1

The growing complexity of modern computers makes it in-
creasingly difficult to model or optimize performance of al-
gorithms, even on single processor machines. Thus, a nu

Stochastic Search for Signal Processing Algorithm Optimization

Bryan Singer and Manuela Veloso
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213
Email: {bsinger+, mmv}@cs.cmu.edu

Abstract

This paper presents an evolutionary algorithm for
searching for the optimal implementations of sig-
nal transforms and compares this approach against
other search techniques. A single signal process-
ing algorithm can be represented by a very large
number of different but mathematically equiva-
lent formulas. When these formulas are imple-
mented in actual code, unfortunately their running
times differ significantly. Signal processing algo-
rithm optimization aims at findinghe fastesfor-
mula. We present a new approach that successfully
solves this problem, using an evolutionary stochas-
tic search algorithm, STEER, to search through the
very large space of formulas. We empirically com-
pare STEER against other search methods, show-
ing that it notably can find faster formulas while
still only timing a very small portion of the search
space.

Introduction

ber of researchers have been exploring methodsatmo-

Signal transforms take as an inpusignal as a numerical
dataset and output teansformationof the signal that high-
lights specific aspects of the dataset. Many signal processing
algorithms can be represented by a transformation maitrix
which is multiplied by an input data vectdf to produce the
desired output vectdr = A X [Rao and Yip, 199D Naive
implementations of this matrix multiplication are too slow for
large datasets or real time applications. However, the trans-
formation matrices can be factored, allowing for faster imple-
mentations.

These factorizations can be represented by mathematical
formulas and a single signal processing algorithm can be rep-
resented by many different, but mathematically equivalent,
formulas[Auslanderet al, 1994. Interestingly, when these
formulas are implemented in code and executed, they often
have very different running times. While many of the factor-
izations may produce the exact same number of operations,
the different orderings of the operations that the factorizations
produce can greatly impact the performance of the formulas
on modern processors. For example, different operation or-
derings can greatly impact the number of cache misses and
register spills that a formula incurs or its ability to make use
of the available execution units in the processor. The com-
plexity of modern processors makes it difficult to analytically

redict or model by hand the performance of formulas. Fur-
her, the differences between current processors lead to very
different optimal formulas from machine to machine. Thus,

maticallyop"timizir)g cor:je. Tgis Opt"T;.izaHO? oft%n invorll\_/es a crucial problem is finding the formula that implements the
;’:Lurt:r}:aigc?oybteunrﬂ? Em(? %?t e?] SbF;/e(i:sI?nag yreca)J L;fgﬁrcn;r?ge&gn.al processmg aIgothr.n a§ efficiently as possible. .
data of different implementations or by using performance Signal processing optimization presents a very challenging
models accounting for specific features of the architectureS€arch problem as there is a very large number of formulas
This tuning is often performed on basic algorithms that conhat represent the same signal processing algorithm. Exhaus-
sume most of the computation time of an application; fortive search, as the most basic search approach, is only possi-
example, signal transforni®iischelet al, 2001; Frigo and ble for very small transform sizes or over I]mlted regions qf
Johnson, 1998and matrix operationfBilmes et al, 1997; _the space of formu]as. Dynamic programming off_ers_a signif-
Whaley and Dongarra, 1998ave received particular atten- icantly more effective search method. By assuming indepen-
tion. In this line of research, this paper contributes a newd€nce among substructures, dynamic programming searches

method for optimizing signal transforms, tuning their imple- for a fast implementation while only timing a few formulas.
mentations for a given architecture. However, this independence assumption has not been veri-

- . _ _ fied, and thus it is not known if dynamic programming finds
Permission to make digital or hard copies of all or part of this workeyen a near optimal formula.

