
Misha Khodak
3 December 2019

ARUBA: Efficient and Adaptive
Meta-Learning with Provable Guarantees

Based on joint work with:
•Nina Balcan, Ameet Talwalkar
• Jeff Li, Sebastian Caldas, Ameet Talwalkar

Demanding more from machine learning pipelines

Demanding more from machine learning pipelines

• learning deep models with limited data from many tasks

• sustained performance in changing environments

• fast adaptation to unseen distributions

• distributed training and inference
Source: Taboola Engineering

Demanding more from machine learning pipelines

• learning deep models with limited data from many tasks

• sustained performance in changing environments

• fast adaptation to unseen distributions

• distributed training and inference
Source: Taboola Engineering

Demanding more from machine learning pipelines

• learning deep models with limited data from many tasks

• sustained performance in changing environments

• fast adaptation to unseen distributions

• distributed training and inference
Source: Taboola Engineering

Demanding more from machine learning pipelines

• learning deep models with limited data from many tasks

• sustained performance in changing environments

• fast adaptation to unseen distributions

• distributed training and inference
Source: Taboola Engineering

Demanding more from machine learning pipelines

• learning deep models with limited data from many tasks [multi-task]

• sustained performance in changing environments [lifelong]

• fast adaptation to unseen distributions [transfer]

• distributed training and inference [federated]
Source: Taboola Engineering

• learning deep models with limited data from many tasks [multi-task]

• sustained performance in changing environments [lifelong]

• fast adaptation to unseen distributions [transfer]

• distributed training and inference [federated]

Demanding more from machine learning pipelines

Meta-learning:
a popular multi-task formulation of these objectives

Source: Taboola Engineering

• improves ML by “learning-to-learn” across tasks

• promising performance in a variety of fields

• fast-evolving and poorly understood methodology

Meta-learning:
a popular multi-task formulation of new objectives for ML

• improves ML by “learning-to-learn” across tasks

• promising performance in a variety of fields

• fast-evolving and poorly understood methodology

This talk:
meta-learning algorithms with provable guarantees.

Meta-learning:
a popular multi-task formulation of new objectives for ML

Standard ML: supervised prediction
Configurable

FunctionInput x ∈ 𝒳 Output y ∈ 𝒴

Standard ML: supervised prediction
Configurable

Function

fθ : 𝒳 ↦ 𝒴

Input x ∈ 𝒳 Output y ∈ 𝒴

“meta-learning is” “interesting”

Standard ML: supervised prediction
Configurable

Function

fθ : 𝒳 ↦ 𝒴

Goal: find θ such that fθ(x) = y for all (x, y) ∼ 𝒟

Input x ∈ 𝒳 Output y ∈ 𝒴

“meta-learning is” “interesting”

Standard ML: supervised prediction
Configurable

Function

fθ : 𝒳 ↦ 𝒴

Goal: find θ such that fθ(x) = y for all (x, y) ∼ 𝒟

Input x ∈ 𝒳 Output y ∈ 𝒴

“meta-learning is” “interesting”

How: use training data (x1, y1), …, (xm, ym) ∼ 𝒟

Standard ML: supervised prediction

fθ : 𝒳 ↦ 𝒴“meta-learning is” “interesting”

training data

Standard ML: stochastic gradient descent (SGD)

“meta-learning is” “banana”

training data
randomly initialize θ1 ∈ Θ

fθ1
: 𝒳 ↦ 𝒴

“meta-learning is” “banana”

training datapick learning rate η > 0
randomly initialize θ1 ∈ Θ

Standard ML: stochastic gradient descent (SGD)

fθ1
: 𝒳 ↦ 𝒴

“meta-learning is” “banana”

training datapick learning rate η > 0
for i = 1,…, m

sample (xi, yi)

fθ1
: 𝒳 ↦ 𝒴

randomly initialize θ1 ∈ Θ

Standard ML: stochastic gradient descent (SGD)

“meta-learning is” “wooden”

training datapick learning rate η > 0
for i = 1,…, m

sample (xi, yi)
θi+1 ← θi − η∇L(fθi

(xi), yi)

fθ100
: 𝒳 ↦ 𝒴

differentiable
loss function

randomly initialize θ1 ∈ Θ

Standard ML: stochastic gradient descent (SGD)

“meta-learning is” “boring”

pick learning rate η > 0
for i = 1,…, m

sample (xi, yi)
θi+1 ← θi − η∇L(fθi

(xi), yi)

fθ1E4
: 𝒳 ↦ 𝒴

randomly initialize θ1 ∈ Θ

Standard ML: stochastic gradient descent (SGD)

training data

differentiable
loss function

“meta-learning is” “fine”

training datapick learning rate η > 0
for i = 1,…, m

sample (xi, yi)
θi+1 ← θi − η∇L(fθi

(xi), yi)

fθ1E6
: 𝒳 ↦ 𝒴

differentiable
loss function

randomly initialize θ1 ∈ Θ

Standard ML: stochastic gradient descent (SGD)

“meta-learning is” “interesting”

training datapick learning rate η > 0
for i = 1,…, m

sample (xi, yi)
θi+1 ← θi − η∇L(fθi

(xi), yi)
return ̂θ ← θm+1

f ̂θ : 𝒳 ↦ 𝒴

randomly initialize θ1 ∈ Θ

Standard ML: stochastic gradient descent (SGD)

Meta-learning: many tasks, few examples

“meta-learning is” “interesting”fθ : 𝒳 ↦ 𝒴

fθ : 𝒳 ↦ 𝒴“meta-learning is” “interesting”

“meta-learning is” “great!”

