
High-Precision Web Extraction Using Site Knowledge

Meghana Kshirsagar, Rajeev Rastogi, Sandeepkumar Satpal, Srinivasan H Sengamedu, Venu Satuluri

Yahoo! Labs, Bangalore, India

Abstract

In this paper, we study the problem of extracting
structured records from semi-structured Web pages.
Existing Web information extraction techniques like
wrapper induction require a large amount of editorial
effort for annotating pages. Other schemes based on
Conditional Random Fields (CRFs) suffer from pre-
cision loss due to variable site structures and abun-
dance of noise in Web pages. In this paper, we propose
novel techniques that exploit site knowledge for high-
precision extraction with very few training examples.
We leverage site knowledge in an unsupervised manner
in two ways. First, we use static repeating text in the
pages of a Web site to segment long noisy Web page se-
quences into short segments with little noise. Then, af-
ter labeling the segments using a generic classification
technique like CRFs, we exploit inter-page structure
similarity along with attribute uniqueness constraints
and proximity relationships to correct erroneous la-
bels. Applied together, our unsupervised schemes ex-
ploiting site knowledge achieve 5 times higher accu-
racy compared to traditional CRF-based approaches
for real-world restaurant pages.

1 Introduction

In this paper, we study the problem of extracting
structured records from semi-structured Web pages be-
longing to thousands of Web sites. As an exam-
ple, consider the page shown in Figure 1 for restau-
rant “Chimichurri Grill” from the aggregator Web site
www.yelp.com. The page contains a wealth of infor-
mation including details like the restaurant name, cat-
egory, address, phone number, hours of operation, user
reviews, etc. We are looking to extract this informa-
tion from such detail pages, and store the extracted
data for each page as attributes of a record as shown
below.

Name Category Address Phone · · ·

Chimichurri Argentine 606 9th Ave (212) · · ·

Grill Steakhouses NY 10036 586-8655

21 Club American 21 West 52nd St (212) · · ·

NY 10019 582-7200

A significant fraction of pages belong to Web sites
that use automated scripts to dynamically populate

International Conference on Management of Data
COMAD 2010, Nagpur, India, December 8–10, 2010
c©Computer Society of India, 2010

Figure 1: Example restaurant detail page.

pages from a back-end DBMS. These sites have thou-
sands or even millions of Web pages with fixed tem-
plates and very similar structure. Examples of such
sites include retailer Web sites like www.amazon.com,
aggregator Web sites like www.yelp.com, news sites
like www.cnn.com, video sites like www.youtube.com,
and so on. Our experimental study on a crawled repos-
itory of 2 billion Web pages shows that over 30% of
pages occur in clusters of size ≥ 100 with pages in each
cluster sharing a common template. Thus, template-
based pages constitute a sizeable portion of the Web,
and we focus on extracting records from such pages in
this paper.

1.1 Our Approach

As observed above, existing Web extraction methods
either require large numbers of training examples or
suffer from low precision. In this paper, we propose a
new Web extraction approach that exploits site knowl-
edge to achieve high precision while requiring only a
few Web pages to be annotated by humans.

In our approach, we construct the training set by se-
lecting sample pages from a few initial Web sites and
having editors assign labels to attribute text in the
sample pages. For each site, we learn wrappers from
the samples and use them to label attribute values in
the remaining Web pages of each of the few initially
chosen Web sites. Thus, constructing the training set
requires only a small number of sample pages belong-
ing to a few Web sites to be annotated by humans,
and so our approach incurs low overhead.

Next, we build CRF models from the training set,
but augment our CRF-based extraction with novel
pre- and post- processing steps that exploit site knowl-

edge to boost prediction accuracy. Our pre-processing
step identifies static repeating text across the pages
of a Web site which we have found to be abundant
in most Web pages. For instance, in Figure 1, the
text strings “Categories:”, “Nearest Transit:”, “Price
Range:”, “Send to Friend”, “Write a Review”, etc.
are all examples of static text. We exploit this static
text in two ways. First, this static text is typically
noise, and so it can be filtered out when extracting
attribute values. Second, attribute values very rarely
span across static text and so we can use the static text
to segment Web pages. Thus, our pre-processing step
creates short sequences with little noise from longer
Web page sequences with lots of noise. This is then
input to our CRF learning and labeling algorithms,
thus boosting their accuracy.

For each new Web site, we use our CRF models to
label the page segments from the site. Since the new
Web site may be different from previous sites in terms
of structure and content, many Web page elements
may be assigned wrong attribute labels. We correct
these erroneous labels in our post-processing step that
exploits intra-page and inter-page constraints.

• Intra-page constraints. Frequently, attributes in a
Web page satisfy uniqueness constraints and proxim-
ity relationships. For instance, in the restaurant Web
pages in Figures 1, attributes like name, category, ad-
dress, phone number, hours of operation, etc. have a
single contiguous value, and further these attributes
tend to appear in close proximity to each other. Thus,
if there are multiple occurrences of an attribute label
in a Web page, we can improve the accuracy by select-
ing the one that is closest to the other attributes.

• Inter-page constraints. As mentioned earlier, pages
belonging to many of the popular Web sites are script-
generated, and thus have fixed templates. As a result,
we can exploit the structural similarity between pages
of a Web site to adjust label values in similar locations
(across the Web pages) to the majority label. The in-
tuition here is that our CRF models will assign correct
labels in a majority of cases, and thus applying a “wis-
dom of crowds” approach in such a scenario will help
to correct the wrong labels (which in most likelihood
will constitute a minority).

Note that existing machine learning techniques like
CRFs cannot easily capture the above kinds of con-
straints (see Section 2 for a detailed discussion). Also,
observe that the constraints typically hold at a coarser
page granularity for detail pages. For list pages con-
taining multiple data records, the same constraints
hold at a finer record granularity. So for simplicity, we
will only consider extraction from detail pages in this
paper. And finally, we would like to point out that
our proposed framework can be used in conjunction
with other classification techniques as well in addition
to CRFs (e.g., SVMs).

1.2 Our Contributions

Our main contributions can be summarized as follows.
(1) We present an end-to-end system design for

high-precision Web information extraction using site
knowledge. Our system requires only pages from a few
initial Web sites to be annotated by humans. Extrac-
tion from subsequent sites is completely automated
and does not require additional manual annotations;
thus, our approach incurs low editorial overhead.

(2) We devise unsupervised pre-processing schemes
to filter out noise and segment Web pages into shorter
sequences using static repeating text across the pages
of a Web site.

