: {bsinger+, mmv+}@cs.cmu.edu

Abstract

This paper presents an evolutionary algorithm for
searching for the optimal implementations of sig-
nal transforms and compares this approach against
other search techniques. A single signal process-
ing algorithm can be represented by a very large
number of different but mathematically equiva-
lent formulas. When these formulas are imple-
mented in actual code, unfortunately their running
times differ significantly. Signal processing algo-
rithm optimization aims at findingthe fastestfor-
mula. We present a new approach that successfully
solves this problem, using an evolutionary stochas-
tic search algorithm, STEER, to search through the
very large space of formulas. We empirically com-
pare STEER against other search methods, show-
ing that it notably can find faster formulas while
still only timing a very small portion of the search
space.

1 Introduction
The growing complexity of modern computers makes it in-
creasingly difficult to model or optimize performance of al-
gorithms, even on single processor machines. Thus, a num-
ber of researchers have been exploring methods forauto-
maticallyoptimizing code. This optimization often involves
automatically tuning the code specifically for the architec-
ture it is to be run on, often by using real performance
data of different implementations or by using performance
models accounting for specific features of the architecture.
This tuning is often performed on basic algorithms that con-
sume most of the computation time of an application; for
example, signal transforms[Püschelet al., 2001; Frigo and
Johnson, 1998] and matrix operations[Bilmes et al., 1997;
Whaley and Dongarra, 1998] have received particular atten-
tion. In this line of research, this paper contributes a new
method for optimizing signal transforms, tuning their imple-
mentations for a given architecture.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a fee.

SC2001 November 2001, Denverc© 2001 ACM 1-58113-293-
X/01/0011 $5.00

Signal transforms take as an input asignal, as a numerical
dataset and output atransformationof the signal that high-
lights specific aspects of the dataset. Many signal processing
algorithms can be represented by a transformation matrixA
which is multiplied by an input data vectorX to produce the
desired output vectorY = AX [Rao and Yip, 1990]. Näıve
implementations of this matrix multiplication are too slow for
large datasets or real time applications. However, the trans-
formation matrices can be factored, allowing for faster imple-
mentations.

These factorizations can be represented by mathematical
formulas and a single signal processing algorithm can be rep-
resented by many different, but mathematically equivalent,
formulas[Auslanderet al., 1996]. Interestingly, when these
formulas are implemented in code and executed, they often
have very different running times. While many of the factor-
izations may produce the exact same number of operations,
the different orderings of the operations that the factorizations
produce can greatly impact the performance of the formulas
on modern processors. For example, different operation or-
derings can greatly impact the number of cache misses and
register spills that a formula incurs or its ability to make use
of the available execution units in the processor. The com-
plexity of modern processors makes it difficult to analytically
predict or model by hand the performance of formulas. Fur-
ther, the differences between current processors lead to very
different optimal formulas from machine to machine. Thus,
a crucial problem is finding the formula that implements the
signal processing algorithm as efficiently as possible.

Signal processing optimization presents a very challenging
search problem as there is a very large number of formulas
that represent the same signal processing algorithm. Exhaus-
tive search, as the most basic search approach, is only possi-
ble for very small transform sizes or over limited regions of
the space of formulas. Dynamic programming offers a signif-
icantly more effective search method. By assuming indepen-
dence among substructures, dynamic programming searches
for a fast implementation while only timing a few formulas.
However, this independence assumption has not been veri-
fied, and thus it is not known if dynamic programming finds
even a near optimal formula.

We present a new stochastic evolutionary algorithm,
STEER, for searching through this large space of possible
formulas. STEER searches through many more formulas
than dynamic programming, covering a larger portion of the
search space, while still timing a tractable number of formu-
las as opposed to exhaustive search. As dynamic program-

1



ming had previously been the only search choice available
for most transform sizes, STEER provides a significantly dif-
ferent search approach as well as an opportunity to evaluate
dynamic programming.

We initially developed STEER specifically for the Walsh-
Hadamard Transform (WHT). We then extended STEER as
well as exhaustive search and dynamic programming to work
across a wide variety of transforms, including new user-
defined transforms. These extensions allow for optimization
of arbitrary signal transforms without the search algorithms
needing to be modified for the particular transform currently
being optimized.

