EQUATIONS OF MOTION FOR MECHANICAL SYSTEMS

By Firdaus E. Udwadia' and Robert E. Kalaba®

AbsSTRACT: This paper deals with the description of constrained motion within the context of classical dy-
namics. An alternative, and simpler, proof for the recently developed new equation of motion for constrained
systems is presented. The interpretation of this equation leads to new principles of analytical dynamics. We
show how these results relate to Lagrange’s formulation of constrained motion. New results related to the
existence, uniqueness, and explicit determination of the Lagrange multipliers are provided. The approach de-
veloped herein is compared with those of Gibbs and Appell, and that of Dirac. Three examples of the application

of the new equation are provided to illustrate their use.

INTRODUCTION

The concepts and methods of analytical mechanics are at
the foundations of most of modern-day physics. Historically,
this field has progressed by fits and starts, with major improve-
ments in our understanding of the dynamic behavior of me-
chanical systems being interspersed with relatively large in-
terludes in between. So it was that a century after Newton’s
Principia (1687), Lagrange (1787) published his monumental
treatise on analytical dynamics, setting the tone and direction,
in turn, for centuries of future research. The work of Gauss
(1829) and Hamilton (1834) followed shortly thereafter. The
general equations of motion for constrained mechanical sys-
tems were discovered independently by Gibbs (1879) and by
Appell (1899). They are often referred to as the celebrated
Gibbs-Appell equations and are considered by most to repre-
sent the pinnacle of our understanding of the time evolution
of constrained mechanical systems.

Although the formulations of analytical mechanics by New-
ton, Lagrange, Gauss, and Hamilton are considered to be
equivalent, they each have a slightly different perspective on
the understanding of the evolution of a dynamical system. Be-
sides adding to our understanding of the motion of mechanical
systems, each perspective has certain advantages when dealing
with specific situations. In this paper we shall rely on Gauss’s
perspective.

Though the problem of determining the evolution of a con-
strained mechanical system was first formulated at least as far
back as Lagrange, the determination of the explicit equations
of motion for such a system, especially when the constraints
are nonintegrable, has since been a major hurdle in mechanics.
The Lagrange multiplier method that Lagrange devised to han-
dle this problem, is very difficult, if not impossible, to use
(from both an analytical and a computational viewpoint) when
the system has several tens of degrees of freedom and is sub-
jected to many nonintegrable constraints.

More than 100 years after Lagrange, Gibbs and Appell came
up with a general approach for handling constrained motion
by expanding the set of coordinates to include quasi-coordi-
nates. The equations they proposed broke a major impasse in
our ability to obtain the explicit equations of motion for con-
strained systems; many consider the Gibbs-Appell equations
to be ‘‘probably the simplest and most comprehensive equa-
tions of motion so far discovered’” (Pars 1965). Yet these
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equations require (1) a felicitous choice of quasi-coordinates;
and (2) an elimination of some of the quasi-coordinates. Both
these aspects are problem-specific and depend on the actual
nature of the nonintegrable constraints that the system is sub-
jected to. These requirements make the Gibbs-Appell approach
very difficult, if not impossible, to use when considering the
constrained motion of systems described by several tens of
degrees of freedom with several nonintegrable constraints. It
is not an approach that lends itself particularly to automati-
zation.

In 1964, Dirac considered Hamiltonian systems with con-
straints that were not explicitly time dependent; he once more
attacked the problem of determining the Lagrange multipliers
of the Hamiltonian corresponding to the constrained dynamical
system. By ingeniously extending the concept of Poisson
brackets, he developed a step-by-step recursive scheme for de-
termining these multipliers through the repeated use of the
consistency conditions (Dirac 1964; Sudarshan and Mukunda
1974). He used the primary constraints to generate additional
secondary constraints, and these secondary constraints in turn
to generate more secondary constraints in a step-by-step pro-
cedure. This eventually culminated in a set of linear equations
involving the Lagrange multipliers whose solution led to their
determination. However, no simple equation directly yielding
the Lagrange multipliers was obtained.