Meta-learning: many tasks, few examples

fθ : 𝒳 ↦ 𝒴“meta-learning is” “interesting”

“meta-learning is” “great!”

“meta-learning is” “dope”

Meta-learning: many tasks, few examples

fθ : 𝒳 ↦ 𝒴“meta-learning is” “interesting”

“meta-learning is” “great!”

“meta-learning is” “dope”

Meta-learning: many tasks, few examples

“meta-learning is”

training datapick learning rate η > 0
for i = 1,…, m

sample (xi, yi)
θi+1 ← θi − η∇L(fθi

(xi), yi)
return ̂θ ← θm+1

f ̂θ : 𝒳 ↦ 𝒴

Can we just use a single global model?

randomly initialize θ1 ∈ Θ

“meta-learning is” “interesting”

training datapick learning rate η > 0
for i = 1,…, m

sample (xi, yi)
θi+1 ← θi − η∇L(fθi

(xi), yi)

f ̂θ : 𝒳 ↦ 𝒴

no personalization

Can we just use a single global model?

randomly initialize θ1 ∈ Θ

return ̂θ ← θm+1

Can we train one model per person?

“meta-learning is”

training datapick learning rate η > 0
for i = 1,…, m

sample (xi, yi)
θi+1 ← θi − η∇L(fθi

(xi), yi)

f ̂θ : 𝒳 ↦ 𝒴

randomly initialize θ1 ∈ Θ

return ̂θ ← θm+1

“meta-learning is” “guarantees”

training datapick learning rate η > 0
for i = 1,…, m

sample (xi, yi)
θi+1 ← θi − η∇L(fθi

(xi), yi)

f ̂θ : 𝒳 ↦ 𝒴

not enough data

Can we train one model per person?

randomly initialize θ1 ∈ Θ

return ̂θ ← θm+1

“meta-learning is”

training data
use learned initialization θ1 = ̂ϕ
pick learning rate η > 0
for i = 1,…, m

sample (xi, yi)
θi+1 ← θi − η∇L(fθi

(xi), yi)

f ̂θ : 𝒳 ↦ 𝒴

Can we learn an initialization for SGD?

return ̂θ ← θm+1

“meta-learning is” “great!”

training data
use learned initialization θ1 = ̂ϕ
pick learning rate η > 0
for i = 1,…, m

sample (xi, yi)
θi+1 ← θi − η∇L(fθi

(xi), yi)

f ̂θ : 𝒳 ↦ 𝒴

Can we learn an initialization for SGD?

return ̂θ ← θm+1

pick meta-learning rate α > 0
randomly meta-initialize ϕ1 ∈ Θ

training tasks
for task t = 1,…, T

Gradient-Based Meta-Learning

pick meta-learning rate α > 0
randomly meta-initialize ϕ1 ∈ Θ

for task t = 1,…, T

sample task 𝒟t

training tasks

Gradient-Based Meta-Learning

pick meta-learning rate α > 0
randomly meta-initialize ϕ1 ∈ Θ

for task t = 1,…, T

sample task 𝒟t

training tasks

task data

Gradient-Based Meta-Learning

pick meta-learning rate α > 0
randomly meta-initialize ϕ1 ∈ Θ

for task t = 1,…, T

sample task 𝒟t

training tasks

task data
initialize θt,1 = ϕt

for i = 1,…, m
sample (xt,i, yt,i)
θt,i+1 ← θt,i − η∇L(fθt,i

(xt,i), yt,i)

pick learning rate η > 0

̂θt ← θt,m+1

Gradient-Based Meta-Learning

pick meta-learning rate α > 0
randomly meta-initialize ϕ1 ∈ Θ

for task t = 1,…, T

sample task 𝒟t

training tasks

task datâθt ← within-task SGD(𝒟t, ϕt)

Gradient-Based Meta-Learning

pick meta-learning rate α > 0
randomly meta-initialize ϕ1 ∈ Θ

for task t = 1,…, T

sample task 𝒟t

training tasks

task data

ϕt+1 ← (1 − α)ϕt + α ̂θt
“meta-update”

̂θt ← within-task SGD(𝒟t, ϕt)

Gradient-Based Meta-Learning

pick meta-learning rate α > 0
randomly meta-initialize ϕ1 ∈ Θ

for task t = 1,…, T

sample task 𝒟t

training tasks

task data

ϕt+1 ← (1 − α)ϕt + α ̂θt

return ϕT+1

̂θt ← within-task SGD(𝒟t, ϕt)