for personal or classroom use is granted without fee provided that . . .
copies are not made or distributed for profit or commercial advan- e present a new stochastic evolutionary algorithm,

tage, and that copies bear this notice and the full citation on the firsb TEER, for searching through this large space of possible
page. To copy otherwise, to republish, to post on servers or to redigormulas. STEER searches through many more formulas
tribute to lists, requires prior specific permission and/or a fee. than dynamic programming, covering a larger portion of the
SC2001 November 2001, Denv@ 2001 ACM 1-58113-293- search space, while still timing a tractable number of formu-
X/01/0011 $5.00 las as opposed to exhaustive search. As dynamic program-



ming had previously been the only search choice availabl@he split tree corresponding to the final formula is shown in
for most transform sizes, STEER provides a significantly dif-Figure 1(a). Each node’s label in the split tree is the base two
ferent search approach as well as an opportunity to evaluategarithm of the size of the WHT at that level. The children of

dynamic programming. anode indicate how the node’s WHT is recursively computed.
We initially developed STEER specifically for the Walsh-

Hadamard Transform (WHT). We then extended STEER as 5

well as exhaustive search and dynamic programming to work 3/\2 s

across a wide variety of transforms, including new user- A A\ ﬂ\

defined transforms. These extensions allow for optimization {2 1 1 51

of arbitrary signal transforms without the search algorithms

needing to be modified for the particular transform currently (a) (b)

being optimized. Figure 1: Two different split trees fdi/ HT'(2°).

Through empirical comparisons, we show that STEER can
find formulas that run faster than what dynamic programming | | h node of litt hould tai t onl
finds for several transforms. For at least one case, we shoy ' 9n€ra,, €ach node ot a spit tre€ should contain not only

that STEER is able to find a formula that runs about as fast a edstiﬁe gf thE gansforrln, SUt also tk;p ctjrar;\s{;)rm I?tdthat nolde
the best one found by exhaustive search while timing signifi—an _f_e rr]ea ?Wn rfu € elngbapp 1ed. ted rfea owrlll rule
cantly less formulas than exhaustive search. Specifically witfPEC!TIES NOW a transform can beé computed from smaller or
the WHT, STEER provides evidence, for the first time, thatdllffgrent'trans.forms. In Figure 1, the representation was sim-
dynamic programming finds very good formulas if dynamic.p“f'ed since it only used one break down rule which only

rogrammin not mak r choi rlyini rchfivolved WHTs. _ .
brodra g does not make a poor choice early in its searc There is a very large number of possible split trees,

2 Sianal Processing Backaround or equivalently formulas, for a WHT of any given size.
g g g . . WHT(2") has on the order 0B((4 + /8)"/n%2) differ-
The Walsh-Hadamard Transform of a signabf size2™ is ot possible split trees. For exampl,HT'(28) has 16,768

the productV HT'(2") -  where different split trees. Considering only binary WHT split
" T 1 trees slightly reduces the search space, but there are still
WHT(2") = ® { 1 -1 ] ’ (5™ /n3/?) split treed Johnson andBchel, 200D
i=1 For the results with the WHT, we used a WHT package,

and® is the tensor or Kronecker produ&@eauchamp, 1984  [Johnson and ischel, 200D which can implement in code,
If Aisam x m matrixandB an x n matrix, thenA® Bis  run, and time WHT formulas passed to it. The WHT package
the block matrix product allows leaves of the split trees to be si2ésto 28 which are
a;1B - ar.B implemented as unrolled straight-line code. This introduces
" ’ a trade-off since straight-line code has the advantage that it
: . : does not have loop or recursion overhead but the disadvantage
am1B - ammB that very large code blocks will overfill the instruction cache.
For examplelV HT(22) = Figure 2 sh_ows a histogram of the running time; of all of
the binary split trees o HT'(216) with no leaves of size'.

1 1 1 1 % % 1 1 This data was collected on a Pentium Il running Linux. The
{ 1 1 } ® [ 1 1 } = _1 1 _1 histogram shows a significant spread of running times, almost
- - 1 -1 B 1 - ] a factor of 6 from fastest to slowest. Further, it shows that

there are relatively few formulas that are amongst the fastest.
By calculating and combining smaller WHTs appropri-
ately, the structure in the WHT transformation matrix can 400
be leveraged to produce more efficient algorithms. /et 350
n1 + - - - +n, with all of then; being positive integers. Then,
W HT(2™) can be rewritten as
t

@
<3
=]

