
CMPack: A Complete Software System for Autonomous
Legged Soccer Robots ∗

Scott Lenser James Bruce

Carnegie Mellon University
5000 Forbes Ave

Pittsburgh, PA 15213

{slenser,jbruce,mmv}@cs.cmu.edu

Manuela Veloso

Keywords
autonomous robots, lessons learned from deployed agents,
multi-agent teams, action selection and planning, real-time
performance

ABSTRACT
This paper describes a completely implemented, fully au-
tonomous software system for soccer playing quadruped ro-
bots. The system includes real-time color vision, probabilis-
tic localization, quadruped locomotion/motion, and a hier-
archical behavior system. Each component was based on
well tested algorithms and approaches from other domains.
Our design exposed strengths and weaknesses in each com-
ponent, and led to improvements and extensions that made
them more capable in general, as well as better suited for our
testing domain. Integrating the components revealed design
assumptions that were violated. We describe the problems
that arose and how we addressed them.

The integrated system was then used at the annual Robo-
Cup robotic soccer competition where we placed third, los-
ing only a single game. We reflect on how our system ad-
dressed its goals and what was learned through implemen-
tation and testing on real robots.

1. INTRODUCTION
Developing systems of autonomous robots to address com-

plex tasks is particularly challenging. An autonomous robot
needs to perceive its environment, make decisions about se-
lection of its actions, and finally concretely carry its actions
ahead. In this paper we report on our research develop-
ing autonomous quadruped robots capable of being part of

∗This research was sponsored by Grants Nos. DABT63-99-
1-0013, F30602-98-2-0135 and F30602-97-2-0250. The infor-
mation in this publication does not necessarily reflect the
position of the funding agencies and no official endorsement
should be inferred.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AGENTS’01,May 28-June 1, 2001, Montréal, Quebec, Canada.
Copyright 2001 ACM 1-58113-326-X/01/0005 ..$5.00

a robotic soccer team. Through several years of working
with the Sony quadruped robots, we have gathered a co-
herent awareness of the complexity of this task, as well as
a solid understanding of the approaches to integrate per-
ception, behavior, and actions into effective intelligent au-
tonomous agents.

This paper first briefly overviews the specific RoboCup
Sony legged robot league environment [6]. We present our
work with several main components of relevance to an au-
tonomous quadruped agent. Perception is gathered through
an on-board camera and color thresholding is performed at
the hardware level. We have previously developed a vi-
sion processing system, CMVision, that learns the neces-
sary thresholds for the color space offline [3]. It provides
a color segmented representation to the object recognition
system in real time at video rates. Objects to be recog-
nized have varying geometry and may have multiple colors.
We present our robust object recognition system developed
for RoboCup, and briefly describe the CMVision system on
which it builds.

The robots perform their task in a field that includes
color-based fixed landmarks. The robot localizes itself in
the world using a probabilistic sampling method that up-
dates its locale belief based on its movements and on the
perceived objects. We initially developed a probabilistic
localization algorithm, Sensor Resetting Localization, [9],
that robustly accommodates the poorly modeled movements
of the quadruped robot and large errors due to externally
caused movements of the robots, such as pushing from other
robots, and repositioning done by the human referees during
the game. Sensor Resetting Localization is very effective. In
this paper, we identify additional challenges that we could
face in terms of localization building upon the sensor reset-
ting approach.

The robots need to accomplish the specific task of playing
soccer. The task involves three robots in each team. Team-
work is currently addressed as a role assignment, namely one
robot is the goalie and the other two robots are attackers.
Developing robust behaviors for the robots represents a chal-
lenge. We contribute a cognition architecture in which sen-
sors, behaviors, and control are separated in three distinct
hierarchies. This architecture supports well the eventual up-
grade of sensor processing and the refinement of behaviors
and control.

Finally, we address the motion opportunities offered by
the quadruped robot. In our previous work with these Sony

Vision

Motion

Behaviors

Localization

Location Objects

Objects

Motion updates

Commands

Images

Camera/color segmentation

Figure 1: The overview of the main components of
our robotic agents.

robots, we mainly used a walking routine supplied by Sony.
In this paper, we report on our development of new motion
primitives, including also new kicking movements using the
legs and the head. The different kicking modes integrated
with the behaviors allowed for a very effective manipulation
of the ball.

Figure 1 summarizes the main components that we present
in this paper. Section 2 briefly describes the task environ-
ment, namely the playing field and the game. Section 3
presents the vision processing for effective object detection.
Section 4 discusses the localization approach. Section 5 in-
troduces the behavior architecture. Section 6 discusses the
motion primitives.