(3) We develop unsupervised methods for post-
processing the segment labels assigned by any generic
classifier (e.g., CRFs). Our scheme boosts accuracy by
enforcing uniqueness constraints and exploiting prox-
imity relationships among attributes to resolve mul-
tiple occurrences in a Web page. Unfortunately, the
problem of selecting attribute labels that are closest
to each other is NP-hard, and so we use a heuristic
for attribute selection. Our scheme also exploits the
structural similarity of pages to fix incorrect label val-
ues. To deal with structural variations among pages
(e.g., due to missing attribute values), it employs the
idea of edit distance to align labels across pages, and
sets each label to the majority label for the location.

(4) We demonstrate the efficacy of our approach us-
ing CRFs as the underlying classifier. We conduct an
extensive experimental study with real-life restaurant
pages to compare the performance of our techniques
with a baseline CRF method. Our results indicate
that our pre-processing schemes improve accuracy by
a factor of 4 compared to CRFs, and with the post-
processing step included as well, we get a further ac-
curacy gain of 40%.

The remainder of the paper is organized as follows.
In Section 2, we survey related work on Web infor-
mation extraction. We formally define our extraction
problem in Section 3. We describe details of our ex-
traction algorithm in Section 4. In Section 5, we
present the results of our experimental study. Finally,
we offer concluding remarks in Section 6.

2 Related Work

Existing Web information extraction techniques can
be classified into two categories: (1) Structure-based
techniques that rely only on the layout of pages and
the HTML tag structure to extract data, and (2)
Content-based techniques that also exploit the content
of HTML elements in the page (in addition to the tag
structure).

Early proposals for extracting data from Web pages
were all structure-based. Wrapper induction [8, 10],
one of the first approaches, relies on humans to an-
notate a few example pages from each Web site.

Wrapper-based solutions, however, cannot scale to
tens of thousands of sites with different templates be-
cause manually labeling pages from so many sites can
be labor intensive, time consuming, and expensive.

To alleviate the above problem with wrappers,
[6, 2, 13] propose unsupervised techniques for extract-
ing data from Web pages without manually labeled
examples. [6, 2] automatically learn the common Web
page template (containing optional and repeated el-
ement occurrences) for a site by analyzing multiple
pages of the site. Zhang and Liu [13] present a two-
step approach called DEPTA for automatically finding
several similar structured data records in a single list
Web page.

In contrast to the above approaches which primar-
ily leverage site-specific structural cues, there is also a
large body of literature on sequential models which ex-
ploit content cues in a site-independent manner. Zhu
et al. [15] propose a content-based technique that re-
lies on a graphical model called Hierarchical Condi-
tional Random Field (HCRF) to assign (attribute) la-
bels to (leaf) nodes of the HTML tree corresponding
to a Web page. A drawback of CRFs with complex
graph structures like hierarchies [15] or grids [14] is
that they have many more parameters that need to be
trained compared to linear-chain CRFs. The situation
is further exacerbated by the fact that Web pages con-
tain plenty of noise, and have diverse structures that
can vary significantly from one site to the next. As a
result, HCRFs can have low precision and our experi-
mental results in Section 5 corroborate this. Further-
more, HCRFs do not incorporate constraints related
to attribute uniqueness and page template similarity
when assigning labels. Thus, combining our schemes
with HCRFs can help to improve their extraction ac-
curacy.

[4, 1, 3] use machine learning techniques like Hid-
den Markov Models (HMMs) and CRFs for automati-
cally segmenting unformatted text such as addresses
or bibliography items into structured records. [5]
presents the Turbo Syncer framework for segment-
ing data records contained in multi-record Web pages
which is very similar to the text segmentation problem.
However, the schemes in these papers are developed for
short similar structured text strings containing little or
no noise. Consequently, they are unlikely to work well
for much longer and noisy Web pages from a multitude
of sites with diverse structure.

There is very little work in the research literature
on label assignment in the presence of constraints. [11]
proposes a novel inference procedure for CRF models
based on integer linear programming (ILP) that allows
certain constraints like uniqueness, existential, etc. to
be enforced when computing the label sequence with
the highest probability. While this is an interesting
research direction, an ILP-based inference procedure
has two drawbacks. First, it has exponential complex-

ity and so may be impractical, from a computational
perspective, for longer Web page sequences. Second,
while ILPs can capture uniqueness constraints, it is
unclear if they are expressive enough to capture intra-
page proximity and inter-page layout similarity con-
straints that arise in a Web data extraction setting.
Recently Markov Logic Networks (MLNs) [12] have
been used for information extraction in the presence
of constraints expressed as first-order formulas. How-
ever, while MLNs have greater expressive power, this
comes at the expense of significantly higher computa-
tional overhead (due to the large number of groundings
of the first-order formulas).

To the best of our knowledge, ours is the first work
to extract records from noisy pages of large numbers of
Web sites while requiring only a small sample of pages
from a few initial sites to be annotated. We achieve
high-precision extractions from new Web sites (with-
out further site-specific annotations) through novel
techniques that segment Web pages, and enforce at-
tribute uniqueness, proximity, and site-level layout
similarity constraints.

3 System Model

We consider the problem of extracting attribute val-
ues from Web sites belonging to a single vertical, e.g.,
restaurants. We will use W to denote the set of Web
sites belonging to the vertical of interest, and we will
denote the attributes for the vertical by A1, . . . , Am.
Each Web site W ∈ W consists of a set of similar
structured1 detail pages from each of which we extract
a single record. It is important to note here that the
pages in a Web site have similar but not identical struc-
ture. The structural variations between pages arise
primarily due to missing attribute values. In addition
to attribute values, Web pages contain plenty of noise
which we denote using the special attribute A0.

We model each Web page as a sequence of words
obtained as a result of concatenating the text in the
leaf nodes of the page’s DOM tree (in the order in
which they appear in the tree). When convenient, we
will consider an alternate representation of a page as a
sequence of leaf nodes from which the word sequence
is derived. Each node has an associated XPath ex-
pression (without position information) that captures
the location of the node in the page. Each node also
has a unique identifier equal to the (text, XPath) pair
for the node – this id is unique within the detail page
containing the node2.

In most pages, the text contained in a node is part of
a single attribute value; thus, all words of a node have
the same attribute label. We will denote the label for

1In reality, for certain large Web sites like www.amazon.com,
there may be many different scripts that generate pages with
different structures. In such a scenario, we treat each cluster of
pages with similar structure as a separate Web site.