For the last 200 years, work on the description of con-
strained motion has been carried out by several people includ-
ing Gauss, Volterra, Boltzmann, Gibbs, Appell, Whittaker, and
Synge, to name but a few. The Russian school of analytical
mechanics has also been very active in this area. A 1968 Rus-
sian monograph on the subject lists more than 500 (more re-
cent) publications on the topic (Neimark and Fufaev 1972).
Yet, it is only recently (Udwadia and Kalaba 1992) that a
simple general description of the equations of motion, appli-
cable to complex systems that are subjected to general non-
integrable constraints, has become available.

Udwadia and Kalaba (1992) show that such a simple equa-
tion that is applicable to general nonconservative systems and
that can handle a rather general class of constraints can be
obtained by using Gauss’s principle. In their work they pro-
vide a constructive proof for their general equation of motion.

In this paper a simpler and more direct proof of this result
is presented. The equations of motion pertinent to constrained
systems are obtained without the use of Lagrange multipliers.
The systems we consider encompass all of Lagrangian me-
chanics, and then some. For the general constraints considered
in this paper, we provide resuits related to the existence and
uniqueness of the Lagrange multipliers. More importantly, an
explicit expression for their determination is also provided;
this leads to deeper physical insights into the character of these
multipliers. The approach and the results developed herein are
compared with those of Gibbs and Appell and those of Dirac.
Three examples demonstrating the use of the new equations
are provided.



EQUATIONS OF MOTION

For simplicity, consider first a discrete mechanical system
consisting of n particles of masses m,, m,, ms, ..., m,. With
reference to an inertial Cartesian coordinate frame of refer-
ence, let us represent the configuration of the system, at any
time ¢, by the 3n vector of coordinates x = [x; x» X3 . . . X3,
The unconstrained equations of motion for the system can be
obtained using Newton’s equations in the form

Mk = F(x, %, #) 1)

In this paper we shall use the term ‘‘unconstrained system’’
to mean a.system for which the number of degrees of freedom
equals the minimum number of coordinates required to de-
scribe the system. The matrix M is diagonal and positive def-
inite and the vector F is made up of the ‘‘given’’ or ‘‘im-
pressed’’ forces acting on the system. The acceleration of the
unconstrained system, which we shall denote by a(f), is ob-
tained from (1) as a(?) = M™'F:

We next impose a set of m consistent constraints on the
system, described by the equations

¢x, %, D=0 i=12,...,m (2)

We shall assume that the functions ¢, are sufficiently smooth
to allow differentiation with respect to their arguments. Dif-
ferentiating with respect to time, equation set (2) can then be
expressed as the consistent set of equations

A, X, DX = b(x, %, £) A3)

where A = an m by 3n matrix. In what follows we will see
that the matrix AM™"? plays a significant role. We shall call
this matrix the Constraint Matrix. [The Constraint Matrix is
defined here a bit differently from that in Udwadia and Kalaba
(1992).]

The set of constraint equations (2) are general enough to
include both integrable and nonintegrable equality constraints.
Often, the nonintegrable constraints in analytical dynamics are
expressed in Pfaffian form. Differentiating these constraints
once with respect to time would yield equations of the form
described by (3). Similarly, holonomic constraints would re-
quire two differentiations to be put into the form of (3).

The presence of these constraints now causes the number
of degrees of freedom of the system to be less than the min-
imum number of coordinates needed to specify the system’s
configuration. The central problem of constrained motion is
the determination of the equations of motion that describe the
time evolution of this constrained system, given that the sys-
tem’s position, x(f;), and its velocity, X(z,), are known and
compatible with the constraint equation set (2) at some time
to. It should be noted that given x(#,) and x(z,), (3)\is equivalent
to the equation set (2). By virtue of the imposed, constraints
the accelerations of the constrained system differ from those
of the unconstrained system. Thus our primary objective be-
comes the determination of the acceleration, X, of the con-
strained system at time f,. \

The explicit equation of motion developed by Udwadia and
Kalaba (1992) that specifies the time evolution of the con-
strained mechanical system that has been described previously
is

Mi = F + MY (AM™")*(b — AM™'F) “@

where (AM™"%)* = Moore-Penrose generalized inverse (Moore
1920; Penrose 1955) of the constraint matrix (AM™"2). For
brevity, we will omit writing the arguments of the various
quantities explicitly, except where such information becomes
important to our understanding.