Section 7 concludes the paper. It reviews the contribu-
tions of the work as a fully developed and implemented
robotic agent system. We believe that our extensive work
on this research task contributes to and advances the area
of autonomous robotic agents.

Inevitably and excitingly, there remain many challenges
open to our future research. Let us remark that each attack-
ing robot is aware of the task at a basic level, namely the
robot searches for the ball, localizes itself on the field, and
tries to score into the opponent goal. Collaboration between
robots, detection of and response to adversarial robots, and
further intelligent awareness of the complete game are chal-
lenging topics of our ongoing and future research.

2. ENVIRONMENT
The robots used in this research were generously provided

by Sony [6] to be applied to the specific domain of robotic
soccer. The robots are the similar to the commercial AIBO
robots, but they are provided to us with slightly differ-
ent hardware and programmable. The robot consists of a
quadruped designed to look like a small dog. The robot is
approximately 30cm long and 30cm tall including the head.
The neck and four legs each have 3 degrees of freedom. The
neck can pan almost 90◦ to each side, allowing the robot to
scan around the field for markers. The camera has about
a 55◦ field of view. Figure 2 shows a picture of three dogs
playing soccer.

All teams in the RoboCup-00 legged robot league used
this same hardware platform. The robots are autonomous,
and have onboard cameras. The onboard processor provides
image processing, localization and control. The robots are
not remotely controlled in any way, and as of now, no com-
munication is possible in this multi-robot system. The only

Figure 2: The Sony quadruped robot dogs playing
soccer.

state information available for decision making comes from
the robot’s onboard colored vision camera and from sensors
which report on the state of the robot’s body.

The soccer game consists of two ten-minute halves, each
begun with a kickoff. Each team consists of three robots.
Like our team last year, CMTrio-99 [11], and most of the
other eleven RoboCup-00 teams, we addressed the multi-
robot aspect of this domain by assigning different behaviors
to the robots, namely two attackers and one goaltender. No
communication is available and the robots can only see each
other through the color of their uniforms. No robot identity
can be extracted. As of now, our robot behaviors capture
the team aspect of the domain through the different roles.

The acting world for these robots is a playing field of
280cm in length and 180cm in width. The goals are centered
on either end of the field, and are each 60cm wide and 30cm
tall. Six unique colored landmarks are placed around the
edges of the field (one at each corner, and one on each side
of the halfway line) to help the robots localize themselves
on the field. Figure 3 shows a sketch of the playing field.

Robot A team : Blue

Robot B team : Red

Ball : Orange

Light Blue

Light Blue

Pink

G
�
oal(Light Blue)

G
�
oal(Yellow)

G
�
reen

G
�
reen

Pink

Pink

Pink

Pink

Pink
Yellow

Yellow

Field(Green)

Figure 3: The playing field for the RoboCup-00 Sony

legged robot league.

3. VISION
The vision system is responsible for interpreting data from

the robots’ primary sensor, a camera mounted in the nose.
The images are digitized in the YUV color space [10], and
color thresholds that were learned offline are then applied to
the image in hardware. The low level vision software then
carries out the following steps:

Figure 4: Sample images from the robots’ camera, and

those images after color thresholding

• Connect like-colored neighboring pixels to make re-
gions.

• Connect like-colored nearby regions into larger regions.

• Calculate statistics for the regions useful for high level
vision.

Here like colored refers to being a member of the same
color threshold class (such as orange/ball, or blue/marker),
and nearby regions are evaluated using a density threshold.
If two regions when merged have a density occupying their
bounding area above a threshold for that color class, they
are considered as one region. After the low level processing
is performed, the high level vision carries out the follow-
ing steps for each type of object of interest (currently these
include the ball, goals, markers, and other robots).

• Scan lists of regions for colors that include the object
of interest.

• For each region or regions that may form the object,
evaluate domain and geometric constraints to generate
a confidence value.

• Perform additional filtering rules to remove false pos-
itives.

• Take the hypothesis with the highest remaining confi-
dence value.

• Transform the object from image coordinates to ego-
centric body coordinates.

The low level vision system uses the CMVision library.
It maps pixels into colored regions in several steps using
efficient algorithms and highly optimized implementations.
The first step is to run-length encode the image, replacing
individual pixels with a value and a horizontal length indi-
cating the number of pixels following the first with the same
value. This allows a compressed representation that leads
to much higher efficiency for later processing. The next step

takes the runs and performs connected components merging
using four-connectedness. This is implemented as a tree-
based union find with path compression. The output is ”re-
gions” formed by pixels that were classified as the same color
as one of their neighboring pixels.