Gradient-Based Meta-Learning

pick meta-learning rate α > 0
randomly meta-initialize ϕ1 ∈ Θ

for task t = 1,…, T

sample task 𝒟t

training tasks

task data

ϕt+1 ← (1 − α)ϕt + α ̂θt

return ϕT+1

̂θt ← within-task SGD(𝒟t, ϕt)

(later called ̂ϕ)

Gradient-Based Meta-Learning

pick meta-learning rate α > 0
randomly meta-initialize ϕ1 ∈ Θ

for task t = 1,…, T

sample task 𝒟t

ϕt+1 ← (1 − α)ϕt + α ̂θt

Reptile [Nichol-Achiam-Schulman]

Few-Shot Learning

Some successful gradient-based algorithms

̂θt ← within-task SGD(𝒟t, ϕt)

return ϕT+1

pick meta-learning rate α > 0
randomly meta-initialize ϕ1 ∈ Θ

for task t = 1,…, T

sample task 𝒟t

ϕt+1 ← (1 − α)ϕt + α ̂θt

MAML [Finn-Abbeel-Levine]

Meta Reinforcement Learning

replace by (non-stochastic)
gradient descent

̂θt ← within-task SGD(𝒟t, ϕt)

return ϕT+1

Some successful gradient-based algorithms

pick meta-learning rate α > 0
randomly meta-initialize ϕ1 ∈ Θ

for task t = 1,…, T

sample task 𝒟t

ϕt+1 ← (1 − α)ϕt + α ̂θt

FedAvg [McMahan et al.]

Federated Learning with Personalization

run k tasks in parallel, update
using their average last iterate

̂θt ← within-task SGD(𝒟t, ϕt)

return ϕT+1

Some successful gradient-based algorithms

Gradient-based meta-learning is simple & flexible…

Input: T few-shot training tasks

Algorithm: General; only assumes gradient updates

Output: Initialization for few-shot test task̂ϕ

{𝒟}T
1

…what is it doing?

Why/when do gradient-based methods work?

Input: T few-shot training tasks

Algorithm: General; only assumes gradient updates

Output: Initialization for few-shot test task̂ϕ

{𝒟}T
1

Why/when do gradient-based methods work?
‣ What provable guarantees do these algorithms have?
‣ Can we design new algorithms for settings of interest?

Input: T few-shot training tasks

Algorithm: General; only assumes gradient updates

Output: Initialization for few-shot test task̂ϕ

{𝒟}T
1

…what is it doing?

ARUBA: Our new theoretical
framework for meta-learning

Nina Balcan Ameet Talwalkar

Use online learning to obtain the first provable guarantees for
initialization-based meta-learning

Provide guarantees that depend natural notions of task-similarity

Derive new methods for a broad variety of multi-task settings

ARUBA: Our new theoretical
framework for meta-learning

Use online learning to obtain the first provable guarantees for
initialization-based meta-learning

Guarantees improve with natural notions of task-similarity

Derive new methods for a broad variety of multi-task settings

ARUBA: Our new theoretical
framework for meta-learning

Use online learning to obtain the first provable guarantees for
initialization-based meta-learning

Guarantees improve with natural notions of task-similarity

Adapt to changing task-environments

ARUBA: Our new theoretical
framework for meta-learning

Use online learning to obtain the first provable guarantees for
initialization-based meta-learning

Guarantees improve with natural notions of task-similarity

Obtain faster statistical rates

ARUBA: Our new theoretical
framework for meta-learning

Use online learning to obtain the first provable guarantees for
initialization-based meta-learning

Guarantees improve with natural notions of task-similarity

Derive new methods for a broad variety of multi-task settings

ARUBA: Our new theoretical
framework for meta-learning

ARUBA Framework
‣ Low-sample learning and gradient-based meta-learning
‣ An illustrative result for learning an initialization

Applications

Meta-learning through the lens of online learning

suffer loss ℓi(θi)

for i = 1,…, m

Online Learning

pick action θi ∈ Θ

Online Learning

R =
m

∑
i=1

ℓi(θi) − ℓi(θ*)

best fixed action
in hindsight

suffer loss ℓi(θi)

for i = 1,…, m
pick action θi ∈ Θ

Meta-learning through the lens of online learning

Measure per-task performance via regret

Non-IID Data / Tasks: Models realistic settings (e.g. mobile, RL data; lifelong learning)

Online Learning

R =
m

∑
i=1

ℓi(θi) − ℓi(θ*)

best fixed action
in hindsight

suffer loss ℓi(θi)

for i = 1,…, m
pick action θi ∈ Θ

Meta-learning through the lens of online learning

Measure per-task performance via regret

Non-IID Data / Tasks: Models realistic settings (e.g. mobile, RL data; lifelong learning)
IID Implications: Online-to-batch conversion results

Online Learning

R =
m

∑
i=1

ℓi(θi) − ℓi(θ*)

best fixed action
in hindsight

suffer loss ℓi(θi)

for i = 1,…, m
pick action θi ∈ Θ

Meta-learning through the lens of online learning

Measure per-task performance via regret

Non-IID Data / Tasks: Models realistic settings (e.g. mobile, RL data; lifelong learning)
IID Implications: Online-to-batch conversion results
Generality: Can adapt / generalize numerous online learning results to meta-learning