Through empirical comparisons, we show that STEER can
find formulas that run faster than what dynamic programming
finds for several transforms. For at least one case, we show
that STEER is able to find a formula that runs about as fast as
the best one found by exhaustive search while timing signifi-
cantly less formulas than exhaustive search. Specifically with
the WHT, STEER provides evidence, for the first time, that
dynamic programming finds very good formulas if dynamic
programming does not make a poor choice early in its search.

2 Signal Processing Background
The Walsh-Hadamard Transform of a signalx of size2n is
the productWHT (2n) · x where

WHT (2n) =
n⊗
i=1

[
1 1
1 −1

]
,

and⊗ is the tensor or Kronecker product[Beauchamp, 1984].
If A is am×m matrix andB an× n matrix, thenA⊗B is
the block matrix product a1,1B · · · a1,mB

...
...

...
am,1B · · · am,mB

 .
For example,WHT (22) =[

1 1
1 −1

]
⊗
[

1 1
1 −1

]
=

 1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .
By calculating and combining smaller WHTs appropri-

ately, the structure in the WHT transformation matrix can
be leveraged to produce more efficient algorithms. Letn =
n1 + · · ·+nt with all of thenj being positive integers. Then,
WHT (2n) can be rewritten as

t∏
i=1

(I2n1+···+ni−1 ⊗WHT (2ni)⊗ I2ni+1+···+nt )

whereIk is thek × k identity matrix. This break down rule
can then be recursively applied to each of these new smaller
WHTs. Thus,WHT (2n) can be rewritten as any of a large
number of different but mathematically equivalent formulas.

Any of these formulas forWHT (2n) can be uniquely rep-
resented by a tree, which we call a “split tree.” For example,
supposeWHT (25) was factored as:

WHT (25)
= [WHT (23)⊗ I22 ][I23 ⊗WHT (22)]
= [{(WHT (21)⊗ I22)(I21 ⊗WHT (22))} ⊗ I22 ]

[I23 ⊗ {(WHT (21)⊗ I21)(I21 ⊗WHT (21))}]

The split tree corresponding to the final formula is shown in
Figure 1(a). Each node’s label in the split tree is the base two
logarithm of the size of the WHT at that level. The children of
a node indicate how the node’s WHT is recursively computed.

5

3 2

21 1 1

5

2 1 2

(a) (b)

Figure 1: Two different split trees forWHT (25).

In general, each node of a split tree should contain not only
the size of the transform, but also the transform at that node
and the break down rule being applied. A break down rule
specifies how a transform can be computed from smaller or
different transforms. In Figure 1, the representation was sim-
plified since it only used one break down rule which only
involved WHTs.

There is a very large number of possible split trees,
or equivalently formulas, for a WHT of any given size.
WHT(2n) has on the order ofΘ((4 +

√
8)n/n3/2) differ-

ent possible split trees. For example,WHT (28) has 16,768
different split trees. Considering only binary WHT split
trees slightly reduces the search space, but there are still
Θ(5n/n3/2) split trees[Johnson and P̈uschel, 2000].

For the results with the WHT, we used a WHT package,
[Johnson and P̈uschel, 2000], which can implement in code,
run, and time WHT formulas passed to it. The WHT package
allows leaves of the split trees to be sizes21 to 28 which are
implemented as unrolled straight-line code. This introduces
a trade-off since straight-line code has the advantage that it
does not have loop or recursion overhead but the disadvantage
that very large code blocks will overfill the instruction cache.

Figure 2 shows a histogram of the running times of all of
the binary split trees ofWHT (216) with no leaves of size21.
This data was collected on a Pentium III running Linux. The
histogram shows a significant spread of running times, almost
a factor of 6 from fastest to slowest. Further, it shows that
there are relatively few formulas that are amongst the fastest.

0.5 1 1.5 2 2.5 3

x 10
7

0

50

100

150

200

250

300

350

400

Running time in CPU cycles

N
um

be
r 

of
 fo

rm
ul

as

Figure 2: Histogram of running times of allWHT (216) bi-
nary split trees with no leaves of size21.