An additional run over the run-length encoded represen-
tation gathers statistics about the regions, including their
centroid, bounding box, and pixel area. Finally, the regions
are separated by their color and sorted by size, since larger
regions are likely to be more salient and the smallest are
likely the result of noise. The underlying system is described
in more detail in [3], and the library is freely available under
the GPL [2].

The high level vision system uses the regions determined
by the low level system to detect the objects of interest.
Each type of object employs specific detection and process-
ing to find it in the region data, eliminate false positive
identifications, and determine its distance from the robot.
The processing strategies for each object are as follows:

• Ball: The ball is an orange spherical object, thus it
can be detected as an orange circular region on the
image plane. Large orange regions are processed, fac-
toring their area, the compactness in their bounding
box, and the similarity of the width and height of their
bounding boxes (indicators of how nearly circular the
object is). Objects that appear significantly above the
ground plane, or are only a few pixels, are discarded as
likely false positives. Distance is determined by simi-
lar triangles: the known radius of the ball divided by
the distance is equal to the pixel radius on the image
divided by the focal distance.

• Goals: Goals are detected as large yellow or cyan
objects on the image whose regions are near the bot-
tom of the image or when projected into world space
are near the ground plane. The region lists for the
two possible colors are scanned and confidence values
are assigned based on how much the bounding box
and area match the possible image geometry given the
possible viewpoints on the field. The distance is de-
termined by triangulation based on the height of the
goal. The width is not used because it is much more
likely to be partially occluded by a robot.

• Robots: Robots are detected as red or blue patches
(the team colors) that are not significantly above the
plane of the robot. Currently, no attempt is made
to match which of the color patches is being observed,
since each robot has multiple patches in varying amounts
of occlusion (see Figure 2). Thus we currently make
no orientation or distance estimates, since these are
difficult to determine concisely or efficiently.

• Markers: Markers consist of a two colored cylinder,
with each color occupying a 10cm band on a 10cm
diameter cylinder. The resulting image on the image
plane is two similarly sized colored regions that are ap-
proximately square. Each marker is unique, consisting
of a pink band, and a yellow, green, or cyan band
above or below the pink one. The markers are found
by taking each member of the list pink regions, and
then scanning the yellow, green, and blue region lists
for pairs which fit the following criteria: The square of

the distance between the centroids of the two regions
should be equal to the area of each of those regions.
Using a sigmoidal falloff from this ideal model, we can
quickly evaluate partial matches and take the best hy-
pothesis. Distance is calculated by triangulation of
the distance between the centroids of the two colored
regions.

Finally, the ego-centric body coordinates are obtained by
mapping the coordinates in the image plane of the camera to
the robot’s coordinate frame using standard transformation
techniques to account for head tilt, pan, and roll, as well as
body attitude relative to the ground plane [8].

We found our vision system to be generally robust to noise
and highly accurate in object detection and determining ob-
ject locations at the RoboCup competition. However, like
many vision systems it remains sensitive to lighting condi-
tions, and requires a fair amount of time and effort to cal-
ibrate. Future work includes further automation of offline
threshold calibration using unsupervised learning, and mi-
grating more low and high level calibration parameters to
online adaptive systems.

4. LOCALIZATION
Our localization system, Sensor Resetting Localization [9],

uses a probabilistic model of the world to estimate the robots
location on the field. The robots location is represented as
a probability density over the possible positions and orien-
tations, hereafter locations, of the robots. Since the proba-
bility density is in general a very complex function, we ap-
proximate the probability density by a set of sample points.
The samples are chosen such that if x% of the samples are
expected to be found in a particular area then the proba-
bility that the robot is in that area is x%. Each sample
point represents a particular location on the field at which
the robot might be located. Localization is the process of
updating this probability density. To make the computation
tractable, we make the Markov assumption that the robots
future location depends only on its present location, the mo-
tions executed, and the sensor readings. Updates are done
in such a way that the expected density of sample points
in a region is proportional to the probability of the robot’s
location being within that region. For more detail including
a probabilistic derivation of the algorithm, see the Sensor
Resetting Localization paper [9].

The sample locations are represented as an array of n loca-
tions on the soccer field. High sample counts tend to result
in better accuracy and robustness at the cost of additional
computation. We used n = 400 in our system as a reason-
able compromise. There are three basic types of updates we
perform on the sample set: movement updates, sensor up-
dates, and sensor based resetting. The basic update cycle
is: move robot, update for movement, read sensors, update
for sensors, reset if necessary, repeat. The mean of the sam-
ples is taken to be the best estimate for the location of the
robot and the standard deviation of the samples is used to
estimate the uncertainty.

