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Outline

e Part 1: How do networks form, evolve, collapse?
e Part 2: What tools can we use to study networks?
e Part 3: Case studies

ow do ideas diffuse through a network?
ow to detect communities?
ow do we detect anomalies in networks?
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Part 3: Case Studies

I e Q4: How do ideas diffuse through a network?
I — Cascades

- Epidemiological modeling of cascades
I - Outbreak detection
¢ Q5: How can we extract communities?
I - Using PCA on structure

— Factorization
I ¢ Q6: What sort of anomaly detection can we

perform?
- Fraud detection on E-bay
- Spam detection

McGlohon, Faloutsos ICWSM 2008



- “Cascading Behavior

in Large Blog Graphs
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How does information propagate
over the blogosphere?
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Immediate Goals

Temporal questions: Does popularity have half-
life?

Topological questions: What topological
patterns do posts and blogs follow? What
shapes to cascades take on? Stars? Chains?
Something else?

Models: Can we build a generative model that
mimics properties of cascades?
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% et Cascades on the
Blogosphere
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Blog data

45,000 blogs participating in cascades

All their posts for 3 months (Aug-Sept ‘05)
2.4 million posts

~5 million links (245,404 inside the dataset)
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Temporal Observations

I How does post popularity change over time?
I * Does popularity decay at a constantzrate?

I # in-links

s llrflle B 08 Wo—% w0 5 = » = » @0 & = 10’ L 1&
Linear-linear scale Log-linear scale Log-log scale

« With an exponential (“half life”)?
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~ Temporal Observations

How does post popularity change over time?
Post popularity dropoff follows a power law...
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~ Temporal Observations

I How does post popularity change over time?
I Post popularity dropoff follows a power law identical
to that found in communication response times in
I [Vazquez+2000].
I Observation 1: The .
probability that a post O
I written at time t, c "
acquires a link at time < ol
t, +Als: #*
I p(tp+ A) o A-1-5 8 101.03 _ == %5;11905‘7.4X—TABOIR%:OF,%;Z
I log(days after post)



¥t is is topology of blogs?

44 356 nodes, 122,153 edges. Half of blogs belong
to largest connected component.
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In- and out-degree follow power law distribution. In-degree
exponent -1.7, out-degree exponent -3.

Strong rich-get-richer phenomena.
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I 2.4M nodes, 250K edges

Both in- and out-degree follow power laws. In-degree exponent
-2.1, out-degree exponent -3.
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e ““Tdpological patterns:
Cascades

Procedure for gathering cascades:

= Find all initiators (nodes with out-degree 0)
= Follow in-links

= Produces directed acyclic graph

I = Count cascade shapes (use our multi-level graph
I isomorphism testing algorithm)
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Topological Observations

How do we measure how information flows
through the network?

Common cascade shapes extracted using algorithms
In [Leskovec, Singh, Kleinberg; PAKDD 2006].
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Topological Observations
I What graph properties do cascades exhibit?

I Cascade size distributions also follow power law.

Observation 2: The probability of observing a
cascade on n nodes follows a Zipf distribution:
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Topological Observations
I What graph properties do cascades exhibit?

I Stars and chains also follow a power law, with
different exponents (star -3.1, chain -8.5).
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Epidemiological models

e We consider modeling cascade generation as an
epidemic, with ideas as viruses.

e We use the SIS (flu-like) model:

- At any time, an entity is in one of two states:
susceptible or infected.

- One parameter f§ determines how easily spreading
conversations are.

_ [Hethcote2000]

McGlohon, Faloutsos ICWSM 2008
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-~ Epidemiological models

e We consider modeling cascade generation as an
epidemic, with ideas as viruses.

e We use the SIS (flu-like) model:

- At any time, an entity is in one of two states:
susceptible or infected.

I - One parameter f§ determines how easily spreading
conversations are.

— [Hethcote2000]
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-~ Epidemiological models

e We consider modeling cascade generation as an
epidemic, with ideas as viruses.

e We use the SIS (flu-like) model:
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I - One parameter f§ determines how easily spreading
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-~ Epidemiological models

e We consider modeling cascade generation as an
epidemic, with ideas as viruses.

e We use the SIS (flu-like) model:

- At any time, an entity is in one of two states:
susceptible or infected.