The four types of discrete cosine transforms (DCTs)[Rao
and Yip, 1990] are considerably different from the WHT. The
following differences are of importance:

• While we have used just one basic break down rule for
the WHT, there are several very different break down
rules for most of the different types of DCTs.

2



• While the break down rule for the WHT allowed for
many possible sets of children, most of the break down
rules for the DCTs specify exactly one set of children.

• While the WHT factored into smaller WHTs, the break
down rules for the DCTs often factor one transform into
two transforms of different types or even translate one
DCT into another DCT or into a discrete sine transform.
Thus, a split tree for a DCT labels the nodes not only
with the size of the transform, but also with the trans-
form and the applied break down rule.

• The number of factorizations for the DCTs grows even
quicker than that for the WHT. For example, DCT type
IV already has about1.9 × 109 different factorizations
at size25 and about7.3 × 1018 factorizations at size26

with our current set of break down rules.

3 Search Techniques
There are several approaches for searching for fast implemen-
tations of signal processing algorithms, including exhaustive
search, dynamic programming, random search, and evolu-
tionary algorithms.

One simple approach to optimization is to exhaust over all
possible formulas of a signal transform and to time each one
on each different machine that we are interested in. There
are three problems with this approach: (1) each formula may
take a non-trivial amount of time to run, (2) there is a very
large number of formulas that need to be run, and (3) just
enumerating all of the possible formulas may be impossible.
These problems make the approach intractable for transforms
of even small sizes.

With the WHT, there are several ways to limit the search
space. One such limitation is to exhaust just over the binary
split trees, although there still are many binary split trees. In
many cases, the fastest WHT formulas never have leaves of
size21. By searching just over split trees with no leaves of
size21, the total number of trees that need to be timed can be
greatly reduced, but still becomes intractable at larger sizes.

A common approach for searching the very large space of
possible implementations of signal transforms has been to use
dynamic programming[Johnson and Burrus, 1983; Frigo and
Johnson, 1998; Haentjens, 2000; Sepiashvili, 2000]. This ap-
proach maintains a list of the fastest formulas it has found for
each transform and size. When trying to find the fastest for-
mula for a particular transform and size, it considers all pos-
sible splits of the root node. For each child of the root node,
dynamic programming substitutes the best split tree found for
that transform and size. Thus, dynamic programming makes
the following assumption:

Dynamic Programming Assumption: The fastest
split tree for a particular transform and size is also
the best way to split a node of that transform and
size in a larger tree.

While dynamic programming times relatively few formu-
las for many transforms, it would need to time an intractable
number of formulas for large WHTs. However, by restrict-
ing to just binary WHT split trees, dynamic programming
becomes very efficient. Between the two extremes,k-way
dynamic programming considers split trees with at mostk
children at any node. Unfortunately, increasingk can signifi-
cantly increase the number of formulas to be timed.

As another generalization,k-best dynamic programming
keeps track of thek best formulas for each transform and size
[Haentjens, 2000; Sepiashvili, 2000]. This softens the dy-
namic programming assumption, allowing for the fact that a
sub-optimal formula for a given transform and size might be
the optimal way to split such a node in a larger tree. Unfortu-
nately, moving from standard 1-best to just 2-best more than
doubles the number of formulas to be timed.

While dynamic programming has been frequently used, it
is not known how far from optimal it is at larger sizes where it
can not be compared against exhaustive search. Other search
techniques with different biases will explore different por-
tions of the search space. This exploration may find faster for-
mulas than dynamic programming finds or provide evidence
that the dynamic programming assumption holds in practice.

A very different search technique is to generate a fixed
number of random formulas and time each. This approach
assumes that while the running times of different formulas
may vary considerably, there is still a sufficiently large num-
ber of formulas that have running times close to the optimal.
Evolutionary techniques provide a refinement to the previous
approach[Goldberg, 1989]. Evolutionary algorithms add a
bias to random search directing it toward better formulas.

4 STEER for the WHT
We developed an evolutionary algorithm named STEER
(Split Tree Evolution for Efficient Runtimes) to search for op-
timal signal transform formulas. Our first implementation of
STEER explicitly only searched for optimal WHT formulas.
This section describes STEER for the WHT, while Section 6
describes our more recent implementation of STEER that will
work for a variety of transforms.