The goal of the movement update is to convolve the robot’s
belief state with the probabilistic model of the robots move-
ments. This goal is accomplished by taking each location
in the sample set and randomly choosing a new location
according to the probabilistic movement model. This new
location is a possible final location of the robot after execut-

ing the movement from the sample location. Note that this
operation spreads out samples that are overlapping since
each sample may choose a different location to end up in.

The goal of the sensor update is to multiply the robot’s
belief state by the probability of the locations given the sen-
sor readings. Updates for sensors are done in a two step
process. The first step weights all the samples according to
the probability of being in a location given the sensor read-
ings. The second step renormalizes the samples to uniform
weight. This normalization is done by creating a new sample
set. The new sample set is generated by drawing samples
with replacement from the old sample set with probability
proportional to their weights. This has the effect of copying
some samples and deleting others. Note that this step never
creates new samples. In our case, distances and angles to
landmarks serve as our sensor readings.

The goal of sensor based resetting is to return the prob-
ability density to a sane state whenever it appears that the
algorithm may be failing. Here, a sane state means one that
reflects all likely locations of the robot. The algorithm may
fail for a number of reasons: inaccurate models of move-
ment and sensor noise, external disturbance of the robot’s
location, or insufficient sample count to accurately approx-
imate the probability density. We restore the probability
density to a sane state by replacing the density with one
consistent with the robot’s current sensor readings and the
robot’s prior belief of likely locations to be located on the
field (we use a uniform distribution for this). We apply this
resetting step any time we find that our belief state is in-
consistent with the current sensor readings. Inconsistency
can be measured by using the sensor probability model to
estimate the likelihood of the sensor readings given our cur-
rent belief state. See Figure 5(right) for an example of the
result of a reset event. Without this step, the algorithm
is the same as the popular Monte Carlo Localization tech-
nique [5]. This step was added to solve a problem recovering
our position from an initially unknown location (see Figure 5
left). With only 400 samples (to keep computational load
low) there is only 1 sample for every 100cm2 ignoring ori-
entation for the moment. Usually only 1–4 of the 400 sam-
ples are consistent with a single landmark observation but
there are infinitely many locations that are consistent with
this observation (see Figure 5 middle). Resetting solves this
problem by concentrating the samples in locations that are
consistent with the landmark observation (Figure 5 right).
Adding sensor based resetting also solved several other prob-
lems. By resetting, we automatically recover from errors in
the movement model and external disturbances. External
disturbances are caused by the referee moving the robot or
collisions with other robots.

Although this algorithm is highly effective, there are still
additional challenges to address. A limitation of the system
is that the localization technique requires probabilistic mod-
els of the robot’s motions and sensors. A good probabilistic
model of motions requires excellent calibration. Developing
a probabilistic model for the sensors is even more problem-
atic. Besides calibration, the sensor model must be such
that field locations consistent with the sensor reading can
be found in an efficient manner to allow for resetting. This
can be difficult to do for sensor readings that entail complex
distributions. We are looking into solutions to these difficult
research problems.

We made the following observations and enhancements in

−2000 −1500 −1000 −500 0 500 1000 1500 2000

−1000

−800

−600

−400

−200

0

200

400

600

800

1000

x position (mm)

y
po

si
tio

n
(m

m
)

−2000 −1500 −1000 −500 0 500 1000 1500 2000

−1000

−800

−600

−400

−200

0

200

400

600

800

1000

x position (mm)

y
po

si
tio

n
(m

m
)

−2000 −1500 −1000 −500 0 500 1000 1500 2000

−1000

−800

−600

−400

−200

0

200

400

600

800

1000

x position (mm)

y
po

si
tio

n
(m

m
)

Figure 5: The sequence of belief states resulting from a robot in an unknown initial location seeing one landmark.

our work with the robots:

• Localization must be robust to external disturbances.

• Localization must be fault tolerant.

• Localization should incorporate sensor reading that
are hard to describe analytically.

• Sensor based resetting allows for poorer approxima-
tions and models to be used.

• Sensor based resetting provides fault tolerance and
failure recovery in the robot localization.

• Sensor Resetting Localization is robust to external dis-
turbances.