Number of formulas
N
=}
S}

[[Linis @ WHT(27) @ Lyt )
=1
wherel} is thek x k identity matrix. This break down rule %
can then be recursively applied to each of these new smaller 5 1
WHTs. Thus,WHT(2") can be rewritten as any of a large
number of different but mathematically equivalent formulas. Figure 2: Histogram of running times of W HT'(2'6) bi-
Any of these formulas foll’ HT(2") can be uniquely rep- nary split trees with no leaves of si2é.
resented by a tree, which we call a “split tree.” For example,
supposéV HT'(2°) was factored as: The four types of discrete cosine transforms (DCI[RA0
WHT(2%) and Yi_p, 19_9(]) are considera_bly different from the WHT. The
(WHT(2%) @ Ie][Iy @ WHT(22)] foIIov\\;:/r;]gl dlffertralnces aredgf mtwportabncg. _— "y
_ 1 9 . ile we have used just one basic break down rule for
= {WHT(2") @ I2)(Ipr @ WHT(27))} © I2] the WHT, there are several very different break down
[Is @ {WHT(2") @ In)(I;» @ WHT(2"))}] rules for most of the different types of DCTs.

3

15 2 2.
Running time in CPU cycles x 10



e While the break down rule for the WHT allowed for ~ As another generalizatiork-best dynamic programming
many possible sets of children, most of the break dowrkeeps track of thé best formulas for each transform and size
rules for the DCTs specify exactly one set of children. [Haentjens, 2000; Sepiashvili, 2J00This softens the dy-

e While the WHT factored into smaller WHTS, the break namic programming assumption, allowing for the fact that a

down rules for the DCTs often factor one transform into sub-optimal formula for a given transform and size might be

two transforms of different types or even translate Onethe optimal way to split such a node in a larger tree. Unfortu-

DCT into another DCT or into a discrete sine transform.Nately, moving from standard 1-best to just 2-best more than

Thus, a split tree for a DCT labels the nodes not onlydOUblfas the number of formqlas to be timed. .
with the size of the transform, but also with the trans-. WWhile dynamic programming has been frequently used, it
form and the applied break dO\'Nn rule. is not known how far from optimal it is at larger sizes where it

can not be compared against exhaustive search. Other search

e The number of factorizations for the DCTs grows eventechniques with different biases will explore different por-
quicker than that for the WHT. For example, DCT type tions of the search space. This exploration may find faster for-
IV already has about.9 x 107 different factorizations mulas than dynamic programming finds or provide evidence
at size2° and abouf.3 x 10'® factorizations at siz€8°  that the dynamic programming assumption holds in practice.

with our current set of break down rules. A very different search technique is to generate a fixed
number of random formulas and time each. This approach
3 Search Techniques assumes that while the running times of different formulas

may vary considerably, there is still a sufficiently large num-
Ber of formulas that have running times close to the optimal.
% volutionary techniques provide a refinement to the previous
L!ipproacI"{GoIdberg, 198R Evolutionary algorithms add a
Pias to random search directing it toward better formulas.

There are several approaches for searching for fastimpleme
tations of signal processing algorithms, including exhaustiv
search, dynamic programming, random search, and evol
tionary algorithms.
One simple approach to optimization is to exhaust over al
possible formulas of a signal transform and to time each on
on each different machine that we are interested in. Therg STEER for the WHT
are three problems with this approach: (1) each formula mayVe developed an evolutionary algorithm named STEER
take a non-trivial amount of time to run, (2) there is a Very(Sp"t Tree Evolution for Efficient Runtimes) to search for op-
large number of formulas that need to be run, and (3) justimal signal transform formulas. Our first implementation of
enumerating all of the possible formulas may be impossibleSTEER explicitly only searched for optimal WHT formulas.
These problems make the approach intractable for transformhis section describes STEER for the WHT, while Section 6
of even small sizes. describes our more recentimplementation of STEER that will
With the WHT, there are several ways to limit the searchwork for a variety of transforms.
space. One such limitation is to exhaust just over the binary Given a particular size, STEER generates a set of random
split trees, although there still are many binary split trees. IWWHT formulas of that size and times them. It then proceeds
many cases, the fastest WHT formulas never have leaves @frough evolutionary techniques to generate new formulas
size2!. By searching just over split trees with no leaves ofand to time them, searching for the fastest formula. STEER is
size2!, the total number of trees that need to be timed can b¥ery similar to a standard genetic algoritfi@oldberg, 198p
greatly reduced, but still becomes intractable at larger sizes.exceptthat STEER uses split trees instead of a bit vector as its
A common approach for Searching the very |arge space ofepresentation. Ata hlgh level, STEER proceeds as follows:
possible implementations of signal transforms has been to use1. Randomly generate a populati&yof legal split trees of
dynamic programmin§dohnson and Burrus, 1983; Frigo and a given size.
Johnson, 1.998.' Haentjens, 2000; Sepiashwil, _IOIDEMS ap- 2. For each split tree i, obtain its running time.
proach maintains a list of the fastest formulas it has found for )
each transform and size. When trying to find the fastest for- 3. LetPy,stest be the set of thé fastest trees .
mula for a particular transform and size, it considers all pos- 4. Randomly select fron®, favoring faster trees, to gener-
sible splits of the root node. For each child of the root node, ate a new populatiof,..,.
dynamic programming substitutes the best split tree found for