Measure per-task performance via regret
Online Learning

R =
m

∑
i=1

ℓi(θi) − ℓi(θ*)

best fixed action
in hindsight

suffer loss ℓi(θi)

for i = 1,…, m
pick action θi ∈ Θ

Meta-learning through the lens of online learning

Training Data Hypothesis Class Loss Function
(x1, y1), …, (xm, ym) {fθ : 𝒳 ↦ 𝒴 : θ ∈ Θ ⊂ ℝd} ℓi(θ) = L(fθ(xi), yi)

L : 𝒴 × 𝒴 ↦ ℝ

Single-Task Learning

R =
m

∑
i=1

ℓi(θi) − ℓi(θ*)

best fixed action
in hindsight

Single-Task Learning

suffer ℓi(θi)

θi+1 ← θi − η∇ℓi(θi)

randomly initialize θ1 ∈ Θ, η > 0

for i = 1,…, m

Online Gradient Descent (OGD)

Training Data Hypothesis Class Loss Function
(x1, y1), …, (xm, ym) {fθ : 𝒳 ↦ 𝒴 : θ ∈ Θ ⊂ ℝd} ℓi(θ) = L(fθ(xi), yi)

R =
m

∑
i=1

ℓi(θi) − ℓi(θ*)

best fixed action
in hindsight

Single-Task Regret

R = 𝒪(D m)

D = radius(Θ)

OGD upper-bound:

Size of Action Space:

Online Gradient Descent (OGD)

Training Data Hypothesis Class Loss Function
(x1, y1), …, (xm, ym) {fθ : 𝒳 ↦ 𝒴 : θ ∈ Θ ⊂ ℝd} ℓi(θ) = L(fθ(xi), yi)

[Abernethy-Bartlett-Rakhlin-Tewari]

R =
m

∑
i=1

ℓi(θi) − ℓi(θ*)

best fixed action
in hindsight

Single-Task Regret

R = 𝒪(D m)

R = Ω (D m)Matching lower-bound:
(for any algorithm)

OGD upper-bound:

Size of Action Space:

Online Gradient Descent (OGD)

Training Data Hypothesis Class Loss Function
(x1, y1), …, (xm, ym) {fθ : 𝒳 ↦ 𝒴 : θ ∈ Θ ⊂ ℝd} ℓi(θ) = L(fθ(xi), yi)

[Abernethy-Bartlett-Rakhlin-Tewari]

D = radius(Θ)

R =
m

∑
i=1

ℓi(θi) − ℓi(θ*)

best fixed action
in hindsight

Single-Task Regret

R = 𝒪(D m)

R = Ω (D m)Matching lower-bound:
(for any algorithm)

OGD upper-bound:

Size of Action Space:

Online Gradient Descent (OGD)

Training Data Hypothesis Class Loss Function
(x1, y1), …, (xm, ym) {fθ : 𝒳 ↦ 𝒴 : θ ∈ Θ ⊂ ℝd} ℓi(θ) = L(fθ(xi), yi)

[Abernethy-Bartlett-Rakhlin-Tewari]

D = radius(Θ)

Cannot hope to
do well when
m is small

Single-Task Regret

R = 𝒪(D m)

R = Ω (D m)Matching lower-bound:
(for any algorithm)

OGD upper-bound:

Size of Action Space:

Online Gradient Descent (OGD)

Training Data Hypothesis Class Loss Function
(x1, y1), …, (xm, ym) {fθ : 𝒳 ↦ 𝒴 : θ ∈ Θ ⊂ ℝd} ℓi(θ) = L(fθ(xi), yi)

[Abernethy-Bartlett-Rakhlin-Tewari]

D = radius(Θ)

Key Question:
can we do better using
multi-task information?

Single-Task Regret

R = 𝒪(D m)

R = Ω (D m)Matching lower-bound:
(for any algorithm)

OGD upper-bound:

Size of Action Space:

Online Gradient Descent (OGD)

Training Data Hypothesis Class Loss Function
(x1, y1), …, (xm, ym) {fθ : 𝒳 ↦ 𝒴 : θ ∈ Θ ⊂ ℝd} ℓi(θ) = L(fθ(xi), yi)

[Abernethy-Bartlett-Rakhlin-Tewari]

D = radius(Θ)

Key Question:
can we do better using
on-average across tasks?

Single-Task Regret

R = 𝒪(D m)

R = Ω (D m)Matching lower-bound:
(for any algorithm)

OGD upper-bound:

Size of Action Space:

Online Gradient Descent (OGD)

Training Data Hypothesis Class Loss Function
(x1, y1), …, (xm, ym) {fθ : 𝒳 ↦ 𝒴 : θ ∈ Θ ⊂ ℝd} ℓi(θ) = L(fθ(xi), yi)

[Abernethy-Bartlett-Rakhlin-Tewari]

D = radius(Θ)

Key Question:
can we do better using
on-average across tasks?