Given a particular size, STEER generates a set of random
WHT formulas of that size and times them. It then proceeds
through evolutionary techniques to generate new formulas
and to time them, searching for the fastest formula. STEER is
very similar to a standard genetic algorithm[Goldberg, 1989]
except that STEER uses split trees instead of a bit vector as its
representation. At a high level, STEER proceeds as follows:

1. Randomly generate a populationP of legal split trees of
a given size.

2. For each split tree inP , obtain its running time.

3. LetPfastest be the set of theb fastest trees inP .

4. Randomly select fromP , favoring faster trees, to gener-
ate a new populationPnew.

5. Cross-overc random pairs of trees inPnew.

6. Mutatem random trees inPnew.

7. LetP ← Pfastest ∪ Pnew.

8. Repeat step 2 and following.

All selections are performed with replacement so thatPnew
may contain many copies of the same tree. Since obtaining a
running time is expensive, running times are cached and only
new split trees inP at step 2 are actually run.

4.1 Tree Generation and Selection
Random tree generation produces the initial population of le-
gal split trees from which STEER searches. To generate a
random split tree, STEER creates a set of random leaves and
then combines these randomly to generate a full tree.

3



To generate the new populationPnew, trees are ran-
domly selected fromP using fitness proportional reproduc-
tion which favors faster trees. Specifically, STEER selects
from P by randomly choosing any particular tree with prob-
ability proportional to one divided by the tree’s running time.
This method weights trees with faster running times more
heavily, but allows slower trees to be selected on occasion.

4.2 Crossover
In a population of legal split trees, many of the trees may
have well optimized subtrees, even while the entire split tree
is not optimal. Crossover provides a method for exchanging
subtrees between two split trees, allowing for one split tree to
potentially take advantage of a better subtree found in another
split tree[Goldberg, 1989].

Crossover on a pair of treest1 andt2 proceeds as follows:
1. Lets be a random node size contained in both trees.

2. If no s exists, then the pair can not be crossed-over.

3. Select a random noden1 in t1 of sizes.

4. Select a random noden2 in t2 of sizes.

5. Swap the subtrees rooted atn1 andn2.
For example, a crossover on trees (a) and (b) at the node of

size 6 in Figure 3 produces the trees (c) and (d).

2 3

5

33

6 3 4

182

20

2 2

42

6

3 7 4

14

20

2 3

5

2 4

2 2

20

2 18

3 46

3 7 4

14

20

6

3 3
(a) (b) (c) (d)

Figure 3: Crossover of trees (a) and (b) at the node of size 6
produces trees (c) and (d) by exchanging subtrees.

4.3 Mutation
Mutations are changes to the split tree that introduce new di-
versity to the population. If a given split tree performs well
then a slight modification of the split tree may perform even
better. Mutations provide a way to search the space of similar
split trees[Goldberg, 1989].

We present the mutations that STEER uses with the WHT.
Except for the first mutation, all of them come in pairs with
one essentially doing the inverse operation of the other. Fig-
ure 4 shows one example of each mutation performed on the
split tree labeled “Original.” The mutations are:

• Flip: Swap two children of a node.

• Grow: Add a subtree under a leaf, giving it children.

• Truncate: Remove a subtree under a node that could be
a leaf, making the node a leaf.

• Up: Move a node up one level in depth, causing the
node’s grandparent to become its parent.

• Down: Move a node down one level in depth, causing
the node’s sibling to become its parent.

• Join: Join two siblings into one node which has as chil-
dren all of the children of the two siblings.

• Split: Break a node into two siblings, dividing the chil-
dren between the two new siblings.

2 3

5

33

6 3 4

182

20

33

6

2 3

5

20

2 18

34

33

6

20

2 18

3 4

2 2

5

2 3 2 3

5

20

2 18

3 46

Original Flip Grow Truncate

2 3

5

33

6

20

2

3 4

13

33

6

20

2 18

3 411

2 3

20

2 18

11 3 4

2 3 3 3 33

6

2 3

5

20

11 72

3 4

Up Down Join Split

Figure 4: Examples of each kind of mutation, all performed
on the tree labeled “Original.”