I - One parameter f§ determines how easily spreading
conversations are.

— [Hethcote2000]
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-~ Epidemiological models

e We consider modeling cascade generation as an
epidemic, with ideas as viruses.

e We use the SIS (flu-like) model:

- At any time, an entity is in one of two states:
susceptible or infected.

I - One parameter f§ determines how easily spreading
conversations are.

— [Hethcote2000]
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-~ Epidemiological models

e We consider modeling cascade generation as an
epidemic, with ideas as viruses.

e We use the SIS (flu-like) model:

- At any time, an entity is in one of two states:
susceptible or infected.

- One parameter f§ determines how easily spreading
conversations are.

_ [Hethcote2000]
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-~ Epidemiological models

e We consider modeling cascade generation as an
epidemic, with ideas as viruses.

e We use the SIS (flu-like) model:

- At any time, an entity is in one of two states:
susceptible or infected.

- One parameter f§ determines how easily spreading
conversations are.

_ [Hethcote2000]
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-~ Epidemiological models

e We consider modeling cascade generation as an
epidemic, with ideas as viruses.

e We use the SIS (flu-like) model:

- At any time, an entity is in one of two states:
susceptible or infected.

- One parameter f§ determines how easily spreading
conversations are.

_ [Hethcote2000]
@Q@qe O
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““Cascade Generation Model
0. Begin with Blog Net.

C
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“Cascade Generation Model

B

AN

B

McGlohon, Faloutsos ICWSM 2008

0. Begin with Blog Net, but ignore edge
weights.

Example—

B1 links to B2,
B2 links to B1,
B4 links to B2
and B1, as well
as itself

B3 is isolated,
linking to itself.

- 26
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“Cascade Generation Model

1. Randomly pick a blog to infect,
add node to cascade

¢
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“Cascade Generation Model

2. Infect each in-linked neighbor with
probability f3.

¢

- 28
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“Cascade Generation Model

2. Infect each in-linked neighbor with
probability f3.

DO NOT
INFECT

INFECT

&

ooooooooooooooooooooooooo
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Cascade Generation Model

3. Add infected neighbors to cascade.

¢
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“Cascade Generation Model

4. Set “old” infected nodes to
uninfected.

¢
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“Cascade Generation Model

4. Set “old” infected nodes to
uninfected. Repeat steps 2-4 until no
nodes are infected.
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Cascade Generation Model

4. Set “old” infected nodes to
uninfected. Repeat steps 2-4 until no
nodes are infected.

O

DO NOT ‘L’

INFECT
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““Cascade Generation Model

4. Set “old” infected nodes to
uninfected. Repeat steps 2-4 until no Completed
nodes are infected. e ——
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Experimental Results
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Conclusions

e Temporal observations

- Post popularity-dropoff follows power law
(exponent=-1.5)

e Topological observations

- Power-laws in degree distribution, cascade sizes
I _“Stars” are more common than “chains”

e Cascade generating model
- Based on epidemiology
- Matches frequent cascades, size power laws

McGlohon, Faloutsos ICWSM 2008
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Part 3: Case Studies

I e Q4: How do ideas diffuse through a network?
I - Cascades

- Epidemiological modeling of cascades
I - Outbreak detection
¢ Q5: How can we extract communities?
I - Using PCA on structure

— Factorization
I ¢ Q6: What sort of anomaly detection can we

perform?
- Fraud detection on E-bay
- Spam detection

McGlohon, Faloutsos ICWSM 2008
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e Problems of finding sources of
contamination in water
networks and finding “hot”

stori

— Minimize time to detection,

PO

- Maximize probability of detection.
— Minimize sensor placement cost.

