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ABSTRACT

In multiagent domains with adversarial and cooperative agents,

team agents should be adaptive to the current environment
and opponent. We introduce an online method to provide
the agents with team plans that a “coach” agent generates
in response to the specific opponents. The coach agent is
equipped with a number of pre-defined opponent models.
The coach is then able to quickly select between different
models online by using a naive Bayes style algorithm, mak-
ing the planning adaptive to the current adversary. The
coach uses a Simple Temporal Network to represent team
plans as coordinated movements among the multiple agents
and it searches for an opponent-dependent plan for its team-
mates. This plan is then communicated to the agents, who
execute the plan in a distributed fashion. The system is
fully implemented in a simulated robotic soccer domain.

1. INTRODUCTION

Multiagent domains can include team and adversarial agents.

One of the main challenges of such domains is the coordi-
nation and response of teammates to the adversarial agents.
This paper overviews our work to address this problem. We
use the concrete simulated robotic soccer platform, which
is a rich multiagent environment, including fully distributed
team agents in two different teams of up to eleven agents.
Our work is driven by the goal of significantly improving
the performance of teams of agents through their adapta-
tion and effective response to different adversarial teams.
This paper reports our work to gather and respond to the
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opponents’ behaviors throughout the game. We specifically
focus on responding effectively after the game is stopped, in
what are known as setplay situations. Several preset setplay
plans have been introduced which indeed provide great op-
portunities to position the teammates strategically and have
been shown to impact the performance of a team. [7] In this
work, we contribute adaptive setplays which change and im-
prove throughout a game as a function of and in response
to the opponent team’s behavior.

We use our coach agent that compiles the necessary overall
view of how the opponent team behaves. The coach commu-
nicates to its teammates a team plan which is executed and
monitored in a fully distributed manner. The coach agent
is equipped with a number of pre-defined opponent models.
These models are probabilistic representations of predicted
opponent movements. The models can then be matched to
observed movements of the opponent agents. The whole
process is as follows:

e When the game is stopped, e.g., due to an out-of-
bound call, the coach rapidly takes advantage of the
short available time to create a team setplay plan. The
plan is generated through a hill-climbing search in plan
space using an evaluation function that embeds the
predictions of the opponent model perceived to be the
most likely during the game. The plan generation, in
addition to the recognition of the opponents’ model,
notably uses the model to predict the opponent agents’
behaviors.

e In addition to this plan creation algorithm per se, one
additional challenge of this research was the selection
and use of an appropriate plan representation. The
coach uses a Simple Temporal Network representation
that effectively captures the temporal dependencies
between the plan steps, and, most importantly, explic-
itly records bounds on the expected execution times of
the actions.

e The setplay plans, as generated and delivered by the
coach to the teammates, notably include the necessary
information for the agents to execute and monitor the
team plan in a fully distributed manner.

e The coach also observes the execution of the plan gen-
erated in order to update the selection of an appropri-
ate model for the current opponent.

2. THE ENVIRONMENT

The system is fully implemented in the Soccer Server Sys-
tem[6] as used in RoboCup[3]. The Soccer Server System



is a real-time, server-client system which simulates soccer
between distributed agents. Clients communicate using a
standard network protocol with well-defined actions. The
server keeps track of the current state of the world, exe-
cutes the actions which the clients request, and periodically
sends each agent noisy, incomplete information about the
world. Agents receive noisy information about the direction
and distance of objects on the field (the ball, players, goals,
etc.); information is provided only for objects in the field of
vision of the agent.

3. PLANNING AND OPPONENT MODELS

A plan is represented as a Simple Temporal Network, as
introduced in [1]. A Simple Temporal Network (or STN for
short) is a directed graph that represents the temporal con-
straints between events. Each node in the graph represents
an event, and each edge represents a temporal constraint
between the events. The authors are not aware of any other
work where STNs are used as a multi-agent plan represen-
tation. However, there are several features of STNs which
make them appealing for multi-agent plans.

e The networks naturally represent the parallelism of
agents’ actions and the temporal constraints express
some basic needed coordination between the agents.

e The temporal constraints can be used to detect failures
in execution.

e The networks can help the agents solve the Monitor-
ing Selectivity Problem[2] since it contains information
about which events are important for each agent’s ex-
ecution path.

Our execution algorithm extends the dispatching execu-
tion algorithm by Muscettola et al[5], to the multi-agent
case. We use the dispatching algorithm (unchanged) to
maintain information about time bounds for executions of
events. The agents monitor relevant nodes for completion,
monitor and respect temporal constraints, and work towards
executing the next node required of them. Some nodes also
have constraints on their execution. For example, the agent
must believe that a pass will succeed before beginning it.

In short, we use the STN plan to track two separate
questions: “What should each agent be doing at each time
step?” and “What have all the other agents done up to this
time step?” In most STN applications, only the first ques-
tion is addressed; the executor is assumed to be the only
agent. Morris and Muscettola[4] have considered allowing
there to be some uncertainty in the temporal execution of
some events. However, they are more concerned with guar-
anteeing that execution will be successful, while we are more
interested in the optimistic possibility that there is still some
valid execution in the given temporal constraints. Also, they
do not address the multi-agent aspects which are important
to this work.

The plan creation process is divided into two steps. First,
a path is planned for the ball, then an STN is generated from
that path with roles for the agents and the necessary tempo-
ral constraints specified. A model of the opponents is used to
probabilisticly predict the movements of the opponent. The
path planning problem then has constraints of straight-line
segments and dynamic, probabilistic obstacles. We use a
hillclimbing approach with an evaluation function that uses
the following weighted factors: whether the last segment is
a pass or clear, the ball’s final location, the length of the

path, and the average and maximum pass danger. The pass
danger is defined in terms of a the probabilistic locations of
the opponents.

Conceptually, we want an opponent model to represent
how an opponent plays defense during setplays. In order
to handle the uncertainty in the environment and to allow
models to represent more information than just a simple
predicted location, we use probabilistic models. Given the
recent history of the ball’s movement (from the start of the
set play for example) and the player’s initial location, the
model gives, for each player, a probability distribution over
locations on the field. Given a set of opponent models, we
use a naive Bayes classifier to determine which opponent
model best matches the opponent.

4. CONCLUSION AND FUTURE WORK

In the games at RoboCup2000, it was evident that our
team benefited from adaptive setplays. Our system created
a variety of setplay plans in adaptation to completely un-
known opponent teams. More targeted empirical compari-
son on the impact of the technique is challenging but it is
part of our ongoing work.

During execution, the agents do not take advantage of
opportunities which may occur. For example if an agent
ends up with a good shot on the goal, but the plan is for it
to pass, it will pass the ball anyway. Storing alternate plans
and intelligently adding monitors for these plans as in [§]
could make the plan execution usefully opportunistic.

Also, the Simple Temporal Network plan representation
could benefit from more explicit synchronization in terms of
the observations expected for particular nodes.

In this work, the opponent models were written by hand,
but the algorithms here could work with models which are
learned by observation of opponents. We plan to continue
to explore the area of generating and using opponent models
for fast recognition of behaviors in order to further exhibit
adaptive, intelligent responses in our agents.
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