4.4 Running STEER

Figure 5 shows a typical plot of the running time of the best
formula (solid line) and the average running time of the popu-
lation (dotted line) as the population evolves. This particular
plot is forWHT (222) on a Pentium III. The average running
time of the first generation that contains random formulas is
more than twice the running time of the best formula at the
end, verifying the wide spread of run times of different for-
mulas. Further, both the average and best run times decrease
significantly over time, indicating that the evolutionary oper-
ators are finding better formulas.

8e+08

1e+09

1.2e+09

1.4e+09

1.6e+09

1.8e+09

2e+09

2.2e+09

0 20 40 60 80 100 120 140

F
or

m
ul

a 
ru

nn
in

g 
tim

e 
in

 C
P

U
 c

yc
le

s

�

Generations

average
best

Figure 5: Typical plot of the best and average running time of
formulas as STEER evolves the population.

5 Search Algorithm Comparison for WHT

Figure 6 shows two different runs of binary dynamic pro-
gramming on the same machine, namely a Pentium III
450 MHz running Linux 2.2.5-15. For sizes larger than210,
many of the formulas found in the second run are more than
5% slower than those found in the first run. An analysis of this
and several other runs on this same machine shows that the
major difference is what split tree is chosen for size24. The
two fastest split trees for that size have close running times.
Since the timer is not perfectly accurate, it times one split tree
sometimes faster and sometimes slower than the other from
run to run. However, one particular split tree is consistently
faster than the other when used in larger sizes.

While this specific result is particular to the machine we
were using, it demonstrates a general problem with dynamic
programming. There may be several formulas for small sizes
that all run about equally fast. However, one formula may run

4



0.9

0.95

1

1.05

1.1

1.15

1.2

5 10 15 20 25

R
un

ni
ng

 T
im

es
 D

iv
id

ed
 b

y 
R

un
 1

 T
im

es
�

Log of Size

Run 1
Run 2

Figure 6: Two runs of dynamic programming.

considerably faster as part of a larger split tree than the oth-
ers. So, if dynamic programming happens to choose poorly
for smaller sizes early in its search, then it can produce sig-
nificantly worse results at larger size than it would if it had
choose the right formulas for smaller sizes.

Figure 7 compares the best running times found by a va-
riety of search techniques on the same Pentium III. In this
particular run, plain binary dynamic programming chose the
better formula for size24 and performs well. All of the search
techniques perform about equally well except for the random
formula generation method which tends to perform signifi-
cantly worse for sizes larger than215, indicating that some
form of intelligent search is needed in this domain and that
blind sampling is not effective.

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

5 10 15 20 25

R
un

ni
ng

 T
im

es
 D

iv
id

ed
 b

y 
B

in
ar

y 
1-

B
es

t D
P

 T
im

es

�

Log of Size

Binary 1-Best DP
Binary 2-Best DP
3-Way 1-Best DP
STEER
5000 Random Formulas
Binary NoLeaf1 Exhaustive

Figure 7: Comparison of best WHT running times.

Figure 8 compares the number of formulas timed by each
of the search methods. A logarithm scale is used along the y-
axis representing the number of formulas timed. Effectively
all of the time a search algorithm requires is spent in running
formulas. The random formula generation method some-
times times less formulas than were generated if the same
formula was generated twice. The number of formulas timed
by the exhaustive search method grows much faster than all
of the other techniques, indicating why it quickly becomes
intractable for larger sizes. Clearly plain binary dynamic pro-
gramming has the advantage that it times the fewest formulas.

Of the search methods compared, dynamic programming
both finds fast WHT formulas and times relatively few for-
mulas. However, we have also shown that dynamic program-
ming can perform poorly if it chooses a poor formula for one
of the smaller sizes. STEER also finds fast formulas but is
not as strongly impacted by poor initial choices.

1

10

100

1000

10000

100000

5 10 15 20 25

N
um

be
r 

of
 F

or
m

ul
as

 T
im

ed

Log of Size

Binary 1-Best DP
Binary 2-Best DP
3-Way 1-Best DP
STEER
5000 Random Formulas
Binary NoLeaf1 Exhaustive

Figure 8: Number of WHT formulas timed.

