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What is graph mining?

¢ Extracting useful knowledge (patterns, outliers,
etc.) from structured data that can be
represented as a graph.

e For our purposes, this is usually a social network.
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e e Livejournal, via Lehman and Kottler

Facebook graph, via Touchgraph
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What is graph mining?

e Example: Social media host tries to look at
certain online groups and predict whether the
group will flourish or disband.

I e Example: Phone provider looks at cell phone call
records to determine whether an account is a
I result of identity theft.
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Why graph mining?

I e Thanks to the web and social media, for the first
time we have easily accessible network data on a
I large-scale.

I o Understand relationships (links) as well as
content (text, images).

I e Large amounts of data raise new questions.
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Motivating questions

e Q1: How do networks form, evolve, collapse?
e Q2: What tools can we use to study networks?

e Q3: Who are the most influential/central
members of a network”?

e Q4: How do ideas diffuse through a network?
e Q5: How can we extract communities?

e Q6: What sort of anomaly detection can we
perform on networks?

McGlohon, Faloutsos ICWSM 2008
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Outline

e Part 1: Q1: How do networks form, evolve,
collapse?

— Introduction to networks

— Patterns, Laws

|

|

I e Part 2: Q2: What tools can we use to study
I networks?
|

|

|

- Q3: Ranking: Who are the most important members of a network?

e Part 3: Case studies

— Q4: Diffusion: How do ideas diffuse through a network?
- Q5: How can we extract communities?
- Q6: What sort of anomaly detection can we perform?

McGlohon, Faloutsos ICWSM 2008 1-6



" Part 1 Outline

e Introduction to networks and 6 definitions

e Patterns
— Diameter
— Degree distribution

I - Connected components
- Evolution over time

McGlohon, Faloutsos ICWSM 2008



) D1: Network

¢ A network is defined as a graph G=(V,E)
-V : set of vertices, or nodes.
- E : set of edges.

e Edges may have numerical weights.
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D2: Adjacency matrix

e 10 represent graphs, use adjacency matrix
e Unweighted graphs: all entries are 0 or 1
e Undirected graphs: matrix is symmetric

I 1

fo
5. P=% B1 B2 B3 Bs
[ O B B+10 (1 0 O
X ﬁz fromBZ 1 0 0 0
1@ s | | o D3 Bs0 0 1 O
4 B2 1 2 0 (3
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X D3 Bipartite graphs

e IN a bipartite graph,
- 2 sets of vertices
- edges occur between different sets.

I e If graph is undirected, we can represent as a non-
I square adjacency matrix.

M1 M2 M3
@ nfl 1 0
@ n2 0 1
@ n3 O O
@ N4 0 1

McGlohon, Faloutsos ICWSM 2008
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D4: Components

e Component: set of nodes with paths between
each.
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D4: Components

e Component: set of nodes with paths between
each.

e We will see later that often real graphs form a
giant connected component.
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,1 D5: Diameter

e Diameter of a graph is the “longest shortest path”.
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D5: Diameter

e Diameter of a graph is the “longest shortest path”.

®

diameter=3

o e
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D5: Diameter

e Diameter of a graph is the “longest shortest path”.
e We can estimate this by sampling.

e Effective diameter is the distance at which 90%
of nodes can be reached.

e @
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D6: Degree distribution

¢ We can find the degree of any node by summing
entries in the (unweighted) adjacency matrix.

B
0
1
B
1@ | | B ) o
in-degree —)P
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Some graphs

Food Web of Smallmouth Bass
Leech Little Rock Lake (Cannibal)
¥

The Social Structure of “Countryside™ School District

Poirts Colored by Race

Protein Interactions
[genomebiology.com]

Friendship Network [Moody '01]

McGlohon, Faloutsos ICWSM 2008
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) Part 1 Outline

e Introduction to networks

e Patterns
- Diameter
— Degree distribution

I - Connected components
- Evolution over time

McGlohon, Faloutsos ICWSM 2008 1- 18
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Small-world effect

e Graphs usually display small diameter.

e First demonstrated by Travers & Milgram in 1960.
— Most of the time, distance was around 6.

e Similarly, real graphs we see have small
diameter...

McGlohon, Faloutsos ICWSM 2008
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" [Leskovec & Horvitz 07]

Distribution of

shortest path lengths
Microsoft Messenger

network
= 180 million people
= 1.3 billion edges

= Edge if two people
exchanged at least
one message in on
month period

e

McGlohon,
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) Part 1 Outline

e Introduction to networks

e Patterns
— Diameter: “small world effect”
— Degree distribution

I - Connected components
- Evolution over time

McGlohon, Faloutsos ICWSM 2008 1- 21
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Degree distribution

LIS

e SUPpPOSE average
degree is 3.3

o If we pick a node at
random, can we
guess its degree?