5. BEHAVIOR SYSTEM
Our behavior system is a hierarchical behavior-based sys-

tem. The system is primarily reactive, but some behaviors
have internal state to enable sequencing of behaviors. The
input to the system is information about the objects seen
(from the vision) and an estimate of the robots location
(from the localization). The output of the behaviors is a
motion to be executed (see Figure 1). The motion can be a
type of kick to execute (discrete) or a direction to walk (con-
tinuous) for example. The behavior system consists of three
interconnected hierarchies for sensors, behaviors, and con-
trol (see Figure 6). The sensor hierarchy represents all that
is known about the world. The behavior hierarchy makes all
of the robot’s choices. The control hierarchy encodes every-
thing the robot can do. Our system is similar to the system
used by the FU-Fighters small size RoboCup team [1].

e.g. GetBehindBall,
 FindBall, ...

e.g. WalkToPoint,
 LookForMarkers, ...

e.g. ActivateWalk,
 SetHeadAngles, ...

Behavior hierarchy Control hierarchy

Virtual Sensor 3

Virtual Sensor 1 Virtual Sensor 2

Sensor 1 Sensor 2 Sensor 3

Behavior Level 2

Behavior Level 1

Controls/Goals

Behavior Level 0

Controls/Goals

Controls/Motor commands

Sensor Hierarchy

Figure 6: Overview of the behavior system.

5.1 Sensors, behaviors, and control
The sensor hierarchy represents the knowledge that the

robot has about the world. We divide the sensors into two
categories, real sensors and virtual sensors. Virtual sensors
represent a processed version of the real sensors that includes
information that the behaviors are directly interested in. For
example, a real sensor is the position of the ball reported
by the vision, a virtual sensor is the estimated position of
the ball including when it is not directly seen. The virtual
sensors serve to aggregate information and act as a model of
the world complete with memory. Virtual sensors also avoid
computing the same information twice in separate behaviors.
The sensor hierarchy has a data structure for storing the
sensor values and code to update the virtual sensors in the
data structure from the real sensors. The data structure
output by the sensor hierarchy provides the input to the
behavior hierarchy.

The behavior hierarchy and control hierarchies are tightly
coupled and cooperate to decide on the action to perform.
The behavior hierarchy consists of n behavior sets. Each be-
havior set represents a set of behaviors. Different behavior
sets operate at different levels of detail. The control hier-
archy consists of n control sets. Each control set is a data
structure representing all the actions the robot could per-
form. Each control set represents the actions at different
levels of detail. A control set can be viewed as a set of goals
for low level behaviors to achieve. Alternatively, it can be
viewed as a virtual actuator that the high level behaviors
can control. A behavior set at level k receives input from
the the control set at level k + 1 and the sensor hierarchy.
The behavior set decides what action to perform and writes
the decision into the more detailed control set at level k. For
example, a behavior set might contain a behavior for get-
ting behind the ball. This behavior could be activated when
the control set above this level indicates that it is good to
get behind the ball. The behavior would then use the sen-
sors to find out where the ball is and set a goal for the next
level down to run along an arc that intersects a point behind
the ball. Each behavior set takes an abstract description of
the task to be performed and creates a more concrete de-
scription of actions to be performed. The control hierarchy
provides storage for each level of the behavior hierarchy to
write outputs and read inputs. The lowest level of the con-
trol hierarchy, level 0, is simply the set of low level actuators
available to the robot, in our case the commands exported
from the motion module.

Controls/Goals

Sensor hierarchy

Behavior 0

Activation

Behavior 1 Behavior 2 Behavior 3

1 2

30

Combinator

Controls/Goals/Motor commands out

Behavior Level k ...

Figure 7: Detail of a level in the behavior hierarchy.

5.2 Behavior selection and coordination
We can look in more detail at the behavior sets which

comprise the levels of the behavior hierarchy (see Figure 7).
Each behavior set takes as input the controls/goals from the
control set of the level above it. Running the behavior set
produces the control set that will be used by the behav-
ior set at the next lower level. If this is the lowest level,
then the control set produced is sent directly to the motion
module. How is this accomplished? Each behavior set has
a set of behaviors that all operate at the same level of de-
tail. Behaviors have a functions for calculating activation
levels and outputs given the sensors and high level controls.
These functions are part of the domain knowledge given to
the robot. Each behavior looks at the sensors and the goals
and decides how good it would perform. This measure of
goodness is used as an activation value for the behavior (see
middle of Figure 7). Note that these activations can also
be thought of as predictions of the future reward that will
result if this behavior is run. Each behavior drives a set
of low level actuators/controls. Some behaviors within the
behavior set will drive the same actuator, and thus conflict,
while some will drive different actuators and can be run in
parallel. This occurs frequently in our domain as we may
want to walk somewhere while doing something useful with
the head like scanning for the ball. Behaviors that are in
conflict must never be run together. We capture this con-
straint by constructing a graph where behaviors are nodes
and edges connect behaviors that conflict (see upper right
part of Figure 7). We use a special combinator (described
below) to choose a set of non-conflicting behaviors with near
maximal total expected reward. So for the example activa-
tions in the figure, the combinator has chosen behaviors 2
and 3 since this has more reward than executing behavior 0
alone. The behaviors that are chosen for activation are then
run and write there results directly into the control set for
the next level of behaviors. The behaviors that are run use
the sensors, the control set from above, and their memory
of what they were doing to choose the controls to write into
the goals of the next lower level.