that transform and size. Thus, dynamic programming makes > C'0SS-0ver random pairs of trees ifyc.,.
the following assumption: 6. Mutatem random trees i, .
7.

Dynamic Programming Assumption: The fastest LetP «— Prastest U Prew-
split tree for a particular transform and size is also 8. Repeat step 2 and following.

the best way to split a node of that transform and 5| selections are performed with replacement so tRat,,
size in a larger tree. may contain many copies of the same tree. Since obtaining a
While dynamic programming times relatively few formu- running time is expensive, running times are cached and only

las for many transforms, it would need to time an intractablenew split trees inP at step 2 are actually run.
number of formulas for large WHTs. However, by restrict- . i
ing to just binary WHT split trees, dynamic programming 4.1 Tree Generation and Selection
becomes very efficient. Between the two extremiesyay =~ Random tree generation produces the initial population of le-
dynamic programming considers split trees with at miost gal split trees from which STEER searches. To generate a
children at any node. Unfortunately, increasingan signifi-  random split tree, STEER creates a set of random leaves and
cantly increase the number of formulas to be timed. then combines these randomly to generate a full tree.



To generate the new populatioR,.,, trees are ran- 2}0\ 2}0\
domly selected fromP using fithess proportional reproduc-
tion which favors faster trees. Specifically, STEER selects > 6 34 4 6 35 56 34 56 34
3

from P by randomly choosing any particular tree with prob- 2333 33 23 2333 22 23
ability proportional to one divided by the tree’s running time. Original Flip Grow Truncate
This method weights trees with faster running times more Es
heavily, but allows slower trees to be selected on occasion. 5 /]]8\ e o

2 18 2 11 7
4.2 Crosspver _ 2 5 18 431 AR nox
In a population of legal split trees, many of the trees may 23 634 236 K3 5 634
have well optimized subtrees, even while the entire split tree 33 33 2333 2333
is not optimal. Crossover provides a method for exchanging Up Down Join Split

subtrees between two split trees, allowing for one split tree t
potentially take advantage of a better subtree found in anoth
split tree[Goldberg, 198p

Crossover on a pair of treég andt, proceeds as follows:

1. Lets be a random node size contained in both trees. 4.4 Running STEER

?—igure 4. Examples of each kind of mutation, all performed
@n the tree labeled “Original.”

2. If no s exists, then the pair can not be crossed-over.  Figure 5 shows a typical plot of the running time of the best
3. Select a random nodg in ¢, of sizes. formula (solid line) and the average running time of the popu-
4. Select a random node, in £, of sizes Iatlo_n (dotted line) as the popu!atlon evolves. This parthular
' 2 ' plotis for W HT'(222) on a Pentium IIl. The average running
5. Swap the subtrees rootedatandns. time of the first generation that contains random formulas is
For example, a crossover on trees (a) and (b) at the node 6fore than twice the running time of the best formula at the
size 6 in Figure 3 produces the trees (c) and (d). end, verifying the wide spread of run times of different for-
mulas. Further, both the average and best run times decrease
0 significantly over time, indicating that the evolutionary oper-
20 20 2j8\ ators are finding better formulas.
2 8 4 6 0
AL R R gesa A -
E /(3 3 4 3742;‘»\ 232/% }l\ /\ averg\gset'
2333 22 22 37433 2e+09 ¢
(a) (b) (C) (d) 1.8e+09