Count vs. degree

e In real graph, “mode” is 1!

S

McGlohon, Faloutsos ICWSM 2008 1-22
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Degree distribution

e SUPpPOSe average
degree is 3.3

\ck a node at

Count vs. degree

ph, “mode” is 1!

ore, mean Is
“meaningless”.

A
avg: 3.3

McGlohon, Faloutsos ICWSM 2008 1-23



M= Power law degree
distribution

e Measure with rank exponent R
o [SIGCOMM99]

internet domains

~ att.com
log(degree) oS oo e e et eiogene =

log(rank)

00000

I ibm. com?

McGlohon, Faloutsos ICWSM 2008
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~ Power laws - discussion

¢ Do they hold, over time?

e Do they hold on other graphs/domains?

McGlohon, Faloutsos ICWSM 2008 1-25
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~ Power laws - discussion

¢ Do they hold, over time?
- Yes! for multiple years [Siganos+]

|

I e Do they hold on other graphs/domains?

I - Yes!

I - Web sites and links [Tomkins+], [Barabasi+]
- Peer-to-peer graphs (gnutella-style)

I — Who-trusts-whom (epinions.com)

|

|
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Time Evolution: rank

Rank exponent

0 140 280 420 560 700
Instances in time: Nov'97 and on

* The rank exponent has not changed!
[S1ganos+]

McGlohon, Faloutsos ICWSM 2008
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he Peer-to-Peer Topology

SO [Jovanovic+]

degree

(a) Gnutella .\n;:pslml from Dec. Zh 2000 (|r|=0.94) )
 Number of immediate peers (= degree), follows a
power-law

McGlohon, Faloutsos ICWSM 2008 1- 28
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epinions.com

e Who-trusts-whom

ot [Richardson +
ISR ' " Original graph Domingosi KDD 2001]
R-MAT graph ~ ~
10000 | =
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) Part 1 Outline

e Introduction to networks

e Patterns
— Diameter: “small world effect”
- Degree distribution: power law

I - Connected components
- Evolution over time

McGlohon, Faloutsos ICWSM 2008 1- 30
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Components

e Basic graph generator, Erdos-Renyi
- For n vertices, connect any two IID with probability p.

e Many provable properties, including emergence
of a giant connected component.

2al graphs do not
have E-R degree
distribution, but...

McGlohon, Faloutsos ICWSM 2008 1- 31



"%iant connected component

e Nearly all real networks have a giant connected
component (GCC) emerge!

e Often SM graphs have “middle region”
- See [Kumar, Novak, & Tomkins, KDD 20006]

o

4

1‘\(E'xample: NIPS citation graph,
visualization with GUESS [Adar 06] 1-32



) Part 1 Outline

e Introduction to networks

e Patterns
— Diameter: “small world effect”
- Degree distribution: power law

I - Connected components: giant CC
- Evolution over time

McGlohon, Faloutsos ICWSM 2008
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Motivating questions

3

« How do graphs evolve?

» Degree-exponent seems constant - any other
consistent patterns? 0

S0.2  feeeeeeeneeeneeee e
G e

20.6  [rreenreneeeneeenee e

-0.8
-1.0
0

Rank exponent

Instances in time: Nov'97 and on
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Evolution of diameter?

M

* Prior analysis, on power-law-like graphs, hints
diameter slowly increasing with time.

diameter ~ QgogiN)) or
diameter ~ ngOQ(N)))

 Slowly increasing with network size

* What is happening, in reality?

Diameter shrinks, toward a constant value!

McGlohon, Faloutsos ICWSM 2008
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Shrinking diameter

[Leskovec, Faloutsos,
Kleinberg KDD 20035] diameter

° g;tséiﬁ)sns lele [l J :Euiggﬁphﬁgﬁﬁ no past
o 11yrs; @ 2003: ]
— 29,555 papers - d
_ 352,807 citations =
e For each month M, create a I
graph of all citations up to fo2 1004 1996 _ 1998 2000 2002 2004

Time [years]

month M e
(a) arXiv citation graph

time

McGlohon, Faloutsos ICWSM 2008
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Shrinking diameter

* Authors &
publications

I « 1992
I — 318 nodes
— 272 edges
| - 2002
I — 60,000 nodes

« 20,000 authors
« 38,000 papers

— 133,000 edges

- Full graph
11l ] -e-Post '95 subgraph
\ =0='Post '95 subgraph, no past

Effective diameter

1%)92 1994 1996 1998 2000 2002
Time [years]