Learn an initialization
sequentially from
previous t tasks

Average Regret and Task Similarity

Training Data Hypothesis Class Loss Function
{fθ : 𝒳 ↦ 𝒴 : θ ∈ Θ ⊂ ℝd} ℓt,i(θ) = L(fθ(xt,i), yt,i)(x1,1, y1,1), …, (xT,m, yT,m)

Average Regret and Task Similarity

Training Data Hypothesis Class Loss Function
{fθ : 𝒳 ↦ 𝒴 : θ ∈ Θ ⊂ ℝd} ℓt,i(θ) = L(fθ(xt,i), yt,i)

R̄ =
1
T

T

∑
t=1

Rt =
1
T

T

∑
t=1

m

∑
i=1

ℓt,i(θt,i) − ℓt,i(θ*t)Average Regret:

(x1,1, y1,1), …, (xT,m, yT,m)

Average Regret and Task Similarity

Training Data Hypothesis Class Loss Function
{fθ : 𝒳 ↦ 𝒴 : θ ∈ Θ ⊂ ℝd} ℓt,i(θ) = L(fθ(xt,i), yt,i)

R̄ =
1
T

T

∑
t=1

Rt =
1
T

T

∑
t=1

m

∑
i=1

ℓt,i(θt,i) − ℓt,i(θ*t)

V2 = min
ϕ∈Θ

1
T

T

∑
t=1

∥θ*t − ϕ∥2
2

Average Regret:

Task Similarity:

(x1,1, y1,1), …, (xT,m, yT,m)

Average Regret and Task Similarity

Training Data Hypothesis Class Loss Function
{fθ : 𝒳 ↦ 𝒴 : θ ∈ Θ ⊂ ℝd} ℓt,i(θ) = L(fθ(xt,i), yt,i)

R̄ =
1
T

T

∑
t=1

Rt =
1
T

T

∑
t=1

m

∑
i=1

ℓt,i(θt,i) − ℓt,i(θ*t)

V2 = min
ϕ∈Θ

1
T

T

∑
t=1

∥θ*t − ϕ∥2
2

Average Regret:

Task Similarity:

(x1,1, y1,1), …, (xT,m, yT,m)

Average Regret and Task Similarity

Training Data Hypothesis Class Loss Function
{fθ : 𝒳 ↦ 𝒴 : θ ∈ Θ ⊂ ℝd} ℓt,i(θ) = L(fθ(xt,i), yt,i)

R̄ =
1
T

T

∑
t=1

Rt =
1
T

T

∑
t=1

m

∑
i=1

ℓt,i(θt,i) − ℓt,i(θ*t)

V2 = min
ϕ∈Θ

1
T

T

∑
t=1

∥θ*t − ϕ∥2
2

Average Regret:

Task Similarity:
V is small when optimal

parameters are close together

(x1,1, y1,1), …, (xT,m, yT,m)

Task Similarity V

Our Guarantee: R̄ = 𝒪 (V +
log T
VT) m

Rt = Ω (D m)Single-Task Lower Bound:

Multi-Task Lower Bound: R̄ = Ω (V m)

ARUBA: An Illustrative Result

V

V

D

Task Similarity V

When optimal task parameters are close together,
meta-learning yields much better average performance

Our Guarantee: R̄ = 𝒪 (V +
log T
VT) m

Rt = Ω (D m)Single-Task Lower Bound:

Multi-Task Lower Bound: R̄ = Ω (V m)

ARUBA: An Illustrative Result

V

V

D

Recall: generic gradient-based algorithm (Reptile)

for task t = 1,…, T

sample task 𝒟t

update ϕt+1 using ̂θt

̂θt ← within-task SGD(𝒟t, ϕt)

sample task 𝒟t

̂θt ← within-task OGD(𝒟t, ϕt)

replace SGD by
online gradient descent (OGD)

update ϕt+1 using ̂θt

for task t = 1,…, T

Recall: generic gradient-based algorithm (Reptile)

sample task 𝒟t

within-task OGD(𝒟t, ϕt)

replace last iterate by
optimum-in-hindsight

for task t = 1,…, T

update ϕt+1 using θ*t

Recall: generic gradient-based algorithm (Reptile)

sample task 𝒟t

within-task OGD(𝒟t, ϕt)

replace last iterate by
optimum-in-hindsight

(assumes oracle access to last iterate
after task completion)

for task t = 1,…, T

update ϕt+1 using θ*t

Recall: generic gradient-based algorithm (Reptile)

sample task 𝒟t

replace last iterate by
optimum-in-hindsight

(assumes oracle access to last iterate
after task completion)

(can be relaxed under a
non-degeneracy assumption)

for task t = 1,…, T

within-task OGD(𝒟t, ϕt)

update ϕt+1 using θ*t

Recall: generic gradient-based algorithm (Reptile)

sample task 𝒟t

within-task OGD(𝒟t, ϕt)

update ϕt+1 using θ*t

for task t = 1,…, T 1
T

T

∑
t=1

Rt

Goal: set ϕt to get low
average regret across tasks.