An alternative form of this result can be obtained by pre-
multiplying both sides of (4) by M™' to yield at any time ¢

i=za+ M "(AM "% — Aa) 5)

where we have made use of the fact that a(r) = M~'F.

Eq. (5) states that the acceleration, X, of the constrained
system at time ¢ equals the acceleration of the unconstrained
system, a(f), at that time, plus a correction term, which is
brought into play by virtue of the constraints. This correction
term is explicitly provided by the second member on the right-
hand side of (5).

Eq. (4) may also be viewed as an extended use of Newton’s
second law of motion, which is directly applicable to con-
strained dynamical systems—the additional term on the right-
hand side of that equation takes into account the effect of the
imposed constraints in an explicit manner.

We provide now a simpler and more expository derivation
of this result than that previously given by Udwadia and Kal-
aba (1992).

We begin by defining the Moore-Penrose (MP) inverse of
any m by n matrix B, and give some of its important proper-
ties. The MP-inverse of the matrix B is the (unique) matrix
B*, which satisfies the following three conditions: BB*B = B;
B'BB* =B*; and BB* and BB are both symmetric matrices.
The matrix B* has the following four basic properties, which
can be easily proved using the aforementioned definition
(Graybill 1983).

P1. If the singular value decomposition of the matrix B is
UAV’, where A = r by r diagonal matrix of singular values
whose elements are all positive, then B* = VA™'U”. Thus the
singular value decomposition of B provides a way of deter-
mining B*.

P2. A necessary and sufficient condition for the matrix
equation Bx = b to be consistent, where b is an m vector, is

BB*b=b (6)
P3. If Bx = 0, where x # 0 is an »n vector, then
xB* =0 N

P4. The consistent linear set of equations Bx = b has the
solution

x=B’b + I - B'B)h (8

where h = an arbitrary n vector.

Now appealing to Gauss’s principle, we simply need to
prove two things: first, that the acceleration ¥ of the con-
strained system provided by (5) satisfies the constraint equa-
tion (3), and second, that this acceleration ¥ given by (5) min-
imizes the Gaussian

G =F - M'FMF - M'F) ®

among all those 3n vectors ¥ that satisfy (3). During this min-
imization we treat the 3n vectors x(¢) and x(¢) to be fixed, as
prescribed by Gauss.

To prove that X satisfies (3), we note that using % from (5)
in (3) we obtain

A% = (AM ")AM™">)*b =b 10)

where the last equality follows, by property P2, from the con-
sistency of (3).

We next prove that any acceleration vector other than X that
satisfies the constraints (3) increases the value of the Gaussian
G,. Consider the vector § = X + u, where X is as defined by
(5), and u = an arbitrary nonzero 3n vector. For ¥ to satisf}y
the constraint equation (3), we then require Au = AM™2
M"%u = 0, so that by property P3 we have

(MII?II)T(AM—IIZ)-O- =0 (1 1)

Denote the value of the Gaussian G, when ¥ = %, by G.
Hence
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G=F-M'FME - M'F (12)

Substituting for ¥ and using (5), G, can therefore be expressed
as

G| = [(AM—112)+(b —_ AM_lF) + M112u]T
[(AM™"®*(b — AM™'F) + MYA] 13)

Making use of relation (11), we find that G, = G +
(MY?u)"(M"?u). From this it follows that the absolute mini-
mum of the Gaussian G, occurs when the acceleration is as
given by (5). We note that the vector X given by (§) provides
a global minimum of G,.