2If there are multiple nodes with identical ids, then we can
ensure uniqueness by numbering them.

node n by lbl(n). Furthermore, an attribute value may
not be restricted to a single node, but rather may span
multiple (consecutive) nodes. For instance, consider
the address attribute. It can be formatted differently
across Web sites – either as one monolithic node that
includes street name, city, zip, etc. or a different one
in which street name, city, zip, etc. are split across
different nodes.

Example 3.1 Consider the following (simplified)
HTML code fragment for a portion of the page in Fig-
ure 1.

<body>
<p> Yelp </p>
<h1> Chimichurri Grill </h1>
<p> Categories: Argentine,
Steakhouses </p>
<div> 606 9th Ave
 NY 10036
 </div>
 (212) 586-8655
</body>

The page is a sequence of 7 (DOM tree leaf) nodes
with text, XPaths, and labels as shown below.

Node Text XPath Label

n1 Yelp /body/p Noise
n2 Chimichurri Grill /body/h1 Name
n3 Categories: /body/p/strong Noise
n4 Argentine, Steakhouses /body/p Category
n5 606 9th Ave /body/div Address
n6 NY 10036 /body/div Address
n7 (212) 586-8655 /body/span Phone

Nodes n1, n3, and n5 have ids (“Yelp”, /body/p),
(“Categories:”, /body/ p/strong), and (“606 9th
Ave”, /body/div), respectively. And finally, the
page contains the following word sequence: “Yelp
Chimichurri Grill Categories: Argentine, Steakhouses
606 9th Ave NY 10036 (212) 586-8655”. �

The input to our Web extraction system is a small
subset of training Web sites Wt ⊆ W . Each node of a
page belonging to a Web site in Wt has an associated
attribute label. The node labels are obtained using
wrappers learnt from a small sample of human anno-
tated pages. These labeled page sequences belonging
to sites in Wt serve as the input training data for
our extraction algorithms. Our Web information
extraction problem can be stated as follows.

Web information extraction problem: Given a
set of labeled Web sites Wt ⊆ W , for a new Web site
Ŵ ∈ W − Wt, assign attribute labels A0, . . . , Am to
nodes of Web page sequences in Ŵ . �

4 Information Extraction Algorithm

4.1 Overview

Our extraction system employs linear-chain CRFs [9]
to label attribute occurrences in Web pages. A linear-
chain CRF models the conditional probability distri-
bution P (l|w), where w : 〈w1w2 · · ·wT 〉 is a sequence
of words and l : 〈l1l2 · · · lT 〉 is the corresponding label
sequence. The conditional probability distribution is

Figure 2: Key steps of training and labeling phases.

given by,

P (l|w) =
1

Z(w)
exp(

T∑

t=1

K∑

k=1

λkfk(lt−1, lt,w, t))

where f1, f2, . . . , fK are feature functions, λk is the
weight parameter for feature fk, and Z(w) is the nor-
malization factor. An example feature function is
fk(lt−1, lt,w, t) = 1 if lt−1 = Address, lt = Address
and wt ∈ 5digitNumber. It fires if the previous and
current words are both labeled Address, and the cur-
rent word is a 5-digit number (e.g., zip code). Dur-
ing training, the parameters λk of the CRF are set
to maximize the conditional likelihood of the training
set {(wi, li)}. Then, for an arbitrary input sequence
w, inference of the label sequence l with the highest
probability is efficiently carried out using the Viterbi
algorithm. Further details of CRF training and infer-
ence algorithms can be found in [9].

Our extraction algorithm has two phases: the train-
ing phase and the labeling phase. The training phase
uses the training data from sites in Wt to train a linear-
chain CRF model, while the labeling phase assigns at-
tribute labels to the pages of Ŵ . Figure 2 depicts the
key steps of both phases. As can be seen from the fig-
ure, both phases perform a pre-processing step where
input page sequences are split into short sequences. In
the training phase, the labeled page segments are used
to train a CRF model. This model is then employed in
the labeling phase to assign attribute labels to individ-
ual nodes in the page segments of Ŵ . Since many of
these assigned labels may be incorrect, we perform a
final post-processing step in the labeling phase where
we fix some of the incorrect labels.

In the following subsections, we describe the two
phases of our extraction system in more detail. But
first, we describe the segmentation step that is com-
mon to both phases.

4.2 Segmenting Web Pages

Web pages belonging to a site typically contain a fair
amount of text that repeats across the pages of the
site. We leverage this static text to segment Web pages

Figure 3: Example page segments.

from a site W by performing the following two steps.

1. Identifying static nodes. We say that a node n in a
page p (of W) is static if a significant fraction α of
pages in W contain nodes with the same id (that is,
text and XPath) as n. We can detect static nodes by
storing all the nodes in a hash table indexed by their
ids. Let N be a set of nodes with the same id in a
hash bucket. We mark the nodes in N as static if they
occur in at least α fraction of pages in W . Empirically,
we have found that a good setting for α is 0.8.

2. Segmenting pages. Consider a page p in W . We
partition p into segments using static nodes, and treat
each node sequence between any two consecutive static
nodes as a separate segment. More formally, suppose
that nj , nj+1, . . . , nq is a subsequence of p such that
nj and nq are static nodes, and nj+1, . . . , nq−1 are not.
Then nj+1, . . . , nq−1 is a segment with id equal to node
nj ’s id. Thus, each segment s has an id that is equal
to the id of the static node preceding s in p.

Observe that there may be multiple segments with
the same id across the pages of a Web site. How-
ever, there is at most one segment with a fixed id
e per page. Furthermore, attributes that satisfy the
uniqueness constraint (e.g., restaurant name, address)
lie entirely within a single segment although they may
span one or more consecutive nodes within the seg-
ment. On the other hand, attributes with multiple
occurrences like user reviews (or noise) may span mul-
tiple segments. Finally, due to page structure similar-
ity, each attribute occurs in segments with the same
id(s) across the pages.

In the page in Example 3.1, nodes n1 and n3 with
text “Yelp” and “Categories:” are static nodes. These
partition the page into two segments s1 = n2 and
s2 = n4 · n5 · n6 · n7 with ids (“Yelp”, /body/p) and
(“Categories:”, /body/p/strong), respectively. This is
pictorially depicted in Figure 3. Observe that the word
sequences in s1 and s2 are “Chimichurri Grill” and
“Argentine, Steakhouses 606 9th Ave NY 10036 (212)
586-8655”, respectively.

Training CRFs and labeling using segments instead
of full page sequences leads to higher accuracy. This is
because segmentation filters out static nodes that are
essentially noise. It also ensures that attribute occur-
rence patterns of the training Web sites is not reflected
in the CRF model. This leads to more accurate label-
ing because the structure of the new Web site Ŵ can
be very different from the training set. And finally,
labeling over segments ensures that errors in assigning
labels in one segment do not propagate to other seg-
ments. As we will see later, segments are also useful

for fixing incorrect attribute labels since we enforce
uniqueness, proximity and structural similarity con-
straints at a segment level.