(b) Affiliation network

McGlohon, Faloutsos ICWSM 2008
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Shrinking diameter

e Patents & citations

) 1 975 ::_-Egitg‘;a;:ubgraph
— 334 , OOO nOd eS 307 =¢=-Post "85 subgraph, no past
— 676,000 edges

|
|
: * 1999
|
|
|

Effective diameter

— 2.9 million nodes
— 16.5 million edges

15975 1980 1985 1990 1995 2000
Time [years]

« Each yearis a
(c) Patents

datapoint

McGlohon, Faloutsos ICWSM 2008
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I « Autonomous
I systems

* 1997

I — 3,000 nodes
— 10,000 edges

.
o)

hy
o

Effective diameter

diameter 5

Shrinking diameter

I » 2000
I — 6,000 nodes "o
— 26,000 edges 3

I « One graph per day

00 3500 4000 4500 5000 5500 6000 6500
Size of the graph [number of nodes]

(d) AS
N

I McGlohon, Faloutsos ICWSM 2008
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Temporal evolution

LIS

e N(t) nodes; E(t) edges at time t
e Suppose that

N(t+1) = 2 * N(t)
e What is your guess for

|
|
|
| E(t+1) =? 2 * E(t)
|
|
|

McGlohon, Faloutsos ICWSM 2008 1- 40
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Temporal evolution

e N(t) nodes; E(t) edges at time t
e Suppose that

N(t+1) = 2 * N(t)
e What is your guess for

E(t+1) =2 2LE(t)

e Edges over-double!

ooooooooooooooooooooooooo

1-
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Temporal evolution

e Growth of edges obeys power law with:
E(t) ~ N(t)? for all ¢
where 1<a<?2

McGlohon, Faloutsos ICWSM 2008 1-42
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 Densification Power Law

I ArXiv: Physics papers

I and their citations

1065'
_ Apr 2003
E(t),
t), |
) [
3 .
3 -
“é 104:_ 4 ‘2‘ 1 ° 9
()] [ ——
0
£
-
Z L
10° R
F Jan 1993
I + Edges
. —=0.0113 x"%9R%=1.0
10 - ' '
10° 10° 10* 10°

(a

McGlohon, Faloutsos ICWSM 2008

Number of nodes

) arXiv

N(t)
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 Densification Power Law

I ArXiv: Physics papers

I and their citations

1065'

10°

[T
N
o+
\-/

Number of edges
)

—_
(]

[ R

T — T T T T — T T T

o 4.*
: Jan 1993

Apr 2003

‘tree’

+ Edges

—=0.0113 x

R%=1.0

—
-9,
o —
N

McGlohon, Faloutsos ICWSM 2008
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(a) arXiv

10°

N(t)
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 Densification Power Law

I ArXiv: Physics papers
I and their citations “

| E(t), "

Number of e
=)
..,‘h T

—_
o

w

m e

E Jan 1993
I + Edges
| —=0.0113 x"%9R%=1.0
10 ' ' '
10° 10° 10* 10°

Number of nodes

|

|

I (a) arXiv N(t)
|

McGlohon, Faloutsos ICWSM 2008 1-45
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 Densification Power Law

U.S. Patents, citing each
other

10%;

E(t) 10"}

1999

1.66

1975 *

+ Edges
—=0.0002 x "% R?=0.99

McGlohon, Faloutsos ICWSM 2008
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Number of nodes

(b) Patents
N(t)
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 Densification Power Law

Autonomous Systems

104.4 i

E(t){gm 10"}

2 104.2_

1.18

Number

104.1 |
- Edges
—=0.87 x" " R%=1.00
10345 103.6 103.7 103.8

Number of nodes

(¢) Autonomous Systems

N(t)

McGlohon, Faloutsos ICWSM 2008 1- 47
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 Densification Power Law

ArXiv: authors & papers

10%¢

E(t) 8 10°}
1 1.15

=}
10°}

Number of edg

* Edges

—=0.4255 x""° R?=1.0

2
10 '
10° 10° 10" 10°
Number of nodes

(d) Affiliation network
N(t)

McGlohon, Faloutsos ICWSM 2008 1- 48



‘g Part 1 Outline

e Introduction to networks

e Patterns
— Diameter: “small world effect”
- Degree distribution: power law

- Evolution over time: Shrinking diameter,

I - Connected components: giant CC
I Densification power law

McGlohon, Faloutsos ICWSM 2008 1- 49
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Another big question

c_"

I e Q: How can we generate realistic networks?

McGlohon, Faloutsos ICWSM 2008 1- 50
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Another big question

¢ Q: How can we generate realistic networks?

e A: Answering this question fully would require
another tutorial. ©

e Some models are preferential attachment

aI ), “winners don’t take all” (Pennock et. al.),
Kronecker multiplication (Leskovec et. al.).

McGlohon, Faloutsos ICWSM 2008

|
|
|
I (Barabasi et. al.), copying model (Kleinberg et.
|
|
|
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