1.6e+09

Figure 3: Crossover of trees (a) and (b) at the node of size 6

produces trees (c) and (d) by exchanging subtrees. 146409

1.26+09 LLL

Formula running time in CPU cycles

4.3 Mutation 1e+09 N
Mutations are changes to the split tree that introduce new di- 8e+08
versity to the population. If a given split tree performs well O reratons 010

then a slight modification of the split tree may perform even
better. Mutations provide a way to search the space of simil
split treed Goldberg, 198R

We present the mutations that STEER uses with the WHT.
Except for the first mutation, all of them come in pairs with
one essentially doing the inverse operation of the other. Figs ~ Search Algorithm Comparison for WHT
ure 4 shows one example of each mutation performed on th
split tree labeled “Original.” The mutations are:

Figure 5: Typical plot of the best and average running time of
Hormulas as STEER evolves the population.

Eigure 6 shows two different runs of binary dynamic pro-
) . gramming on the same machine, namely a Pentium Il
e Flip: Swap two children of a node. 450 MHz running Linux 2.2.5-15. For sizes larger thzf,
e Grow: Add a subtree under a leaf, giving it children.  many of the formulas found in the second run are more than
e Truncate: Remove a subtree under a node that could bee Slower than those found in the first run. An analysis of this
a leaf, making the node a leaf. and several other runs on this same machine shows that the
] . . major difference is what split tree is chosen for st2e The
* Up: !\/Iove a node up one 'e"?' in depth, causing they,q tastest split trees for that size have close running times.
node’s grandparent to become its parent. Since the timer is not perfectly accurate, it times one split tree
e Down: Move a node down one level in depth, causingsometimes faster and sometimes slower than the other from
the node’s sibling to become its parent. run to run. However, one particular split tree is consistently
e Join: Join two siblings into one node which has as chil-faster than the other when used in larger sizes.
dren all of the children of the two siblings. While this specific result is particular to the machine we
were using, it demonstrates a general problem with dynamic
programming. There may be several formulas for small sizes
that all run about equally fast. However, one formula may run

e Split: Break a node into two siblings, dividing the chil-
dren between the two new siblings.



1.2 , 100000 - .
Run1 --=+-- Binary 1-Best DP
Run 3 - : —»— Binary 2-Best DP
*-- 3-Way 1-Best DP
1.15 --8- STEER
-+-e-- 5000 Random Formulas
10000 |- -+ Binary NoLeafl

11

1.05 [!

1

0.95

Running Times Divided by Run 1 Times

Number of Formulas Timed

0.9

5 10 20 25

15
Log of Size

Figure 6: Two runs of dynamic programming.

5 10 20 25

15
Log of Size

considerably faster as part of a larger split tree than the oth- . .
y b ger sp Figure 8: Number of WHT formulas timed.

ers. So, if dynamic programming happens to choose poorly
for smaller sizes early in its search, then it can produce sig-

nificantly worse results at larger size than it would if it had Optimization for Arbitrary Transforms

choose the right formulas for smaller sizes.
Figure 7 compares the best running times found by a va'—AS part of the SPIRAL research groliplouraet al, 1994,

riety of search techniques on the same Pentium 111, In thigV€ are developing a system for implementing and optimizing
particular run, plain binary dynamic programming chose th a wide variety of signal transforms, including user-specified

better formula for size€* and performs well. All of the search Transforms. This system begins with a database of signal

techniques perform about equally well except for the randonﬁ{)?nmssf(i;rgtscg?]dbgrg)iker?(;);’\('jnbmhesse:gr ,{fggﬁgﬁ%ﬁ?fi I:[r:;ilTIZS
formula generation method which tends to perform signifi- y :

cantly worse for sizes larger than?, indicating that some can be generated for fully factored transfql{rﬁé_schelet al,

form of intelligent search is needed in this domain and that00d, and these formulas can be compiled into executable

blind sampling is not effective. code[Xiong et al, 2001. This section discusses how we
have adapted search methods to this system so that they can

be used to optimize arbitrary transforms, and then empirically

i HnayiBen 5 compares the search methods.