NEW PRINCIPLES OF ANALYTICAL DYNAMICS

We have proved that (4) and (S5) provide explicitly the equa-
tions of motion pertaining to general constrained systems,
where the constraints can be expressed in the form of (2).
Both, the Lagrange multiplier method and the Gibbs-Appell
method rely on problem-specific approaches. They rely on the
ingenuity of the analyst to eliminate the Lagrange multipliers
or to design the quasi-coordinates in a manner that is depen-
dent on the specific constraints to which the dynamical system
is subjected. Dirac’s approach (Dirac 1964; Sudarshan and
Mukunda 1974) is applicable to a smaller subset of constrained
systems, and provides a method for obtaining the Lagrange
multipliers: it does not directly yield the explicit equations of
motion of general constrained systems as considered here.
Also, Dirac’s primary constraints generate secondary con-
straints, which in turn may generate further secondary con-
straints through the application of the consistency conditions.
The proliferation of secondary constraints in Dirac’s approach
and the repeated use of extended Poisson brackets may make
this approach difficult to use when dealing with large numbers
of degrees of freedom and several tens of constraints, as is
common in many engineering and physical systems.

The simplicity of the equation of motion obtained above
lends itself to deeper physical interpretations. Consider a con-
strained system whose position and velocity are known at time
t to be x(¢) and x(r). The central issue in the determination of
the motion of the constrained system (Gauss 1829) can be
thought of as the determination of its acceleration at time ¢.
As noted previously, the acceleration of the unconstrained sys-
tem is provided by (1) and can be easily obtained by the use
of Newton’s laws or Lagrangian mechanics. Hence the central
issue centers around finding in what way, and by how much,
the acceleration pertinent to the constrained system deviates
from that of the unconstrained system. At time ¢, the accel-
eration pertinent to the constrained system can be written, us-
ing (5), as

% — a=M"(AM )" (b — Aa) 14)

The left-hand side of (14) represents the deviation of the ac-
celeration vector of the constrained system from what it would
be were the system to have no constraints. The difference vec-
tor e(r) = (b — Aa) on the right-hand side of (14) measures
the extent to which the acceleration corresponding to the un-
constrained motion does not satisfy the constraint (3) at time
t. Eq. (14) can then be restated as

A% = M3(AM™"%)*e (15)

where the deviation A% = ¥ — a. The matrix K, = M™"*
(AM™"%" can be thought of as a weighted Moore-Penrose
generalized inverse of the Constraint Matrix; the weighting is
done through premultiplication of the Constraint Matrix by
M™"2, This equation explicitly exposes the linear relation be-
tween AX and e, and leads to the following fundamental prin-
ciple of analytical dynamics:
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The motion of a discrete dynamical system subjected to
constraints evolves, at each instant of time, in such a man-
ner that the deviation of its acceleration from that which it
would have had, at that instant, if there were no constraints
on it, is directly proportional to the extent to which the
acceleration corresponding to the unconstrained motion, at
that instant, does not satisfy the constraints; the matrix of
proportionality K, is the weighted Moore-Penrose gener-
alized inverse of the Constraint Matrix, and the measure of
dissatisfaction of the constraints is the vector e.

An alternative approach to determining the equations of mo-
tion for constrained systems is to realize that by virtue of the
constraints that the system has to satisfy, additional forces are
brought into play that act on the system. Thus while the mo-
tion of the unconstrained system is described by (1), the mo-
tion of the constrained system is described by the equation

Mk=F + F° (16)

where F¢ = force of constraint that ensures that its action in
conjunction with the ‘‘given’” force vector, F, causes the sys-
tem to satisfy the constraints. Comparing (4) and (16) we ob-
tain the force of constraint explicitly as

F° = M2AM™")"(b — Aa) = M"*(AM"?)*e = Ke (17)

leading to the following alternative form of the fundamental
principle:

At each instant of time, the force of constraint acting on a
constrained mechanical system is directly proportional to
the extent to which the acceleration of the unconstrained
system, at that time, does not satisfy the constraints; the
matrix of proportionality K is the weighted Moore-Penrose
inverse of the Constraint Matrix and the measure of the
dissatisfaction of the constraint is given by the vector e.

It should be noted that the weighting matrices involved in
the two fundamental principles just stated are different.