Recall: generic gradient-based algorithm (Reptile)

Key Idea:
Use online learning to optimize a
sequence of OGD regret bounds.

sample task 𝒟t

within-task OGD(𝒟t, ϕt)

update ϕt+1 using θ*t

for task t = 1,…, T 1
T

T

∑
t=1

Rt ≤
1
T

T

∑
t=1

Ut(ϕt)

Goal: set ϕt to get low
average regret across tasks.

regret-upper-bound

Recall: generic gradient-based algorithm (Reptile)

ARUBA: Key Observation
Single-task regret guarantees are often nice and

data-dependent functions of the algorithm parameters.

ARUBA: Key Observation

Rt =
m

∑
i=1

ℓt,i(θ) − ℓt,i(θ*t) = 𝒪(D m)

Single-task regret guarantees are often nice and
data-dependent functions of the algorithm parameters.

for OGD(𝒟t, ϕ) :

ARUBA: Key Observation
Single-task regret guarantees are often nice and

data-dependent functions of the algorithm parameters.

Rt =
m

∑
i=1

ℓt,i(θ) − ℓt,i(θ*t) ≤ Ut(ϕ) =
∥θ*t − ϕ∥2

2

2η
+ ηm

regret-upper-bound

set η =
D

m
to get 𝒪(D m)

for OGD(𝒟t, ϕ) :

ARUBA: Key Observation
Single-task regret guarantees are often nice and

data-dependent functions of the algorithm parameters.

Rt =
m

∑
i=1

ℓt,i(θ) − ℓt,i(θ*t) ≤ Ut(ϕ) =
∥θ*t − ϕ∥2

2

2η
+ ηm

regret-upper-boundfor OGD(𝒟t, ϕ) :

Average Regret-Upper-Bound Analysis:
reduce the analysis of meta-learning algorithms to
online learning over within-task regret-upper-bounds

Key Idea:
Use online learning to optimize a
sequence of OGD regret bounds.

Updating the initialization using online learning

sample task 𝒟t

within-task OGD(𝒟t, ϕt)

update ϕt+1 using θ*t

for task t = 1,…, T 1
T

T

∑
t=1

Rt ≤
1
T

T

∑
t=1

Ut(ϕt)

Goal: set ϕt to get low
average regret across tasks.

regret-upper-bound

Key Idea:
Use online learning to optimize a
sequence of OGD regret bounds.

Updating the initialization using online learning

sample task 𝒟t

within-task OGD(𝒟t, ϕt)

update ϕt+1 using θ*t

for task t = 1,…, T

Goal: set ϕt to get low
average regret across tasks.

Ut(ϕt) =
∥θ*t − ϕt∥2

2

2η
+ ηm

1
T

T

∑
t=1

Rt ≤
1
T

T

∑
t=1

Ut(ϕt)

Key Idea: apply OGD
Use online learning to optimize a
sequence of OGD regret bounds.

Updating the initialization using online learning

sample task 𝒟t

within-task OGD(𝒟t, ϕt)

update ϕt+1 using θ*t

for task t = 1,…, T

Goal: set ϕt to get low
average regret across tasks.

Ut(ϕt) =
∥θ*t − ϕt∥2

2

2η
+ ηm

Key Idea: apply OGD
Use online learning to optimize a
sequence of OGD regret bounds.

Updating the initialization using online learning

sample task 𝒟t

within-task OGD(𝒟t, ϕt)

for task t = 1,…, T

Goal: set ϕt to get low
average regret across tasks.

ϕt+1 ← ϕt − αη∇Ut(ϕt)

learning rate αη > 0

Ut(ϕt) =
∥θ*t − ϕt∥2

2

2η
+ ηm

Key Idea: apply OGD
Use online learning to optimize a
sequence of OGD regret bounds.

Updating the initialization using online learning

sample task 𝒟t

within-task OGD(𝒟t, ϕt)

for task t = 1,…, T

Goal: set ϕt to get low
average regret across tasks.

ϕt+1 ← ϕt − α(ϕt − θ*t)

Ut(ϕt) =
∥θ*t − ϕt∥2

2

2η
+ ηm

Key Idea: apply OGD
Use online learning to optimize a
sequence of OGD regret bounds.

Updating the initialization using online learning

sample task 𝒟t

within-task OGD(𝒟t, ϕt)

for task t = 1,…, T

Goal: set ϕt to get low
average regret across tasks.

ϕt+1 ← (1 − α)ϕt + αθ*t

Ut(ϕt) =
∥θ*t − ϕt∥2

2

2η
+ ηm

Key Idea: apply OGD
Use online learning to optimize a
sequence of OGD regret bounds.

Updating the initialization using online learning

sample task 𝒟t

within-task OGD(𝒟t, ϕt)

for task t = 1,…, T

Goal: set ϕt to get low
average regret across tasks.

ϕt+1 ← (1 − α)ϕt + αθ*t

(almost) same update as Reptile!

Ut(ϕt) =
∥θ*t − ϕt∥2

2

2η
+ ηm

Key Idea: apply OGD
Regret guarantee:
sequence of OGD regret bounds.

Updating the initialization using online learning

sample task 𝒟t

within-task OGD(𝒟t, ϕt)

for task t = 1,…, T

Goal: set ϕt to get low
average regret across tasks.