105 | <% 3:Way 1-Best DP

—e-smER Exhaustive search requires generating every possible for-
L, | Binary Noeall Exhaustive P mula for a given transform. In the SPIRAL system, this is
?..; done by using every applicable break down rule on the trans-
form and then recursively every combination of applicable
11 / break down rules on the resulting children. We have also
J adapted dynamic programming to this new setting. Given a
S B R transform to optimize, dynamic programming uses every ap-
P e plicable break down rule to generate a list of possible sets
e of children. For each of these children, it then recursively
calls dynamic programming to find the best split tree(s) for
; the children, memoizing the results. Each of these possible
oss | L L L o sets of children are used to form an entire split tree of the
Log of Size original transform. These new split trees are then timed to
Figure 7: Comparison of best WHT running times. determine the fastest.
STEER as described above used many operators that heav
Figure 8 compares the number of formulas timed by eaclily relied on properties of the WHT. We have adapted STEER
of the search methods. A logarithm scale is used along the yj0 the SPIRAL system so it can optimize arbitrary signal
axis representing the number of formulas timed. Effectivelytransforms. The following changes were made:
all of the time a search algorithm requires is spentin running o Random Tree Generation. A new method for generating
formulas. The random formula generation method some- 3 random split tree was developed. For a given trans-
times times less formulas than were generated if the same  {orm a random applicable break down rule is chosen,
formula was generated twice. The number of formulas timed  anq then a random set of children are generated using
by the exhaustive search method grows much faster than all  the preak down rule. This is then repeated recursively
of the other techniques, indicating why it quickly becomes  for each of the transforms of the children.
intractable for larger sizes. Clearly plain binary dynamic pro- :
gramming has the advantage that it times the fewest formulas. ® Crossover. Crossover remains the same except the def-
Of the search methods compared, dynamic programming inition of equivalent nodes. Nov_v instead of looking fo_r
both finds fast WHT formulas and times relatively few for- split tree nodes of the same size, crossover must find
mulas. However, we have also shown that dynamic program- ~ Nodes with the same transform and size.
ming can perform poorly if it chooses a poor formula for one e Mutation. We developed a new set of mutations since
of the smaller sizes. STEER also finds fast formulas but is  the previous ones were specific to the WHT. We have de-
not as strongly impacted by poor initial choices. veloped three mutations that work in this general setting

13

Running Times Divided by Binary 1-Best DP Times




ocriv 2%
RUIEDCT4 3

/\

DCT I 23 DST 11 23

RuleDCT2 2 RuleDST2 3
cril 22 peTiv 22 psTIv 22 psT1I 22
RUEDCT2 2 RUIEDCT4 4 RUIEDST4 1 RUIEDST2 3
DCTI2  DCTIV 2 DSTIV 2 DSTH 2 DCTIV 2 DSTIV2  DSTH 2
RuleDCT4 3
DCTI 2 DSTI 2
ocriv 2*

RuleDCT4_3

perir 2° psti 28
RuleDCT2 2 RuleDST2 3

PN \

DCTI 2  DCTIV 2 pcriv 22 DSTIV 2 DSTII 2

RuleDCT4 3

et 22 D psTIv 22 DsT Il 22
RUDCT4 3
DCTII 2 DSTII 2

RuleDCT2 2 RuleDST4_1 RuleDST2_3
DCTII 2 DSTII 2

Copy

ocriv 24
RUEDCT4 3

pcrii 28 st 2°
RuleDCT2 2 RuleDST2 3

ocTil 22 ocTIv 22 psTiv 22 bsT
RuleDCT2 2 RUEDCT4 4 RUEDST4 1 RuleDST2 2
et 22
RUEDCT2 2

DCTII 2 DCTIV 2 DSTIV 2 DSTII 2 DCT IV 22
RuleDCT4_3

DCTII 2 DSTIl 2 \DCTII 2 DCT IV 2

Regrow

ocriv 24
RuleDCT4 3

>

3 3

DeTil 2 DSTII 2
RUIEDCT2 2 K
ocril 22 DeTy 22 psTiv 22 DsT Il 22
RUEDCT2 2 RUeDCTA 3 RUIEDSTA 1 RuleDST2 3
DCTII 2 DCTIV 2 \DCTIl 2 DSTII 2 DCT 2 DSTIV 2 DSTII 2
RUEDCTA 4
DSTIV 2 DSTII 2

Swap

Figure 9: Examples of each general mutation, all performed on the tree labeled “Original.” Areas of interest are circled.

without specific knowledge of the transforms or break

down rules being considered. They are:

— Regrow: Remove the subtree under a node and

grow a new random subtree.