6 Optimization for Arbitrary Transforms
As part of the SPIRAL research group[Mouraet al., 1998],
we are developing a system for implementing and optimizing
a wide variety of signal transforms, including user-specified
transforms. This system begins with a database of signal
transforms and break down rules for factoring those trans-
forms that can be extended by users. Mathematical formulas
can be generated for fully factored transforms[Püschelet al.,
2001], and these formulas can be compiled into executable
code[Xiong et al., 2001]. This section discusses how we
have adapted search methods to this system so that they can
be used to optimize arbitrary transforms, and then empirically
compares the search methods.

Exhaustive search requires generating every possible for-
mula for a given transform. In the SPIRAL system, this is
done by using every applicable break down rule on the trans-
form and then recursively every combination of applicable
break down rules on the resulting children. We have also
adapted dynamic programming to this new setting. Given a
transform to optimize, dynamic programming uses every ap-
plicable break down rule to generate a list of possible sets
of children. For each of these children, it then recursively
calls dynamic programming to find the best split tree(s) for
the children, memoizing the results. Each of these possible
sets of children are used to form an entire split tree of the
original transform. These new split trees are then timed to
determine the fastest.

STEER as described above used many operators that heav-
ily relied on properties of the WHT. We have adapted STEER
to the SPIRAL system so it can optimize arbitrary signal
transforms. The following changes were made:

• Random Tree Generation. A new method for generating
a random split tree was developed. For a given trans-
form, a random applicable break down rule is chosen,
and then a random set of children are generated using
the break down rule. This is then repeated recursively
for each of the transforms of the children.

• Crossover. Crossover remains the same except the def-
inition of equivalent nodes. Now instead of looking for
split tree nodes of the same size, crossover must find
nodes with the same transform and size.

• Mutation. We developed a new set of mutations since
the previous ones were specific to the WHT. We have de-
veloped three mutations that work in this general setting

5



24

22�DCT II 22�DCT IV

23DCT II 23DST II

22� 22�

DST IV 2 DST II 222�DCT IV2DST IV 2DST II

RuleDCT4_4

DCT II 2 DST II 2

RuleDCT4_3

DCT IV
RuleDCT4_3

RuleDCT2_2

RuleDCT2_2

RuleDST2_3

RuleDST4_1 RuleDST2_3
DST IV DST II

DCT II 2 DCT IV 2

24

22�DCT IV

23DCT II 23DST II

22� 22�

22�DCT IV2DST IV 2DST II

RuleDCT4_4

DCT II 2 DST II 2

RuleDCT4_3

22�DCT II
RuleDCT2_2

DCT II 2 DCT IV 2 22�DCT II
RuleDCT2_2

DCT II 2 DCT IV 2

DCT IV
RuleDCT4_3

RuleDCT2_2 RuleDST2_3

RuleDST4_1
DST IV DST II

RuleDST2_2

Original Regrow

24

22�DCT II 22�DCT IV

23DCT II 23DST II

22� 22�

DST IV 2 DST II 222�DCT IV

DCT II 2 DST II 2

RuleDCT4_3
DCT II 2 DST II 2

RuleDCT4_3

DCT IV
RuleDCT4_3

RuleDCT2_2

RuleDCT2_2

RuleDST2_3

RuleDST4_1 RuleDST2_3
DST IV DST II

DCT II 2 DCT IV 2

24

22�DCT II 22�DCT IV

23DCT II 23DST II

22� 22�

DST IV 2 DST II 222�DCT IVDCT II 2 DST II 2

RuleDCT4_3

2DST IV 2DST II

RuleDCT4_4

DCT IV
RuleDCT4_3

RuleDCT2_2

RuleDCT2_2

RuleDST2_3

RuleDST4_1 RuleDST2_3
DST IV DST II

DCT II 2 DCT IV 2

Copy Swap

Figure 9: Examples of each general mutation, all performed on the tree labeled “Original.” Areas of interest are circled.

without specific knowledge of the transforms or break
down rules being considered. They are:

– Regrow: Remove the subtree under a node and
grow a new random subtree.

– Copy: Find two nodes within the split tree that rep-
resent the same transform and size. Copy the sub-
tree underneath one node to the subtree of the other.