EXISTENCE OF LAGRANGE MULTIPLIERS AND
THEIR EXPLICIT DETERMINATION

We now show that for the n-particle system whose uncon-
strained motion is described by (1) and which is further con-
strained by the equation set (2), there exists, at each instant of
time ¢, a Lagrange multiplier m vector A such that

Mi=F + A\ (18)

where X = acceleration of the constrained system. The com-
ponents of the m vector A are often referred to as the Lagrange
multipliers (Rosenberg 1972). Comparing (4) with (18), we
therefore need to show that the equation

ATX = M+“2(AM_“2)+(b _ Aa) (19)
is consistent. Premultiplying (19) by M™%, we get
C'A=C"e (20)

where we have denoted the constraint matrix AM™"? by C(x,
%, ). By property P2, the consistency of (20) is equivalent to
demonstrating that

C'[C]*"C*e = C"e 21

But CT[CT]+C+ = CT[C+]Tc+ = [C+C]TC+ = C+Cc+ = C+,
and therefore the existence of the Lagrange multiplier vector
A defined by (18) is established.

We next proceed to determine this vector. Using property
P4, the solution of the linear equation (19) is given by

A=A MHAM ") (b — Aa) + I — (ADTATTh  (22)



where h = any arbitrary m vector. It should be observed that
at each instant of time ¢, the right-hand side of (22) is known,
for it is a function of x, X, and .

We have thus obtained an explicit expression that directly
yields the time-dependent Lagrange multipliers, as functions
of x, %, and ¢z, should they be required. Furthermore, because
the m vector h is arbitrary, in general, the Lagrange multipliers
are not unique. However, when the rank of the matrix A equals
m, then, by using property P1, we can see that (AT*A” =1,
and the second member on the right-hand side of (22) van-
ishes; the Lagrange multipliers are then unique. In that case,
they are given by the relation

A = (AT)+M-H/2(AM—1/2)+e - Kze (23)

Eq. (23) provides physical insight into the character of the
Lagrange multiplier vector; for, when the constraints (3) are
linearly independent, the Lagrange multiplier, A(#), is directly
proportional to e(f), the extent to which the accelerations of
the unconstrained system do not satisfy the constraints (3). The
matrix of lproporti(mality is then given by K, = (A")?*
M+ll2(AM~ /2)+ = (AM—IAT -l'

ILLUSTRATIVE EXAMPLES

In this section we demonstrate the ease with which the new
equations can be used by considering three examples. The first
is chosen for its familiarity in the field of physics; the second
for its historical value; and the third to illustrate the use of
these equations when dealing with nonconservative systems,
subjected to nonintegrable constraints that explicitly depend
on time.

1. Consider the three-dimensional motion of a point mass
m suspended from a point O by a rigid weightless rod of length
L. We shall consider the motion of this pendulum with the
point O as the origin of our Cartesian coordinate system, the
XZ-plane horizontal, and the Y-direction pointing downwards.

The system could be thought of in terms of an unconstrained
system consisting of a mass m subjected to the downward
force of gravity; this unconstrained system is then further con-
strained because it must maintain a constant distance, L, from
a fixed point O.

Denoting the position of the point mass at any time ¢ by its
coordinates (x, y, z), the equation of motion pertinent to this
unconstrained system is simply

m 0 O]||x 0
0O m O]|ly|=]|mg 24)
0 0 mllz 0

The accelerration of the unconstrained system is therefore a(z)
=[0 g 0O]"

The weightless rod which attaches the point mass to O pro-
vides a constraint to the unconstrained motion described by
(24). This constraint can be expressed as

PH+y+2=0 25)
which, on two differentiations, yields
X
kya|y|=-+y+2) (26)
Z

Comparing with (3), we find that the matrix A = [x y 2], and
the vector b = scalar —(#* + y* + #*). Since M = a constant
diagonal matrix, M"*(AM™"%)* = mA*. Using elementary ma-
trix algebra [the Moore-Penrose inverse of a row n-vector u
= {4, Uy ... u,) is simply (I/Z, uDu’l, A* = [1/(® + ¥ +
] [x y z)". Hence the equation of motion of the constrained
system can be explicitly written down, using (4), as

Y
D ¢
4 x_
\"
FIG. 1. Elliptic Motion of Particle
m 0 O]|x 0
0 m O||ly|=]|mg
0 0 m]lz 0
P, S —@E P+ D) - 27
xz+yz+zz.;’[( ) — gyl 27

which, in view of (25), simplifies to

m 0 0O]|x 0 , . 2 x
0 0 mlLZ 0 z
(28)

The Lagrange multiplier A can be directly seen to be —{m[(#
+ ¥* + #%) + gyl}/L*. The quantity in the square brackets may
be identified as the extent to which the acceleration of the
unconstrained system, i.e., [0 g 0}, does not satisfy the con-
straint equation (26).