— Copy: Find two nodes within the split tree that rep-
resent the same transform and size. Copy the sub-
tree underneath one node to the subtree of the other.

— Swap: Find two nodes within the split tree that rep-
resent the same transform and size. Swap the sub-

trees underneath the two nodes.

Formula runtime in nanoseconds

Typel Typell Typelll TypelV

Figure 9 shows an example of each of these mutations. Figure 11: Best DCT siz@° times across 4 types.

These mutations are general and will work with arbitrary

user specified transforms and break down rules.

For DCT type IV size2?, exhaustive search was also per-

We ran dynamic programming and STEER on the samgyrmed over the space of 31,242 different formulas that can
Pentium Il to f|r_1d fa_st implementations of DCTs. Figure 10 po generated with our current set of break down rules. Fig-
shows the running times of the best formulas found by eacly,e 12(a) shows the running times of the fastest formulas

algorithm for DCT IV across three sizes. Figure 11 show
the same but for the four types of DCTs all of si¥e Both

Sfound by each search algorithm. Figure 12(b) shows the num-

ber of formulas timed by each of the search algorithms. The

diagrams indicate that STEER consistently finds the fastesh,mulas found by the exhaustive search and by STEER are

formulas.
Legend
3000 DP 1-Best
DP 2-Best
DP 4-Best
2500 STEER

1500

1000

Formula runtime in nanoseconds

Size8 Size 16 Size32

Figure 10: Best DCT type IV times across several sizes.

about equally fast while the one found by dynamic program-
ming is slower. However, dynamic programming times very
few formulas, and STEER times orders of magnitude less
than the exhaustive search.

7 Related Work

A few other researchers have addressed similar goals. FFTW
[Frigo and Johnson, 199& an adaptive package that pro-
duces efficient FFT implementations across a variety of ma-
chines. FFTW uses binary dynamic programming to search
for an optimal FFT implementation.

Outside the signal processing field, several researchers
have addressed the problem of selecting the optimal algo-
rithm. Most of these approaches only search among a few



8
g

inferred. The first author, Bryan Singer, was partly supported
by a National Science Foundation Graduate Fellowship.

31242

:
§

:

8

References

[Auslanderet al, 1996 L. Auslander, J. Johnson, and
R. Johnson. Automatic implementation of FFT algorithms.
Technical Report 96-01, Drexel University, 1996.

g

g

8

g

Formula runtime in nanoseconds
g
Number of formulas timed

8
g

54 423

" DPL8es STEER Extasive * DPLBe STEER Exhasive [Beauchamp, 1984K. Beauchamp. Applications of Walsh
@) (b) and Related FunctionsdAcademic Press, 1984.
Figure 12: DCT type IV siz&* search comparison. [Bilmesetal, 1997 J. Bilmes, K. Asanow, C. Chin, and

J. Demmel. Optimizing matrix multiply using PHIiPAC:

algorithms instead of the space of thousands of different im- a Portable, High-Performance, ANSI C coding methodol-

plementations we consider in our work. PHiPABIImes et ngéom ITth(i)r(]:e]e-gén7gs of International Conference on Su-
al., 1997 and ATLAS [Whaley and Dongarra, 1998se a P puting ' . L

set of parameterized linear algebra algorithms. For each algdBrewer, 1995 E. Brewer. High-level optimization via auto-
rithm, a pre-specified search is made over the possible param- Mated statistical modeling. Proceedings of the 5th ACM
eter values to find the optimal implementation. Bre{d€95 SIGPLAN Symposium on Principles and Practice of Par-
uses linear regression to learn to predict running times for allel Programming 1995.

four differentimplementations across different input sizes, al{Frigo and Johnson, 1998V.. Frigo and S. Johnson. FFTW:
lowing him to quickly predict which of the four implementa-  An adaptive software architecture for the FFTPioceed-
tions should run fastest given a new input size. Lagoudakis ings of International Conference on Acoustics, Speech,
and Littman[200d use reinforcement learning to learn to se-  and Signal Processingolume 3, 1998.

lect between two algorithms during successive recursive callggoldberg, 198D D. Goldberg.  Genetic Algorithms in
when solving sorting or order statistic selection problems. Search, Optimization, and Machine Learningddison-
Wesley, Reading, MA, 1989.