– Swap: Find two nodes within the split tree that rep-
resent the same transform and size. Swap the sub-
trees underneath the two nodes.

Figure 9 shows an example of each of these mutations.
These mutations are general and will work with arbitrary
user specified transforms and break down rules.

We ran dynamic programming and STEER on the same
Pentium III to find fast implementations of DCTs. Figure 10
shows the running times of the best formulas found by each
algorithm for DCT IV across three sizes. Figure 11 shows
the same but for the four types of DCTs all of size25. Both
diagrams indicate that STEER consistently finds the fastest
formulas.

Size 8 Size 16 Size 32
0
�

500
�

1000
�

1500
�

2000
�

2500
�

3000
�

Fo
rm

ul
a 

ru
nt

im
e 

in
 n

an
os

ec
on

ds

Legend
DP 1-Best
DP 2-Best
DP 4-Best
STEER

Figure 10: Best DCT type IV times across several sizes.

Type I Type II Type III Type IV
0
�

500
�

1000
�

1500
�

2000
�

2500
�

3000
�

3500
�

Fo
rm

ul
a 

ru
nt

im
e 

in
 n

an
os

ec
on

ds
Legend
DP 1-Best
DP 2-Best
DP 4-Best
STEER

Figure 11: Best DCT size25 times across 4 types.

For DCT type IV size24, exhaustive search was also per-
formed over the space of 31,242 different formulas that can
be generated with our current set of break down rules. Fig-
ure 12(a) shows the running times of the fastest formulas
found by each search algorithm. Figure 12(b) shows the num-
ber of formulas timed by each of the search algorithms. The
formulas found by the exhaustive search and by STEER are
about equally fast while the one found by dynamic program-
ming is slower. However, dynamic programming times very
few formulas, and STEER times orders of magnitude less
than the exhaustive search.

7 Related Work
A few other researchers have addressed similar goals. FFTW
[Frigo and Johnson, 1998] is an adaptive package that pro-
duces efficient FFT implementations across a variety of ma-
chines. FFTW uses binary dynamic programming to search
for an optimal FFT implementation.

Outside the signal processing field, several researchers
have addressed the problem of selecting the optimal algo-
rithm. Most of these approaches only search among a few

6



DP 1-Best STEER Exhaustive
0

200

400

600

800

1000

Fo
rm

ul
a 

ru
nt

im
e 

in
 n

an
os

ec
on

ds

DP 1-Best

54

STEER

423
�

Exhaustive

31242
�

0

5000

10000

15000

20000

25000

30000

35000

N
um

be
r 

of
 f

or
m

ul
as

 ti
m

ed

(a) (b)
Figure 12: DCT type IV size24 search comparison.

algorithms instead of the space of thousands of different im-
plementations we consider in our work. PHiPAC[Bilmeset
al., 1997] and ATLAS [Whaley and Dongarra, 1998] use a
set of parameterized linear algebra algorithms. For each algo-
rithm, a pre-specified search is made over the possible param-
eter values to find the optimal implementation. Brewer[1995]
uses linear regression to learn to predict running times for
four different implementations across different input sizes, al-
lowing him to quickly predict which of the four implementa-
tions should run fastest given a new input size. Lagoudakis
and Littman[2000] use reinforcement learning to learn to se-
lect between two algorithms during successive recursive calls
when solving sorting or order statistic selection problems.

8 Conclusion
We have introduced a stochastic evolutionary search ap-
proach, STEER, for finding fast signal transform implemen-
tations. This domain is particularly difficult in that there is a
very large number of formulas that implement the same trans-
form and there is a wide variance in run times between for-
mulas. We have described the development of STEER both
specifically for the WHT and for a wide variety of transforms.
This later form of STEER is able to optimize arbitrary trans-
forms, even user-defined transforms that it has never before
seen.

We have shown that STEER finds faster DCT formulas
than dynamic programming while still timing significantly
less formulas than exhaustive search. In at least one case,
STEER was able to find a DCT formula that runs about
equally as fast as the optimal one found by exhaustive search.
We have shown that a poor early choice can cause dynamic
programming to perform sub-optimally. However, STEER
has, for the first time, provided evidence that dynamic pro-
gramming does perform well when searching for fast WHT
formulas, if dynamic programming does not make a poor
early choice.