2. Consider the two-dimensional motion of a free particle
of mass m which is constrained so as to move along an ellipse
with focus at O, as well as to move so that the sector area
OCD (see Fig. 1) that it traces in every unit of time is a con-
stant. These are, of course, Kepler’s first two laws of planetary
motion. Our aim is to write the equations of motion of the
constrained system. Alternatively, one can think of this as an
inverse problem: knowing the constraints on the system, we
want to determine what forces of constraint, or ‘‘control
forces,”” Nature would apply so that the system’s motion sat-
isfies the given constraints.

Let (x, y) denote the Cartesian coordinates of the particle.
The equations of motion pertinent to the unconstrained system

are simply
m O0||x 0
(5 AJG]- 1o

The acceleration a of the unconstrained system is obviously
zZero.
The first constraint can be written as

VEZ2+y=ex+p 30)

where € and p = constants defining the ellipse. The second
constraint can be expressed as

Xy —yi=c 31

where ¢ = a constant. Differentiating (30) twice and (31) once,
we obtain the constraint equation in the form of (3) as

— 27.2 -
(T

where we have denoted the radial distance of the particle from
the origin by r.
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Since the matrix A is nonsingular, its Moore-Penrose in-
verse is simply its inverse and

v a1 |x y 1
A=A -[y —(x—rE)](x’+y2)—rxe

3 2]
"y —&x-—re 33)

The equation of motion of the constrained system is then di-
rectly obtained, using (4), as

m 0l|lx|_ _Emiur
K el B

Since there are no impressed forces on the system, the right-
hand side of (34) is simply the force of constraint. We thus
find that if a free particle is to obey Kepler’s first two laws,
it must be subjected to a force of constraint that is central and
varies inversely as the square of the radial distance—a result
communicated by Newton to Edmond Halley more than 300
years ago. It is interesting to note that were we to have deter-
mined the equations of motion of a free particle using only
the first constraint, we would have found that the force of
constraint that keeps the particle on the ellipse is neither cen-
tral nor solely varying inversely as the square of the radial
distance.

3. Consider the three-dimensional motion of a particle of
mass m constrained so that y = zx + a(f), where a(f) = a given
function of time. The particle is subjected to the given im-
pressed forces X(#), Y(¢), and Z(¢), in the three Cartesian co-
ordinate directions X, Y, and Z, respectively. We shall obtain
the explicit equations of motion of the constrained system.

Let the position of the particle be denoted by its coordinates
(x, y, 2). Differentiating the constraint equation once, we can
express it in the form of (3). Hence we obtain

A=[—z10] (35)
and
b=2x + a@® (36)

The Moore-Penrose inverse of A is simply A* = [1/(Z +
DI[—z 1 0}, and the acceleration of the unconstrained system
is given by a(f) = (1/m)[X(t) Y(f) Z(N}". The equation of mo-
tion of the constrained system can then be directly written
down, as

X X@® . . _ -z
m H - [m)] e Y[ 1 ] 37
I3 20 z 0

CONCLUSION AND COMMENTS

It is remarkable that despite the highly nonlinear behavior
exhibited by even the simplest of mechanical systems (think of
a pendulum undergoing large amplitude vibrations or a wheel
rolling on the ground), it is the tools of linear algebra that have
made it possible to determine these explicit equations of motion
governing constrained mechanical systems. A key reason for
this is that the constraints are linear in the accelerations.

We note in passing that it is a simple matter to generalize
(4) and (5) to the situation when the system’s configuration is
described using generalized coordinates (Udwadia and Kalaba
1992). All we need do is replace the vector x by the vector q
of generalized coordinates, the acceleration vector X by {§, the
force F by the given generalized force Q, and the constant
diagonal matrix M by the symmetric positive definite matrix
M(q, ). The matrix A and the vector b in the constraint equa-
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tion (3) would now be functions of q, q and 7, as would, of
course, the functions ¢,.