ϕt+1 ← (1 − α)ϕt + αθ*t

(almost) same update as Reptile!
T

∑
t=1

Ut(ϕt) − min
ϕ∈Θ

T

∑
t=1

Ut(ϕ) ≤ 𝒪 (log T
η)

Ut(ϕt) =
∥θ*t − ϕt∥2

2

2η
+ ηm

1
η

-strongly-convex

Step 3: Impact of Task Relatedness

1. Within-task OGD: RUB controls performance as data-dependent () function of

2. Across-task OGD: Choose initializations such that RUB is small on Average

3. Task-Relatedness: Analyze its impact on resulting bound

1. Control average within-task performance using average regret-upper-bound

2. Use across-task OGD to set initialization so that average upper bound is small

3. Analyze impact of task-relatedness on resulting bound

3 Key Steps of ARUBA Framework

= 𝒪 (log T
VT) m + 𝒪(V m)

Step 2: Across-task OGD V

Addition/SubtractionStep 1: Substitute
Regret-Upper-Bound

1
T

T

∑
t=1

Rt ≤
1
T

T

∑
t=1

Ut(ϕt) =
1
T (

T

∑
t=1

Ut(ϕt) − min
ϕ∈Θ

T

∑
t=1

Ut(ϕ)) + min
ϕ∈Θ

1
T

T

∑
t=1

Ut(ϕ)

=
1
T (

T

∑
t=1

∥θ*t − ϕt∥2
2

2η
− min

ϕ∈Θ

∥θ*t − ϕ∥2
2

2η) + min
ϕ∈Θ

1
T

T

∑
t=1

∥θ*t − ϕ∥2
2

2η
+ ηm

Step 3: Impact of Task Relatedness

1. Within-task OGD: RUB controls performance as data-dependent () function of

2. Across-task OGD: Choose initializations such that RUB is small on Average

3. Task-Relatedness: Analyze its impact on resulting bound

1. Control average within-task performance using average regret-upper-bound

2. Use across-task OGD to set initialization so that average upper bound is small

3. Analyze impact of task-relatedness on resulting bound

3 Key Steps of ARUBA Framework

= 𝒪 (log T
VT) m + 𝒪(V m)

Step 2: Across-task OGD V

Addition/SubtractionStep 1: Substitute
Regret-Upper-Bound

1
T

T

∑
t=1

Rt ≤
1
T

T

∑
t=1

Ut(ϕt) =
1
T (

T

∑
t=1

Ut(ϕt) − min
ϕ∈Θ

T

∑
t=1

Ut(ϕ)) + min
ϕ∈Θ

1
T

T

∑
t=1

Ut(ϕ)

=
1
T (

T

∑
t=1

∥θ*t − ϕt∥2
2

2η
− min

ϕ∈Θ

∥θ*t − ϕ∥2
2

2η) + min
ϕ∈Θ

1
T

T

∑
t=1

∥θ*t − ϕ∥2
2

2η
+ ηm

= 𝒪 (log T
ηT) + 𝒪 (V2

η
+ ηm)

Step 3: Impact of Task Relatedness

1. Within-task OGD: RUB controls performance as data-dependent () function of

2. Across-task OGD: Choose initializations such that RUB is small on Average

3. Task-Relatedness: Analyze its impact on resulting bound

1. Control average within-task performance using average regret-upper-bound

2. Use across-task OGD to set initialization so that average upper bound is small

3. Analyze impact of task-relatedness on resulting bound

3 Key Steps of ARUBA Framework

Step 2: Across-task OGD V

substitute

Addition/SubtractionStep 1: Substitute
Regret-Upper-Bound

1
T

T

∑
t=1

Rt ≤
1
T

T

∑
t=1

Ut(ϕt) =
1
T (

T

∑
t=1

Ut(ϕt) − min
ϕ∈Θ

T

∑
t=1

Ut(ϕ)) + min
ϕ∈Θ

1
T

T

∑
t=1

Ut(ϕ)

=
1
T (

T

∑
t=1

∥θ*t − ϕt∥2
2

2η
− min

ϕ∈Θ

∥θ*t − ϕ∥2
2

2η) + min
ϕ∈Θ

1
T

T

∑
t=1

∥θ*t − ϕ∥2
2

2η
+ ηm+ …

Step 3: Impact of Task Relatedness

1. Within-task OGD: RUB controls performance as data-dependent () function of

2. Across-task OGD: Choose initializations such that RUB is small on Average

3. Task-Relatedness: Analyze its impact on resulting bound

1. Control average within-task performance using average regret-upper-bound

2. Use across-task OGD to set initialization so that average upper bound is small

3. Analyze impact of task-relatedness on resulting bound

3 Key Steps of ARUBA Framework

= 𝒪 (log T
VT) m + 𝒪(V m)

Step 2: Across-task OGD V

Addition/SubtractionStep 1: Substitute
Regret-Upper-Bound

1
T

T

∑
t=1

Rt ≤
1
T

T

∑
t=1

Ut(ϕt) =
1
T (

T

∑
t=1

Ut(ϕt) − min
ϕ∈Θ

T

∑
t=1

Ut(ϕ)) + min
ϕ∈Θ

1
T

T

∑
t=1

Ut(ϕ)