Blogs

SN~
\: @9
a

Outbreak detection

es on blogs are isomorphic.

pulation affected

S~ N\ ,
)0 f/ﬁ\\\ 7 //
\ - //,‘

Link /
inks

Information cascade

[
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CELF: Main idea

e Given a graph G(V,E)
e and a budget of B sensors

e and data on how contaminations spread over the
network:

— for each contamination i we know the time 7(i, u) when it
contaminated node u

e Minimize time to detect outbreak

e CELF algorithm uses submodularity and lazy
evaluation

McGlohon, Faloutsos ICWSM 2008
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3 “Blogs: Comparison to
heuristics
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"‘Best 10 blogs to read”

http://www.cs.cmu.edu/~jure/blogs/blogs-uc-pa.html
NP - number of posts, IL- in-links, OLO- blog out links, OLA- all out links

k PA score
1 0.1283
0.1822
0.2224
0.2592
0.2923
0.3152
0.3353
0.3508
0.3654
10 0.3778

© o0 N o o &~ WD

Blog

http://instapundit.com
http://donsurber.blogspot.com
http://sciencepolitics.blogspot.com
http://www.watcherofweasels.com
http://michellemalkin.com
http://blogometer.nationaljournal.com
http://themodulator.org
http://www.bloggersblog.com
http://www.boingboing.net
http://atrios.blogspot.com

McGlohon, Faloutsos ICWSM 2008

NP IL OLO
4593 4636 1890
1534 1206 679
924 576 888

941 1733
1839 179
2313 3669

475 717 1844
895 247 1244
5776 6337 1024
4682 3205 795

OLA
5255
3495
2701
3630
6323
9272
4944
10201
6183
3102

- 41



Carnegie Mellon

Part 3: Case Studies

I e Q4: How do ideas diffuse through a network?
I - Cascades

- Epidemiological modeling of cascades
I - Outbreak detection
¢ Q5: How can we extract communities?
I - Using PCA on structure

— Factorization
I ¢ Q6: What sort of anomaly detection can we

perform?
- Fraud detection on E-bay
- Spam detection

McGlohon, Faloutsos ICWSM 2008
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Blogs and structure

» Cascades take on different shapes (sorted by
frequency):

McGlohon, Faloutsos ICWSM 2008
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~ PCA on cascade types

* Perform PCA on ~9,000 cascade types
sparse matrix. o g o
* Use log(count+1) A

slashdot

* Projectonto 2 PC...  [poingboing > 7 | |7

2.1 1.1

~44 000 blogs

67 .07

01

I 42
51
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PCA on cascade types

I » Observation: Content of blogs and cascade
I behavior are often related.
I « Distinct clusters for
‘conservative” and | .
| “humorous” blogs f e ® ot
(hand-labeling). ) 0 00 ik
6 X X)g( |
“ all popular blogs . X
I -or X conservative
-12r humor X
I - 0 2 4 o 6 8 10 12
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PCA on cascade types

* Observation: Content of blogs and cascade
behavior are often related.

* Distinct clusters for

“conservative” and .|

(hand-labeling).

PC 2

all popular blogs

-10F )
X conservative

-12}

humor

| “humorous” blogs o
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Part 3: Case Studies

I e Q4: How do ideas diffuse through a network?
I - Cascades

- Epidemiological modeling of cascades
I - Outbreak detection
¢ Q5: How can we extract communities?
I - Using PCA on structure

— Factorization
I ¢ Q6: What sort of anomaly detection can we

perform?
- Fraud detection on E-bay
- Spam detection

McGlohon, Faloutsos ICWSM 2008
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“* Community Factorization

¢ Yun Chi, Shenghuo Zhu, Xiaodan Song, Junichi
Tatemura, Belle L. Tseng. Structural and
temporal analysis of the blogosphere through
community factorization. KDD 07

|

|

| « Main idea: Use tensor factorization to identify
I subgraphs over time.
|
|
|
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i ‘Conimunity Factorization
Results

the 47-th community

e Hurricane Katrina
community

0 5 100 150 220 280 30 30

louisiana fema orleans cohen storm malkin
hurricane katrina buses volunteers governor
mayor guard corps rescue memorial flood michelle
wise voices emergency volunteer ties welfare air
relief roundup disaster borders homeland rumor
loan boards dept supplies wiki flip shelter

cross journalist recovery authorities tribune

the 30-th community

rank linking ranked analysis technorati blind
blogosphere log studies ranking relative ranks
fake figure conclusions blogs unique tail

o B I Og I nfO CO m m u n Ity . : o structured total literature curve tracked

methods approaches tends spam welfare partly
misleading blogspot vs volume scale weblog
statistics collect collected chart profiles
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Part 3: Case Studies