Note that in addition to static nodes, we can also
use static repeating text like “Price:”, “Address:”,
“Phone:”, etc. that occurs in nodes with identical
XPaths to segment pages. While the static text iden-
tification algorithm in this section is similar to the one
presented in [7], there are some basic differences be-
tween the two works. The primary goal in [7] is to
detect static text at the coarsest-possible granularity
(e.g., navigation subpages) so that it can be eliminated
from further processing like indexing. In contrast, our
use of static text to segment Web pages is novel, and
requires us to also detect fine-grained static content
like “Categories:” in Example 3.1.

4.3 Training CRF Models

Our goal in the training phase is to learn CRF model
M . We segment the labeled pages in the Web sites
Wt, and use the labeled segments as our training data.
Each segment is treated as a separate sequence of
words wi, and each word is assigned its node’s at-
tribute label to yield the label sequence li. In our
experiments in Section 5, we found that using nodes
(instead of segments) as training instances to learn the
CRF Model M also yielded good results. In our CRF
models, we mainly use features based on node con-
tent since these are robust across sites. Example fea-
tures include the appearance of a word from the train-
ing set lexicon, the occurrence of regex patterns like
AllCapsWord or 5digitNumber, number of words in
the node text, etc. We describe our CRF features in
more detail in Section 5.

4.4 Labeling Nodes from Web Site Ŵ

Our goal in the labeling phase is to assign attribute
labels to nodes that occur in the pages of a new Web
site Ŵ . Algorithm 1 contains the description of our
procedure for labeling the pages of Ŵ . The algorithm
starts with segmenting the pages and labeling words in
the individual segments using the trained CRF model
M . For the word sequence in each segment, the la-
bel sequence with the highest probability is computed
using the Viterbi algorithm as described in [9]. (In
our experiments in Section 5, we were able to obtain
good results even by labeling words in the individual
nodes.) Since all words within a segment node belong
to the same attribute, we choose the majority label as
the label for the node. This helps to fix some of the
wrong word labels at a node level.

Now, although a majority of the nodes will be la-
beled correctly by M , there may still be a sizeable
number of nodes with incorrect labels. For certain at-
tributes like Address, we found the error rates to be as
high as 75% in our experiments. Our approach is to

Algorithm 1 Label Pages(Ŵ , M)

Input: Web site to be labeled Ŵ , CRF Model M ;
Output: Labeled page sequences from Ŵ ;

Segment page sequences in Web site Ŵ using static
nodes;
Let S denote the set of page segments;
Label static nodes in pages of Ŵ as Noise;
Use CRF model M to assign attribute labels to
words in each segment in S;
for each segment node n do

Set label to majority label for words in n;
end for
S′ = Select Segment(S);
for each segment id e do

Let Se denote the segments with id e in S′;
S′

e = Correct Labels(Se);
for each segment s ∈ S′

e do

Let p be the page in Ŵ that contains s;
for each node n ∈ s do

Set the label for node n in p equal to the label
for node n is s;

end for
end for

end for
return Ŵ ;

exploit attribute uniqueness constraints, proximity re-
lationships among attributes, and the structural simi-
larity of pages to correct erroneous labels. For simplic-
ity, we will assume here that all non-noise attributes
have a uniqueness constraint.

Within a page, attribute values are contiguous, and
thus do not span segments. As a result, each attribute
occurs within a single segment. Further, since pages
in Ŵ have similar structure, each attribute occurs in
segments with the same id across the pages. Proce-
dure Select Segment identifies the single segment id
for each attribute, and converts the occurrences of the
attribute label outside the segment id to noise. Within
segments with a specific id identified for each attribute,
there may still be errors involving the attribute label.
These are corrected by Procedure Correct Labels us-
ing an edit distance based scheme that exploits page
structure similarity while allowing for minor structural
variations.

Example 4.1 Consider the pages p1, p2 and p3 shown
in Figure 4 from a single Web site. Each page has
3 static nodes with text “Yelp”, “Categories:”, and
“Nearest Transit:”, and 3 segments with ids e1, e2 and
e3. The nodes for each segment are enclosed within
ellipses and are annotated with the labels assigned to
them by CRF model M . (Note that the Category at-
tribute is missing from the e2 segment of page p2.)
From the figure, it follows that the correct values for
attribute Address occur in segments with id e2. How-

Algorithm 2 Select Segment(S)

Input: Set of segments S;
Output: Segments S with a single segment id se-
lected for each attribute;

for each segment id e do
attr(e) = {A : A occurs in more than β · sup(e)
segments with id e in S};

end for
for each segment id e do

we =
∑

f dist(e, f) · |attr(f)|;
end for
for each (non-noise) attribute A do

seg(A) = segment id e with minimum weight we

whose attr set contains A;
for each segment s in S with id e 6= seg(A) do

Set attribute labels for all nodes in s with label
A to Noise;

end for
end for
return S;

ever, two Address nodes in the e2 segment of page p1

are incorrectly labeled as Noise. Furthermore, the two
nodes in the e3 segment of pages p2 and p3 are incor-
rectly labeled as Address. Procedure Select Segment
identifies e2 as the single segment id for Address and
converts the two Address labels in the e3 segments to
Noise. Procedure Correct Labels then corrects the two
Noise labels in the e2 segment of page p1 to Address.
�

In the following subsections, we describe the proce-
dures Select Segment and Correct Labels in more de-
tail.

4.4.1 Selecting Segments for Attributes

Procedure Select Segment selects a single segment
id for each (non-noise) attribute A, and stores it in
seg(A). It starts by computing for every segment id
e, the attributes for which e is a candidate, and stores
these attributes in attr(e). Here, we exploit the fact
that a majority of the labels assigned by CRF model
M will be correct. Thus, for e to be a candidate for
an attribute A, A must occur frequently enough in
segments with id e. For a segment id e, let sup(e)
denote the number of segments with id e in S. Then,
we include A in attr(e) if A occurs in more than β ·
sup(e) segments with id e, where β ≈ 0.5.