The goal of the combinator is to find a set of non-conflicting
behaviors that result in maximal reward. Since the reward
estimates(activations) and conflict net is given, this is the
problem of finding maximal weight cliques in the dual of the
conflict graph. Since this problem is NP-complete, we use
an approximation algorithm. The basic idea is to find a suit-

ably good approximation iteratively by suppressing weakly
activated behaviors with many conflicts and reinforcing be-
haviors with few conflicts. We first produce an optimistic
estimate for the total reward that can be achieved while run-
ning behavior k by assuming that all behaviors that are not
in direct conflict with behavior k can be run in parallel. This
is calculated by finding the total activation of all behaviors
and subtracting the activation of all behaviors in direct con-
flict. This estimate is then used as a gradient to change
the activation of the kth behavior. Behaviors that might be
runnable with more reward than the behaviors they conflict
with are reinforced while other behaviors are suppressed.
Usually, at least one of the behaviors will have a negative
gradient. We follow this gradient until the activation of one
of the behaviors becomes 0. Any behavior whose activa-
tion becomes 0 is removed from consideration. This process
is repeated until the set of behaviors with non-zero activa-
tion contains no conflicts. Small random perturbations are
added to the activations to break any ties. In case all the
gradients are positive, we double the amount subtracted for
conflicts until one of the gradients becomes negative. In the
worst case, it may take O(n lgn) steps for the combinator to
converge (where there are n behaviors) but for most cases it
converges in a few iterations. The set of behaviors with non-
zero activation at the end of this process are run completing
the execution of the behavior set.

By making each behavior responsible for its own activa-
tion, we keep the only interaction between behavior levels
through the control sets. This allows us to change one level
of behaviors without having to change any other levels of
behaviors. For example, we could replace a behavior for
getting behind the ball with two different behaviors without
changing the layer that chose to get behind the ball. By
allowing our behaviors to have some memory, individual be-
haviors can sequence actions. We use this when searching
for the ball to allow us to remember where on the field we
decided to go look for the ball at. Memory also allows us to
add hysteresis to our behaviors where needed.

We made the following observations/enhancements in im-
plementing this system:

• Oscillation is a major problem for behavior based sys-
tems due to lack of accounting of future costs. We
believe this can be solved through activations that ac-
curately reflect future reward (perhaps using reinforce-
ment learning?).

• Behavior based systems perform better with primitives
parameterized to form a continuous system. This is
largely due to the difficulty of sequencing behaviors.

• Complexity can be reduced by making hierarchical lev-
els that are more separate. Separation can be achieved
by making behaviors responsible for their own activa-
tions.

• Providing behaviors with some limited memory allows
for sequencing and oscillation removal through hys-
teresis.

6. MOTIONS
The motion component allows the robot to walk, kick the

ball, and get up after falling. The desired action is chosen
by the behavior system, and the motion system determines

Figure 8: Visualization of walk at two points during

a forward walk cycle. The front of the robot is at the

top, and the dots represent foot positions projected down

onto the ground plane. The basis of support is indicated

as a shaded polygon defined by the feet on the ground.

The left figure is at a point right before the rear left foot

is to touch down, and the second is at a “critical tran-

sition point,” where the front foot is to about to touch

down while center of mass crosses the basis of support.

the required angles and PID values for each of the joints to
carry out the command. A successful walking motion must
allow the robot to travel on a specified path, while maintain-
ing stability in the process. Also, the walking motion must
transition smoothly to and from other motions. One way to
look at the stability of the robot while walking is to consider
the robot’s center of mass and basis of support (Figure 6).
The basis of support is the area on the ground within the
polygon formed by the points of contact (in our case either a
triangle or a quadrilateral). The points of contact are the lo-
cations where the feet are in stable contact with the ground.
In the absence of momentum, the robot can stand in any po-
sition that results in the center of gravity of the robot (when
projected onto the ground plane) being within the basis of
support. The robot will fall from any other position. Our
walk uses a quasi-static crawl gait. A crawl is a gait in which
at least 3 feet are on the ground at all times. Quasi-static
refers to the type of stability of the system, and means that
the center of gravity of the robot is always within or on the
edge of the basis of support. It is called quasi-static because
with actuation and environment noise the center of gravity
of the robot may temporarily be outside the basis of support.
Our particular walk is based loosely on the walk used by the
RoboCup team from University of Paris VI [7]. We use the
same foot ordering and similar techniques to assure stability
when the center of gravity of the robot is over the basis of
support. However, our implementation differs in that it uses
higher level geometric primitive and calculations to better
address the problem of smooth transitions and composable
target motions. The first requires that transitioning from
motion along one path to another should be smooth (such
as arcing to the left and to the right without a abrupt change
in velocity), and composable motions are the ability to sum
primitive motions into a more complicated path (such as
turning while walking forward, or walking sideways while
turning).