I e Q4: How do ideas diffuse through a network?
I - Cascades

- Epidemiological modeling of cascades
I - Outbreak detection
¢ Q5: How can we extract communities?
I - Using PCA on structure

— Factorization
I e Q6: What sort of anomaly detection can we

perform?
— Fraud detection on E-bay
- Spam detection

McGlohon, Faloutsos ICWSM 2008
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E-bay Fraud detection

‘non-delivery’ fraud:

seller takes $$
and disappears

Detects
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E-bay Fraud detection - NetProbe

%X NetProbe Alpha - Unearth Networks of Suspicious Auction Users

O NetProbe ..

|~

o -
' allSher Registration: Aug-1306 Location: United States

Fraudsters: 95% Suspected fraudster -- this user has been
hehaving much like the other suspects

REXES U by trading with the similar sets of

possible accomplices.

. chool of Co
~ " . C o~
N R AEETE alisher for suspicious networks.

™
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M s ‘Accomplices’, and
Belief Propagation

¢ 3 types of nodes: honest,|fraud,|accomplices

e ‘Accomplices’ never do fraud
— give high ratings to fraudsters-to-be

Belief propagation intuition:

e If | am honest, my neighbors are either honest or
‘accomplices’

e If 'm an accomplice, my neighbors are either
honest or fraud

McGlohon, Faloutsos ICWSM 2008 3-53
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Part 3: Case Studies

I e Q4: How do ideas diffuse through a network?
I - Cascades

- Epidemiological modeling of cascades
I - Outbreak detection
¢ Q5: How can we extract communities?
I - Using PCA on structure

— Factorization
I ¢ Q6: What sort of anomaly detection can we

perform?
- Fraud detection on E-bay
- Spam detection

McGlohon, Faloutsos ICWSM 2008
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Spam detection

e Kolari, Java, Finin, 2006:

e Studying link structure can help detect spam in
blogs.

e Splogs may deviate from power law degree

10000 +

|
|
: distribution found in authentic bloas.
|
|
|

indegree outdegree
McGlohon, Faloutsos ICWSM 2008
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Conclusion

e Presented patterns found in real graphs (power-
law degrees, giant connected component,
densification, shrinking diameter)

e Demonstrated tools to solve problems (matrix
tools, tensors, self-similarity)

applications to social media (viral marketing,

I e Showed some examples of using these tools for
I community detection, anomaly detection).

McGlohon, Faloutsos ICWSM 2008
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e Epidemiology and viral marketing

- Adar, E. & Adamic, L. A. (2005), Tracking Information
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e Community detection

-Chi, Y.; Zhu, S.; Song, X.; Tatemura, J. & Tseng, B.
L. (2007), Structural and temporal analysis of the
blogosphere through community factorization, in
'KDD '07: Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery
and data mining', ACM, New York, NY, USA, pp.
163--172.
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e Spam/Anomaly detection

- Kolari, P.; Java, A. & Finin, T. (2006), Characterizing
the Splogosphere, in 'Proceedings of the 3rd Annual
Workshop on Weblogging Ecosystem: Aggregation,
Analysis and Dynamics, 15th World Wide Web
Conference’, University of Maryland, Baltimore
County, .

- Pandit, S.; Chau, D. H.; Wang, S. & Faloutsos, C.
(2007), Netprobe: a fast and scalable system for
fraud detection in online auction networks, in "WWW
'07: Proceedings of the 16th international conference
on World Wide Web', ACM, New York, NY, USA, pp.
201--210.
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Questions?

e Mary McGlohon
mmcgloho@cs.cmu.edu
www.cs.cmu.edu/~mmcgloho

e Christos Faloutsos
christos@cs.cmu.edu
www.cs.cmu.edu/~christos

McGlohon, Faloutsos ICWSM 2008

-63