Egs. (15) and (17) provide a strikingly simple view of the
nature of constrained motion; for, at each instant of time, when
the acceleration vector corresponding to the unconstrained sys-
tem does not satisfy the constraints, Nature alters the accel-
eration in a manner directly proportional to the extent to which
the constraints remain unsatisfied, much like the calculating
mathematician; the matrix of proportionality is M™'?
(AM™"%* the weighted Moore-Penrose inverse of the Con-
straint Matrix. Alternately stated, in the presence of con-
straints, Nature provides an additional force of constraint, F¢,
which is directly proportional to the vector e, the extent to
which the constraints are not satisfied, much like the calculat-
ing control theorist; the matrix of proportionality this time is
M"*(AM~"%*, This force F¢, in conjunction with the given
impressed force F, ensures that the constraints are satisfied by
the dynamical system.

Although the Moore-Penrose inverse of a matrix may be dif-
ficult to obtain analytically for large matrices A, its numerical
computation is not difficult. In fact the Moore-Penrose inverse
can be readily obtained in computer environments of even mod-
est sophistication, like MATLAB. It is the ease with which the
equations of motion (4) and (5) can be directly implemented on
a computer that makes them attractive for use in systems with
many degrees of freedom and several constraints,

The salient features of the results developed in this paper
are the following.

1. The equation of motion for the constrained system is
directly obtained, bypassing the need to determine the
Lagrange multipliers. Explicit expressions, if needed, for
the Lagrange multipliers are provided.

2. The equation of motion (4) pertinent to the constrained
system can be obtained with equal ease for both integra-
ble and nonintegrable constraints. If anything, nonin-
tegrable constraints appear to be somewhat easier to han-
dle in our approach because they require only one
differentiation in order to put them in the form of (3).
We overcome the hurdle presented by the nonintegrabil-
ity of the constraint equations through the simple obser-
vation that though such constraints cannot be integrated,
they can still be differentiated, provided the functions ¢;
are smooth enough. These differentiated equations are
linear in the accelerations.

3. Contrary to conventional wisdom, we do not eliminate
coordinates in an effort to obtain as many second-order
differential equations as the number of degrees of free-
dom of the constrained system. Our equations are ob-
tained in terms of the same coordinates as those used to
specify the unconstrained system. This allows us to di-
rectly compare, at each instant of time, the constrained
motion of the system with its unconstrained motion,
thereby yielding additional insights into the underlying
physics of constrained motion.

Finally, we would like to comment on the use of this new
result in developing methods for controlling mechanical sys-
tems so that they satisfy certain constraints. The insight gath-
ered into the way Nature creates the force of constraint, so
that a given nonlinear mechanical system under the influence
of a known set of impressed forces satisfies a given set of
constraints, can be useful from a Baconian perspective. It gives
us a method of finding the ‘‘control force’’ that needs to be
applied to a mechanical system so that its motion follows a
certain trajectory, or more generally, satisfies a certain set of
constraints. For, given the trajectory, or more generally the set
of constraints, we have explicitly determined the additional
force, F¢, that Nature would apply in the circumstance, so that



the system satisfies the constraints [see (17)]. There may then
be some merit, and consequent parsimony, in imitating Nature
were we required to control a mechanical system (like a robot
arm) to follow a given set of constraints.

We note that, in principle, this ‘‘control force’’ is explicitly
determined in a simple way at each instant of time (no matter
how nonlinear the mechanical system) so that in the presence
of the given impressed force, F, the system exactly satisfies
the constraints; we have provided, in principle, a simple so-
lution that is computable in real time, to what might otherwise
be a control theorist’s nightmare. Our ability to do this rests
on our understanding of the deep structure that governs the
motion of constrained mechanical systems in Nature. Appli-
cations of this line of thinking are imminent in fields such as
robotics, motion control, and control of structural and me-
chanical systems.

The equations of motion presented in this paper appear to
be simple to use and comprehensive enough to include most
physically encountered constraints. We expect that they will
have numerous applications in the field of physics and engi-
neering. Providing new spice to a mature field, they may open
up new horizons in our understanding of Nature.
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