Several key observations led to our approach to imple-
menting the walk. The first is that in a stable crawl, the
body should be kept at nearly a fixed attitude, to prevent
unwanted jolting or oscillation on other parts of the robot,

such as the head. The second is that a specific path can
then be constrained entirely by the motion of the body, and
that when feet are on the ground their motion is fully con-
strained by the motion of the body during that time. Then
the main parameters left open are the following:

• what path the robot should follow

• the order of lifting the feet

• the path the feet should follow in the air (air path)

• the target point the foot should move to while in the
air (air target)

• fraction of a total walk cycle the foot should be in the
air (air fraction)

• the time period of a walk cycle

Additional parameters, such as the body attitude, and the
“neutral” or origin position of the legs relative to the body
were determined and fixed in our implementation to maxi-
mize stability, while the parameters above were determined
online through calculations. First, the path followed by the
robot was taken as a high level command from the behav-
ior system, and consisted of a velocity request for x, y, and
θ. These are translated into a cycle period, body path, and
air cycle using linear interpolation. The fastest walk had a
forward speed of 120mm per cycle, a cycle time of 1200ms,
and an air fraction of 0.25, and the slowest had a velocity
of 0, and cycle of 1500ms, and an air fraction of 0. Thus
our behaviors could select any speed depending on what the
situation required. Additionally, the walk also scaled these
parameters based on requested sideways motion and angular
velocity, leading to speed adaptive walking for these also.

The path of the body was then determined by the veloc-
ity request, and modeled using a Hermite spline [4]. These
splines take the initial and target points as parameters, as
well as derivatives at each, thus allowing smooth trajectories
through points at a specified speed and direction. The cal-
culated world coordinates were then use to perform inverse
kinematics to determine the required joint angles. Using the
splines we also implemented continuous transitioning from
one path to another. Four times each cycle (once every time
a foot was picked up), the motion system would take the
most recent target walk request from the behavior system.
It would then determine the current position and velocity
of the body (which is made simple by using the splines),
and plot a new spline path from the current position and
velocity to the target position and velocity one cycle later.
Thus we had fully continuous body paths and velocity re-
gardless of the sequence of paths requested by the behaviors,
and latency of only a single step before beginning to execute
a command. Traditional approaches require a whole cycle
before transitioning to another path, and may require spe-
cial properties on leg position or velocity to allow continuity
and smooth motion. The spline based motion guarantees
continuity without restrictive assumptions.

The order of the feet was determined based on the dom-
inant requirement of the motion target specified by the be-
haviors. Turning, and walking have different optimal foot
patterns for stability. For turning, a clockwise or counter-
clockwise pattern that is the same as the direction of motion
is most stable, while for forward motion the most stable or-
der is to lift a back foot followed by the front foot on the

same side, and then the same for the other side. Changing
the order of the feet requires the robot to stop and transition
through a standing state in our model, in order to guaran-
tee stability and continuity, and keep the implementation of
different walks modular.

The air path and air target must be chosen to keep the
robot stable and keep the foot position within its reachabil-
ity space during the entire walk cycle. The air target was
chosen so that the average position of the foot during the
ground fraction of the cycle would have an average position
approximately at the neural position. This can be calcu-
lated by evaluating the future velocity at the leg’s neutral
position, and setting the air target as the sum of the neu-
tral location and half of the velocity. In reality, the walk
parameters may change the next time the foot is on the
ground, but this simple predictive approximation keeps the
foot nearly where it should be without an expensive cal-
culation or knowledge of future walk commands. The air
path was a Catmull-Rom spline (multiple segment Hermite
spline), with the interpolated points being the current lo-
cation, the air target, and an intermediate point averaging
the two but elevated in z so that the foot will be off of the
ground. The velocity at the center point is determined as the
average velocity needed to get the foot to the target, and the
initial and end points have the velocity of the ground plane
but with a discontinuous z velocity component in order to
quickly make or break traction with the ground.