If an attribute A occurs in the attr set of only one
segment id e, then the segment id seg(A) containing
attribute A is unique and equal to e. However, if A
occurs in the attr set of more than one segment id,
then there may be multiple candidate segment ids for
A, and we want to select one from among them. In or-
der to select the segment id seg(A) for attribute A, we
make use of the observation that attributes typically

Figure 4: Example restaurant pages with labels.

appear in close proximity to each other within Web
pages. For a pair of segment ids e, f , let dist(e, f) de-
note the average distance between segment pairs with
ids e and f over all pages. Here, we define the distance
between a pair of segments as the number of interme-
diate segments between the segments. Alternately, we
can also define the distance between a pair of segments
to be the number of hops between the start nodes of
the segments in the DOM tree of the page.

We can thus state the segment id selection problem
as follows.

Segment id selection problem: Given a set of
segment ids, a list of attributes attr(e) for each seg-
ment id e, and a distance function dist(e, f) between
segment id pairs, select a single segment id seg(A) for
each attribute A such that (1) A ∈ attr(seg(A)), and
(2)

∑
A,A′ dist(seg(A), seg(A′)) is minimum. �

Above, the first condition ensures that seg(A) is
a candidate for attribute A while the second ensures
that the segment ids for attributes appear close to
each other. Unfortunately, selecting segment ids for
attributes so that the total distance between all seg-
ment id pairs is minimized is an NP-hard problem. So
instead, we use a heuristic to select segment ids for
attributes.

Our heuristic assigns a weight we to each segment
id e based on its distance to other segment ids that
are candidates for attributes. Intuitively, segment ids
that have larger attr sets are more likely to be cho-
sen as the segment id for an attribute. Thus, when
computing we for a segment id e, we weigh the dis-
tance to each segment id by the number of attributes
that it is a candidate for. We then select seg(A) to be
the segment id that is a candidate for attribute A and
whose weight is the minimum. The intuition here is
that when there are multiple competing segments that
contain an attribute label, we give preference to the
segment that is closest to other segments that contain
attribute labels.

Finally, for each attribute A, once seg(A) is as-
signed, we convert all labels A in segments with id
not equal to seg(A) to Noise. Thus, at the end of this
step, only segments with id seg(A) (at most one per

page) contain nodes labeled A.

Example 4.2 Consider the pages p1, p2 and p3 with
node labels as shown in Figure 4. The attr sets for
segment ids e1, e2 and e3 are as follows: attr(e1) =
{Name}, attr(e2) = {Category, Address, Phone}, and
attr(e3) = {Address}. Thus, Address occurs in the
attr sets of both e2 and e3, and we want to select one
of them. Note that we2 = dist(e2, e1) · |attr(e1)| +
dist(e2, e3) · |attr(e3)| = 1 · 1 + 1 · 1 = 2. Similarly,
since dist(e3, e1) = 2 and |attr(e2)| = 3, we can show
that we3 = 5. Thus, Procedure Select Segment selects
e2 as the segment id for Address, and sets the Address
labels in the e3 segment of pages p2 and p3 to Noise.
�

4.4.2 Correcting Attribute Labels in Segment

After selecting segments for each attribute, while we
expect that the majority of segment nodes will be la-
beled correctly, some node labels may still be incorrect.
In this subsection, we focus on correcting the labels
for each attribute A in segments with id seg(A). Our
scheme exploits the fact that Web pages within a site
have similar structure while being accommodative of
small structural variations between pages due to miss-
ing attributes.

Now, a straightforward solution here is to number
nodes from the start in each segment. Then, we can
simply change the attribute label for all nodes in posi-
tion i (of segments with identical ids) to the majority
label in that position. The problem with this simple
solution is that due to missing attributes, nodes in the
same position i across the segments may contain val-
ues belonging to multiple different attributes. Hence,
assigning the majority label to these values can cause
nodes to be incorrectly labeled. For example, in Fig-
ure 4, due to the missing Category attribute in page p2,
our simple solution would incorrectly assign the label
Category to the Address node with text “166 1st Ave”.
Similarly, grouping nodes with identical XPaths, and
assigning the majority label to all nodes in a group
may not work either. This is because different at-
tributes may have identical XPaths, e.g., if they are
elements of a list.
Intuition. A key observation we make here is that

even though attributes may appear at variable node
positions within a segment, since pages share a com-
mon template, the variations across segments with the
same id will be minor, and primarily due to (1) missing
or additional nodes in certain segments, and (2) incor-
rectly labeled nodes in some segments. Essentially, the
edit distance between segments (restricted to node la-
bels and XPaths) with the same id will in general be
small. This allows us to develop an edit distance based
algorithm for correcting the label assignments to nodes
of segments in Se with id e.

Let segment s = n1 · · ·nu with attribute la-
bels l1, . . . , lu and XPaths x1, . . . , xu for the nodes
n1, . . . , nu. We adjust the labels in s by computing
a minimal sequence of edit operations (on nodes of s)
required to ensure that s matches every other segment
s′ ∈ Se, and then selecting the label for each node
based on the majority operation. The edit operations
on s that we consider are (1) del(ni) – delete node ni

from s, (2) ins(n′

i, l
′

i, x
′

i) – insert a new node n′

i with
label l′i and XPath x′

i into s, and (3) rep(ni, li, l
′

i) –
replace the label li of node ni in s with l′i. Informally,
we say that segments s and s′ match if their label and
XPath sequences match. Now, the ins/del operations
align the corresponding node pairs in s and s′ - these
are essentially node pairs with identical XPaths and
belonging to the same attribute. On the other hand,
rep detects and resolves label conflicts between the
corresponding node pairs. Note that we allow rep to
only replace node labels but not XPaths because la-
bels may have errors that need to be corrected while
node XPaths are fixed.

For a segment s, let OS denote the set of minimum
edit operation sequences for s to match every s′ ∈ Se

– here OS contains one operation sequence for each s′.
Then, for a node ni in s, if the majority operation in
OS is rep(ni, li, l

′

i), then this means that a majority of
the nodes corresponding to ni in the other segments
in Se have label l′i. Since most of these node labels are
correct, node ni’s label needs to be changed from li
to l′i. Similarly, if a majority of sequences in OS con-
tain no operation involving ni, then it implies that the
labels of most corresponding nodes in other segments
agree with ni’s label li, and so it must be correct and
should be left as is. Note that operation del(ni) ba-
sically indicates that the corresponding node for ni is
absent in s′, and hence the attribute for ni is missing
from s′. Furthermore, it is easy to see that there can-
not be an ins operation in OS involving a node ni in
s. So we can safely ignore del and ins operations when
computing the majority operation for a node ni.