8 Concllusmn _ _ [Haentjens, 2000G. Haentjens. An investigation of Cooley-
We have introduced a stochastic evolutionary search ap- Tukey decompositions for the FFT. Master's thesis, ECE
proach, STEER, for finding fast signal transform implemen-  Dept., Carnegie Mellon University, 2000.

tations. This domain is particularly difficult in that there is a [Johnson and Burrus, 19BH. Johnson and C. Burrus. The
very large number of formulas that implement the same trans- design of optimaI,DFT élgorithms using.dynami;: pro-

form and there is a wide variance in run times between for- ; ; d
. gramming. InlIEEE Transactions on Acoustics, Speech,
mulas. We have described the development of STEER both and Signal Processingolume 31, 1983.

specifically for the WHT and for a wide variety of transforms. , i
This later form of STEER is able to optimize arbitrary trans- [Johnson andi#chel, 200D J. Johnson and M.®&chel. In
forms, even user-defined transforms that it has never before Seéarch of the optimal Walsh-Hadamard transform. In
seen. Proceedings of International Conference on Acoustics,
We have shown that STEER finds faster DCT formulas SPeech, and Signal Processj2§00.
than dynamic programming while still timing significantly [Lagoudakis and Littman, 200QMV. Lagoudakis and
less formulas than exhaustive search. In at least one case, M. Littman. Algorithm selection using reinforcement
STEER was able to find a DCT formula that runs about learning. InProceedings of International Conference on
equally as fast as the optimal one found by exhaustive search. Machine Learning2000.
We have shown that a poor early choice can cause dynami§touraet al, 19994 J. Moura, J. Johnson, R. Johnson,
programming to perform sub-optimally. However, STEER  p padua, V. Prasanna, and M. Veloso. SPIRAL: Portable
has, for the first time, provided evidence that dynamic pro- | jyrary of Optimized Signal Processing Algorithms, 1998.
gramming does perform well when searching for fast WHT - /iww.ece.cmu.edu/ ~spirall

formulas, if dynamic programming does not make a poor, .. . .
early choice y prog g PO pyischelet al, 2001 Markus  Rischel, Bryan Singer,
STEER mainly relies on a tree representation of formulas I\/;aggleala Yelq?r(]), andl\r]{DMourz(aj.. Fast ?‘i;omla:": getr_]era?on
combined with a set of operators to effectively and legally © aigorithms. _Irrroceedings of the international
Conference on Computational Science, Lecture Notes in

transform the trees. STEER is thus applicable to general al- : i
gorithm optimization with similar tree representations. (Zlgc?lputer Science 207pages 97-106. Springer-Verlag,

Acknowledgements [Rao and Yip, 199D K. Rao and P. Yip. Discrete Cosine

. . , Transform Academic Press, Boston, 1990.
We would especially like to thank Jeremy Johnson,éJos . . . o
Moura, and Markus @chel for their many helpful discus- [Sepiashvili, 200D D. Sepiashvili. Performance models and
sions. This research was sponsored by the DARPA Grant No. se{;lrch methods for optimal FFT implementations. Mas-
DABT63-98-1-0004. The content of the information in this  ter's thesis, ECE Dept., Carnegie Mellon University, 2000.
publication does not necessarily reflect the position or the polfWhaley and Dongarra, 199&R. Whaley and J. Dongarra.
icy of the Defense Advanced Research Projects Agency or Automatically tuned linear algebra software. Rroceed-
the US Government, and no official endorsement should be ings of the 1998 ACM/IEEE SC98 Conferent298.



[Xiong et al, 2001 J. Xiong, D. Padua, and J. Johnson.
SPL: A language and compiler for DSP algorithni&o-
ceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PL2001.

To appear.