The high level motion system consisted of walks with sep-
arate stepping patterns (walking forward, turning left, turn-
ing right), several kicks used to manipulate the ball with the
body, and four routines for the robot to get up when it falls
down, each of which was tailored to recovering from a fall
on a different side of the body (front, back, left side, right
side). The motion system was constructed as a state ma-
chine, with all states transitioning to or from standing at
neutral, except for the fall recovery routines, which passed
through an intermediate state of lying down on the robot’s
belly. The non-walking motions were specified as time vari-
ant functions to determine raw joint angles and kinematic
targets for the legs.

Overall we found the walk to perform significantly better
than other implementations of the same gait at the competi-
tion, as well as allowing for a simplified software architecture
thanks to high level primitives such as splines. We demon-
strated the fastest and most stable walk using the crawling
gait. Future goals include adapting our approach to other
gaits such as trotting (two feet in the air at a time), which
allow much higher speeds but which require dynamic stabil-
ity (the center of mass is not over the support basis, which
is only a line for trotting gaits).

7. CONCLUSION
Sony provided us with fully operational quadruped robots

to support our research on teams of fully autonomous robotic
agents. In this paper, we reported on components devel-
oped to create effective fully autonomous quadruped robots
in a robotic soccer domain. The team was entered the
RoboCup 2000 international competition, and placed third
out of twelve teams in the soccer tournament, losing only
one game to the eventual champion. We performed very
well in overall level of play, demonstrating reliable vision,
localization, behaviors, and motions. In one of the physical
challenges, the reliability of the overall system allowed us

traverse a preset trajectory on the field and score the fastest
of all the teams, demonstrating precise sensing, localization,
and motions.

This paper presented the main technical contributions un-
derlying the software of this fully implemented robotic sys-
tem. We presented the object recognition algorithm that
allows for the robot to reliably detect objects with multi-
ple colors. We then described the localization algorithm
and the behavior system composed of well defined and sep-
arated hierarchies for the sensors, the behaviors, and the
controls. We also overviewed our sophisticated walking and
kicking motions for quadruped robots. Note that several of
the algorithms presented in this paper were designed and
implemented with a great degree of generality and abstrac-
tion. Indeed we have applied the vision processing and the
localization approaches to several other robotic platforms.

Finally there is clearly future work ahead of us within the
broad and challenging area of multirobot systems. In the
near future, we aim at developing and contributing more
elaborate team work among the robots, and the application
of the quadruped robots, in conjunction with other of our
robots, to other tasks, such as robotic search and rescue.

8. REFERENCES
[1] S. Behnke, B. Frötschl, R. Rojas, et al. Using

hierarchical dynamical systems to control reactive
behavior. In Proceedings of IJCAI-99, pages 28–33,
1999.

[2] J. Bruce, T. Balch, and M. Veloso. CMVision
(http://www.coral.cs.cmu.edu/cmvision/).

[3] J. Bruce, T. Balch, and M. Veloso. Fast and
inexpensive color image segmentation for interactive
robots. In Proceedings of IROS-2000, 2000.

[4] J. Foley, A. van Dam, S. Feiner, and J. Hughes.
Computer Graphics, Principles and Practice.
Addison-Wesley, Reading, Massachusetts, second
edition, 1990.

[5] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte
Carlo localization: Efficient position estimation for
mobile robots. In Proceedings of AAAI-99, 1999.

[6] M. Fujita, M. Veloso, W. Uther, M. Asada, H. Kitano,
V. Hugel, P. Bonnin, J.-C. Bouramoue, and
P. Blazevic. Vision, strategy, and localization using
the Sony legged robots at RoboCup-98. AI Magazine,
1999.

[7] V. Hugel. Contribution a la commande de robots
hexapode et quadrupede. PhD thesis, Universite Paris
VI, 1999.

[8] R. Jain, R. Kasturi, and B. Schunk. Machine Vision.
McGraw-Hill, New York, 1995.

[9] S. Lenser and M. Veloso. Sensor resetting localization
for poorly modelled mobile robots. In Proceedings of
ICRA-2000, 2000.

[10] C. Poynton. Poynton’s color FAQ
(http://www.inforamp.net/ poyn-
ton/notes/colour and gamma/colorfaq.html).

[11] M. Veloso, E. Winner, S. Lenser, J. Bruce, and
T. Balch. Vision-servoed localization and
behavior-based planning for an autonomous
quadruped legged robot. In Proceeding of AIPS-00,
2000.