Min Edit Operations. Let s = n1 · · ·nu (with labels
l1, . . . , lu and XPaths x1, . . . , xu) and s′ = n′

1 · · ·n
′

v

(with labels l′1, . . . , l
′

v and XPaths x′

1, . . . , x
′

v) be seg-
ments in Se. Segments s and s′ are said to match if
u = v, and for all 1 ≤ i ≤ u, li = l′i and xi = x′

i. Now,
suppose that s = n1 · t and s′ = n′

1 · t
′. Then, the mini-

mum number of edit operations min op num(s, s′) re-
quired so that s matches s′ can be computed recur-
sively, and is the minimum of the following 3 quanti-
ties:
1. min op num(t, t′) + c(n1, n

′

1), where c(n1, n
′

1) is
equal to

• 0 if l1 = l′1 and x1 = x′

1,
• 1 if l1 6= l′1 and x1 = x′

1, and
• ∞ if x1 6= x′

1.

2. min op num(s, t′) + 1.
3. min op num(t, s′) + 1.

The first choice above tries to match n1 with n′

1

and t with t′. If l1 and l′1 are already equal and so are
x1 and x′

1, then no operations are needed to match n1

and n′

1. However, if l1 6= l′1, then a single operation is
needed to replace l1 with l′1, and clearly, if x1 6= x′

1,
then n1 cannot be matched with n′

1. This is because
n1 and n′

1 cannot belong to the same attribute if their
XPaths are different. The second choice above corre-
sponds to inserting n′

1 with label l′1 and XPath x′

1 into
s, and the third choice corresponds to deleting n1 from
s.

Thus, the minimum sequence of edit operations
min op seq(s, s′) needed to match s with s′ can
also be computed recursively (in parallel with
min op num(s, s′) above), and essentially depends on
which of the above three choices leads to the min-
imum value for min op num(s, s′). If choice 1 has
the minimum value, then min op seq(s, s′) is equal to
o ·min op seq(t, t′) where operation o is null if l1 = l′1
and x1 = x′

1, and o = rep(n1, l1, l
′

1) if l1 6= l′1 and
x1 = x′

1. Else if choice 2 has the lowest value, then
min op seq(s, s′) = ins(n′

1, l
′

1, x
′

1) · min op seq(s, t′),
and finally if choice 3 has the smallest value, then
min op seq(s, s′) = del(n1)·min op seq(t, s′).
Procedure Description. For each segment s with id
e, Procedure Correct Labels first computes the mini-
mum sequence of edit operations between s and every
other segment s′ ∈ Se, and stores these in OS. For
each node n (with current label lbl(n)) in s, it com-
putes the new label based on the majority operation
as follows. It first calculates count(lbl(n)), the num-
ber of operation sequences in OS that contain zero del
or rep edit operations involving node n. This is es-
sentially the number of operation sequences in which
node n’s label is left unchanged. For a label l 6= lbl(n),
count(l) stores the number of operation sequences in
which node n’s label is replaced with label l. Then,
the new label for node n in s is set to the attribute
label l for which count(l) is maximum. (Note that we
break ties in favor of lbl(n) whenever possible, and ar-
bitrarily otherwise.) We also set the support sup(n) of
node n to be equal to this maximum value of count(l).

Finally, for each attribute A whose label appears in
segment s, from among maximal contiguous sequences
of nodes with label A, we select the sequence contain-
ing the node n with maximum support sup(n). We

Algorithm 3 Correct Labels(Se)

Input: Set of segments Se with id e;
Output: Segments Se with corrected labels;

for each segment s ∈ Se do
OS = {min op seq(s, s′) : s′ ∈ Se};
for each node n in segment s do

count(lbl(n)) = |{os : os ∈ OS ∧
os does not contain del or rep operation involving n}|;
for each attribute label l 6= lbl(n) do

count(l) = |{os : os ∈ OS ∧
os contains edit operation rep(n, lbl(n), l)}|;

end for
Set lbl(n) = argmaxl count(l);
Set sup(n) = maxl count(l);

end for
for each non-noise attribute A that appears in s
do

Select node n in s with maximum support
sup(n) from among nodes with label A;
for each node n′ 6= n in s with label A do

if n and n′ are separated by a node with label
different from A then

Set label for n′ to be equal to Noise;
end if

end for
end for

end for
return Se;

then update the labels of nodes with label A that
lie outside this sequence to Noise. (Another option
would be to output the maximal contiguous sequence
of nodes that are all labeled A and whose average sup-
port is maximum.)

Example 4.3 Consider the 3 pages in Figure 4. Let
s1, s2 and s3 be the segments with id e2 in the pages
p1, p2 and p3, respectively (for simplicity, we ignore the
Phone attribute in all three segments).

• s1 = n11 · n12 · n13 with node text “American”,
“460 Gw St”, and “NY 10013”;

• s2 = n21 · n22 with node text “166 1st Ave”, and
“NY 10009”;

• s3 = n31 · n32 · n33 with node text “Argentine,
Steakhouses”, “606 9th Ave”, and “NY 10036”;

Now consider segment s1. We have

• min op seq(s1, s1) = ǫ, the empty sequence,
• min op seq(s1, s2) = del(n11) ·

rep(n12, Noise, Address)·rep(n13, Noise, Address),
• min op seq(s1, s3) = rep(n12, Noise, Address) ·

rep(n13, Noise, Address).

Thus, for node n11, since count(Category) = 2 the
label stays as Category, and for nodes n12 and n13, the
labels are modified to Address since count(Address) =
2 for these nodes. �

5 Experimental Evaluation

We compare the accuracy of our attribute extraction
techniques that exploit site knowledge with baseline
linear-chain and hierarchical CRF methods on real-life
restaurant Web pages.

Datasets: We consider restaurant pages from
the following 5 real-world Web sites: www.
citysearch.com, www.frommers.com, www.nymag.
com, www.superpages.com, and www.yelp.com. The
dataset consists of a total of 455 pages. The num-
ber of pages from each of the above sites is 92, 71,
95, 100, and 97, respectively. In each page, we as-
sign labels to the following 5 attributes: Name (N),
Address (A), Phone number (P), Hours of op-
eration (H), and Description (D). Attribute labels
are obtained by first manually annotating one sample
page from each site, and then using wrappers to label
the remaining pages in each site. All words that do not
belong to any of the 5 above-mentioned attributes are
labeled as Noise. In our experiments, we use 50 pages
from one site as test data, and all the pages from the
remaining 4 sites as training data. This dataset is rep-
resentative of the Web scale extraction task because of
the following:

1. Restaurant Web sites are representative of the
general class of script-generated sites belonging
to Shopping, Blog, Video, and other verticals –
these contain a lot of static text and attribute
values which have strong “types” (price, date,
count, etc.). The former helps in page segmen-
tation and the latter helps in building good Node
CRFs. Hence the techniques and experimental re-
sults described in the paper should be applicable
across a broad range of verticals.