STEER mainly relies on a tree representation of formulas
combined with a set of operators to effectively and legally
transform the trees. STEER is thus applicable to general al-
gorithm optimization with similar tree representations.

Acknowledgements
We would especially like to thank Jeremy Johnson, José
Moura, and Markus P̈uschel for their many helpful discus-
sions. This research was sponsored by the DARPA Grant No.
DABT63-98-1-0004. The content of the information in this
publication does not necessarily reflect the position or the pol-
icy of the Defense Advanced Research Projects Agency or
the US Government, and no official endorsement should be

inferred. The first author, Bryan Singer, was partly supported
by a National Science Foundation Graduate Fellowship.

References
[Auslanderet al., 1996] L. Auslander, J. Johnson, and

R. Johnson. Automatic implementation of FFT algorithms.
Technical Report 96-01, Drexel University, 1996.

[Beauchamp, 1984] K. Beauchamp.Applications of Walsh
and Related Functions. Academic Press, 1984.

[Bilmeset al., 1997] J. Bilmes, K. Asanovíc, C. Chin, and
J. Demmel. Optimizing matrix multiply using PHiPAC:
a Portable, High-Performance, ANSI C coding methodol-
ogy. In Proceedings of International Conference on Su-
percomputing, 1997.

[Brewer, 1995] E. Brewer. High-level optimization via auto-
mated statistical modeling. InProceedings of the 5th ACM
SIGPLAN Symposium on Principles and Practice of Par-
allel Programming, 1995.

[Frigo and Johnson, 1998] M. Frigo and S. Johnson. FFTW:
An adaptive software architecture for the FFT. InProceed-
ings of International Conference on Acoustics, Speech,
and Signal Processing, volume 3, 1998.

[Goldberg, 1989] D. Goldberg. Genetic Algorithms in
Search, Optimization, and Machine Learning. Addison-
Wesley, Reading, MA, 1989.

[Haentjens, 2000] G. Haentjens. An investigation of Cooley-
Tukey decompositions for the FFT. Master’s thesis, ECE
Dept., Carnegie Mellon University, 2000.

[Johnson and Burrus, 1983] H. Johnson and C. Burrus. The
design of optimal DFT algorithms using dynamic pro-
gramming. InIEEE Transactions on Acoustics, Speech,
and Signal Processing, volume 31, 1983.

[Johnson and P̈uschel, 2000] J. Johnson and M. P̈uschel. In
search of the optimal Walsh-Hadamard transform. In
Proceedings of International Conference on Acoustics,
Speech, and Signal Processing, 2000.

[Lagoudakis and Littman, 2000] M. Lagoudakis and
M. Littman. Algorithm selection using reinforcement
learning. InProceedings of International Conference on
Machine Learning, 2000.

[Mouraet al., 1998] J. Moura, J. Johnson, R. Johnson,
D. Padua, V. Prasanna, and M. Veloso. SPIRAL: Portable
Library of Optimized Signal Processing Algorithms, 1998.
http://www.ece.cmu.edu/ ∼spiral/ .

[Püschelet al., 2001] Markus P̈uschel, Bryan Singer,
Manuela Veloso, and J. Moura. Fast automatic generation
of DSP algorithms. InProceedings of the International
Conference on Computational Science, Lecture Notes in
Computer Science 2073, pages 97–106. Springer-Verlag,
2001.

[Rao and Yip, 1990] K. Rao and P. Yip. Discrete Cosine
Transform. Academic Press, Boston, 1990.

[Sepiashvili, 2000] D. Sepiashvili. Performance models and
search methods for optimal FFT implementations. Mas-
ter’s thesis, ECE Dept., Carnegie Mellon University, 2000.

[Whaley and Dongarra, 1998] R. Whaley and J. Dongarra.
Automatically tuned linear algebra software. InProceed-
ings of the 1998 ACM/IEEE SC98 Conference, 1998.

7



[Xiong et al., 2001] J. Xiong, D. Padua, and J. Johnson.
SPL: A language and compiler for DSP algorithms.Pro-
ceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), 2001.
To appear.

8