2. The order of attributes in the 5 sites is: NAPHD,
NHAPD, NAPDH, NPAH, and NAPH. Thus,
there is considerable variation in the attribute or-
dering across sites.

3. In a real-world setting, our proposed technique
will be used to automatically annotate a small
number (≈ 50) of pages of a new site. These
annotated pages will then be used to generate a
wrapper which can be used to extract efficiently
from the remaining (of the order of thousands of)
pages.

Extraction Methods: We compare the perfor-
mance of our techniques with that of a baseline linear-
chain CRF and a hierarchical CRF. To measure the
incremental improvement in accuracy that we get
due to each of our extraction steps, we also consider
successive schemes derived by adding pre- and post-
processing steps to the baseline.
• Baseline (CRF): Here, the linear-chain CRF model
is built on the word sequence formed from all the leaf
nodes in the DOM tree of the complete Web page.

• Node CRF (NODE): We train the linear-chain CRF
on word sequences for individual nodes in page seg-
ments rather than the word sequence for the entire
page. (Although we could also train on word sequences
for individual segments, we found that training at a
node granularity resulted in better performance.) We
include all nodes belonging to non-noise attributes in
the training set. In addition we randomly choose a
fraction of nodes labeled Noise. We found that includ-
ing all the noise nodes during training results in the
CRF labeling most of the nodes in the test pages as
Noise. In our experiments below, the fraction of noise
nodes used for training is 10%. We did not include
static nodes as part of the training or test data.
• Node CRF+Segment Selection (SS): In addition to
training on word sequences for nodes, this scheme uses
proximity constraints to identify the correct segment
for each attribute.
• Node CRF+Segment Selection+Edit Distance (ED):

This is our complete scheme described in Section 4
that also performs the final step in which edit distance
is used to correct the labels on wrongly labeled nodes.
CRF Features: In our CRFs, we only use features
based on the content of HTML elements in Web pages.
We do not use structure or presentation information
like font, color, etc. as CRF features since these are
not robust across sites. We use binary features that
fall into three categories:
• Lexicon features: Each word from the training set
constitutes a feature. We build a lexicon over the
words appearing in the training Web pages. If a word
in a page is present in the lexicon, then the correspond-
ing feature is set to 1.
• Regex features: Occurrences of certain patterns in the
content is captured by regex features. Some examples
of regex features are isAllCapsWord which fires if all
letters in a word are capitalized, 3digitNumber which
indicates the presence of at least one 3-digit number,
and dashBetweenDigits indicating the presence of a
‘-’ in between numbers. The total number of regex
features is 113.
• Node-level features: These features capture length
information for a node, and overlap of the node
text with the page title. Some examples include
propOfTitleCasewhich indicates what fraction of the
node text contains words that begin with a capital let-
ter, and overlapWithTitlewhich indicates the extent
of overlap of given text with the <title> tag of the
Web page containing that text. Real-valued features
are converted to multiple binary features through bin-
ning. The total number of these features is 74.

3The complete list of regex features is as fol-
lows: isAllCapsWord, hasTwoContinuousCaps, isDay,
1-2digitNumber, 3digitNumber, 4digitNumber, 5digitNumber,
>5digitNumber, dashBetweenDigits, isAlpha, and isNumber.

4The complete list is as follows: noOfWords>20,
noOfWords>50, noOfWords>100, propOfTitleCase<0.2,
propOfTitleCase>0.8, overlapWithPageTitle, and

Note that the node-level features described above
are the same for all the words in a node. We tried
various combinations of the regularization parameter
σ and normalization type (L1 or L2). We obtained
the best performance with L1 normalization and σ=5.
The CRF implementation we use is the CRFsuite
(http://www.chokkan.org/software/crfsuite/).

Evaluation Metrics: We use the standard preci-
sion, recall and F1 measures to evaluate the methods.
For each scheme, we average the above measures across
5 experiments - each experiment treats a single site as
the test site, and uses the pages from the remaining 4
sites as training data.

Experimental Results: Table 1 depicts the pre-
cision, recall and F1 numbers for the various schemes.
Observe that the baseline scheme CRF has the worst
performance. The reason for this is that the attribute
orders are different across sites, and the training pages
contain lots of noise which biases the CRF to label
most nodes as noise.

Below, we analyze the performance of each step of
our extraction method.
• NODE: As can be seen from Table 1, the NODE
scheme outperforms the baseline CRF scheme – this
is because of shorter sequences and less noise in the
training data. Furthermore, training at the granular-
ity of a node ensures that the CRF does not learn the
inter-attribute dependencies in the training data that
do not hold in the test data. Observe that the recall
of NODE is high for most of the attributes but the
precision is moderate to low across attributes. This
is because we only use content features, and node la-
beling is done without taking into account constraints
like attribute uniqueness. For example, many restau-
rant pages contain multiple instances of addresses of
which only one is the restaurant address. The NODE
scheme labels all instances as addresses leading to re-
duced precision. Also, note that the precision is higher
for single-node attributes like Name, Phone, and Hours
compared to multi-node attributes like Address and
Description because in the former case the training is
on entire attributes as opposed to parts of attributes
in the latter case.
• SS: Performing segment selection boosts the preci-
sion of all attributes. (On an average, each page is
split into 40 segments.) The minimum and maximum
increase in precision are 28% (for Name) and 150%
(for Address). This demonstrates the effectiveness of
uniqueness and proximity constraints to resolve mul-
tiple occurrences of an attribute in a page. Note that
for constraint satisfaction to be effective the recall of
the underlying CRF needs to be high since high recall
ensures that the correct segment is selected. This also
explains why SS performs poorly on Description since
the recall of the CRF on Description is low (40%) and
this leads to the wrong segment being selected.

prefixOverlapWithPageTitle.

• ED: Our ED scheme has the best overall perfor-
mance. It improves the recall of Hours by 11% by
fixing incorrectly labeled Hour nodes. The reason for
this is as follows: Hours is specified in different for-
mats in different pages of the same site - some with
AM/PM, some with only days, etc. When the CRF
wrongly labels an hours node as NOISE in a page, ED
corrects the label to Hours since Hours is the majority
label of the corresponding nodes in other pages. Hence
ED increases recall by exploiting cross-page regularity.

We next present the execution times of different
components on a 2.33GHz Intel Xeon machine. The
static node identification took 4.94 sec/site using 20
pages. Page segmentation time was 0.157 sec/page.
Node CRF Training took 19.8 sec to learn a model on
a dataset of 360 pages while Node CRF Labeling took
0.02 sec/page. The postprocessing steps of Segment
Selection and Label Correction took 2.09 sec and 17.1
sec each on a test set of 50 pages. From the above, it
can be seen that the attribute labeling (Segmentation
+ Labeling + Postprocessing) time for each new site
is around 25 sec, which is quite fast. Also, as men-
tioned earlier, we automatically label only a few (≈
50) pages of each new site and use wrappers learned
from the labeled pages for large-scale extraction.

Comparison with Hierarchical CRF
(HCRF): Our HCRF implementation is along
the lines described in [15]. We use the imple-
mentation of the vision-based page segmentation
(VIPS) technique from http://www.cs.uiuc.edu/
homes/dengcai2/VIPS/VIPS.html. VIPS provides
page layout features such as position, font, color
and size, and constructs the vision-tree for a Web
page. The cliques in the HCRF model graph are
the vertices, edges and triangles of the vision tree.
We have implemented HCRF on top of the GRMM
toolkit http://mallet.cs.umass.edu; the inference
algorithm used is junction trees.

We use only the element features as defined in [15]
and not the block features since all our experiments
are on detail pages (and not on list pages). The
features used are visual, lexicon, and regex features.
We have 5 visual features – row and column posi-
tions, area, font size, and weight. The lexical fea-
tures are based on text and link lexicons. The regex
features are: containsSpecialCharacter, initCaps,
containsTime, containsDay, n-digit-number (for
n=2, 3, 4, 5), and isAllCapsWord. Another addi-
tional feature used is overlapWithPageTitle. As be-
fore, real-valued features are converted to multiple bi-
nary features through binning. The total number of
features in our implementation is 1826.

The HCRF implementation using GRMM requires
a lot of memory (exceeding 3GB) and also takes a long
time to train. Hence we use only 25 pages per site in
the training sets in HCRF experiments. The test set is
the same as that used in the rest of the experiments.

Label CRF NODE SS ED

Prec.

Name 0.39 0.78 1 1
Phone 0.02 0.59 1 1

Address 0.01 0.24 0.8 0.81
Hours 0.22 0.67 1 1
Desc 0.22 0.37 0.42 0.42

Overall 0.17 0.53 0.84 0.84

Recall

Name 0.34 0.98 0.98 1
Phone 0.2 0.99 0.98 0.99

Address 0.16 0.88 0.82 0.83
Hours 0.36 0.89 0.89 1
Desc 0 0.67 0.25 0.25

Overall 0.21 0.88 0.78 0.81

F1

Name 0.36 0.85 0.99 1
Phone 0.04 0.69 0.99 0.99

Address 0.02 0.33 0.8 0.81
Hours 0.26 0.74 0.94 1
Desc 0.02 0.43 0.32 0.32

Overall 0.14 0.61 0.81 0.82

Table 1: Comparison of extraction methods.

The overall F1 score for HCRF is 0.262 while that
of our proposed technique, when trained on the same
training set of 25 pages per site, is 0.5274. This sup-
ports our argument that attribute ordering across sites
is not consistent and full-page CRFs are not likely to
perform well in cross-site labeling tasks.

6 Concluding Remarks

In this paper, we have proposed a new framework for
high-precision extraction using site knowledge to im-
prove the labelings of any underlying classifier. Site
knowledge is used in an unsupervised manner in two
different ways: (1) Analyzing multiple pages from a
site to discover static content for segmenting pages
from the site, and (2) Enforcing segment-level unique-
ness, proximity, and structure similarity constraints
on nodes labeled by the classifier. The primary re-
quirement on node classifiers is that they should have
high recall which is satisfied by our node CRFs. Thus
the framework combines the strengths of wrapper-like
techniques which leverage site-specific cues and site-
independent machine-learning techniques like CRFs
that exploit content features. We have demonstrated
the effectiveness of our approach on real-life restaurant
Web pages with average accuracy gains exceeding a
factor of 5.

In our work presented in this paper, site knowledge
is used in the pre- and post-processing steps. It will
be interesting to develop a unified framework which in-
tegrates constraint satisfaction more tightly with the
underlying classification technique. We intend to ex-
plore this as future work.

References

[1] E. Agichtein and V. Ganti. Mining reference ta-
bles for automatic text segmentation. In ACM
SIGKDD, 2004.

[2] A. Arasu and H. Garcia-Molina. Extracting struc-
tured data from web pages. In ACM SIGMOD,
2003.

[3] K. Bellare and A. McCallum. Learning extractors
from unlabeled text using relevant databases. In
AAAI Workshop, 2007.

[4] V. Borkar, K. Deshmukh, and S. Sarawagi. Au-
tomatic segmentation of text into structured
records. In ACM SIGMOD, 2001.

[5] S. Chuang, K. C. Chang, and C. Zhai. Context-
aware wrapping: Synchronized data extraction.
In VLDB, 2007.

[6] V. Crescenzi, G. Mecca, and P. Merialdo. Road-
runner: Towards automatic data extraction from
large web sites. In VLDB, 2001.

[7] D. Gibson, K. Punera, and A. Tomkins. The vol-
ume and evolution of web page templates. In
WWW, 2005.

[8] N. Kushmerick, D. S. Weld, and R. Doorenbos.
Wrapper induction for information extraction. In
IJCAI, 1997.

[9] J. Lafferty, A. McCallum, and F. Pereira. Con-
ditional random fields: Probabilistic models for
segmenting and labeling sequence data. In ICML,
2001.

[10] I. Muslea, S. Minton, and C. Knoblock. Hierar-
chical wrapper induction for semistructured infor-
mation sources. Autonomous Agents and Multi-
Agent Systems, 1(2), 2001.

[11] D. Roth and W. Yih. Integer linear programming
inference for conditional random fields. In ICML,
2005.

[12] J.-M. Yang, R. Cai, Y. Wang, J. Zhu, L. Zhang,
and W.-Y. Ma. Incorporating site-level knowledge
to extract structured data from web forums. In
WWW, 2009.

[13] Y. Zhai and B. Liu. Web data extraction based
on partial tree assignment. In WWW, 2005.

[14] J. Zhu, Z. Nie, J. Wen, B. Zhang, and W. Ma.
2D conditional random fields for web information
extraction. In ICML, 2005.

[15] J. Zhu, Z. Nie, J. Wen, B. Zhang, and W. Ma.
Simultaneous record detection and attribute la-
beling in web data extraction. In ACM SIGKDD,
2006.