=
1
T (

T

∑
t=1

∥θ*t − ϕt∥2
2

2η
− min

ϕ∈Θ

∥θ*t − ϕ∥2
2

2η) + min
ϕ∈Θ

1
T

T

∑
t=1

∥θ*t − ϕ∥2
2

2η
+ ηm

regret of OGD over T
1
η − strongly-convex functions + …

= 𝒪 (log T
ηT) + 𝒪 (V2

η
+ ηm)

Step 3: Impact of Task Relatedness

1. Within-task OGD: RUB controls performance as data-dependent () function of

2. Across-task OGD: Choose initializations such that RUB is small on Average

3. Task-Relatedness: Analyze its impact on resulting bound

1. Control average within-task performance using average regret-upper-bound

2. Use across-task OGD to set initialization so that average upper bound is small

3. Analyze impact of task-relatedness on resulting bound

3 Key Steps of ARUBA Framework

Step 2: Across-task OGD V

Addition/SubtractionStep 1: Substitute
Regret-Upper-Bound

1
T

T

∑
t=1

Rt ≤
1
T

T

∑
t=1

Ut(ϕt) =
1
T (

T

∑
t=1

Ut(ϕt) − min
ϕ∈Θ

T

∑
t=1

Ut(ϕ)) + min
ϕ∈Θ

1
T

T

∑
t=1

Ut(ϕ)

=
1
T (

T

∑
t=1

∥θ*t − ϕt∥2
2

2η
− min

ϕ∈Θ

∥θ*t − ϕ∥2
2

2η) + min
ϕ∈Θ

1
T

T

∑
t=1

∥θ*t − ϕ∥2
2

2η
+ ηm+ …

+ …

= 𝒪 (log T
ηT) + 𝒪 (V2

η
+ ηm)

Step 3: Impact of Task Relatedness

1. Within-task OGD: RUB controls performance as data-dependent () function of

2. Across-task OGD: Choose initializations such that RUB is small on Average

3. Task-Relatedness: Analyze its impact on resulting bound

1. Control average within-task performance using average regret-upper-bound

2. Use across-task OGD to set initialization so that average upper bound is small

3. Analyze impact of task-relatedness on resulting bound

3 Key Steps of ARUBA Framework

Step 2: Across-task OGD

Addition/SubtractionStep 1: Substitute
Regret-Upper-Bound

1
T

T

∑
t=1

Rt ≤
1
T

T

∑
t=1

Ut(ϕt) =
1
T (

T

∑
t=1

Ut(ϕt) − min
ϕ∈Θ

T

∑
t=1

Ut(ϕ)) + min
ϕ∈Θ

1
T

T

∑
t=1

Ut(ϕ)

=
1
T (

T

∑
t=1

∥θ*t − ϕt∥2
2

2η
− min

ϕ∈Θ

∥θ*t − ϕ∥2
2

2η) + min
ϕ∈Θ

1
T

T

∑
t=1

∥θ*t − ϕ∥2
2

2η
+ ηm

+ …

= 𝒪 (log T
ηT) + 𝒪 (V2

η
+ ηm)

Step 3: Impact of Task Relatedness

1. Within-task OGD: RUB controls performance as data-dependent () function of

2. Across-task OGD: Choose initializations such that RUB is small on Average

3. Task-Relatedness: Analyze its impact on resulting bound

3 Key Steps of ARUBA Framework

Step 2: Across-task OGD

η = V/ msubstitute

Addition/SubtractionStep 1: Substitute
Regret-Upper-Bound

1
T

T

∑
t=1

Rt ≤
1
T

T

∑
t=1

Ut(ϕt) =
1
T (

T

∑
t=1

Ut(ϕt) − min
ϕ∈Θ

T

∑
t=1

Ut(ϕ)) + min
ϕ∈Θ

1
T

T

∑
t=1

Ut(ϕ)

=
1
T (

T

∑
t=1

∥θ*t − ϕt∥2
2

2η
− min

ϕ∈Θ

∥θ*t − ϕ∥2
2

2η) + min
ϕ∈Θ

1
T

T

∑
t=1

∥θ*t − ϕ∥2
2

2η
+ ηm

1. Control average within-task performance using average regret-upper-bound

2. Use across-task OGD to set initialization so that average upper bound is small

3. Analyze impact of task-relatedness on resulting bound

+ …

= 𝒪 (log T
ηT) + 𝒪 (V2

η
+ ηm)

1. Within-task OGD: RUB controls performance as data-dependent () function of

2. Across-task OGD: Choose initializations such that RUB is small on Average

3. Task-Relatedness: Analyze its impact on resulting bound

3 Key Steps of ARUBA Framework

Step 2: Across-task OGD

η = V/ msubstitute

Addition/SubtractionStep 1: Substitute
Regret-Upper-Bound

1
T

T

∑
t=1

Rt ≤
1
T

T

∑
t=1

Ut(ϕt) =
1
T (

T

∑
t=1

Ut(ϕt) − min
ϕ∈Θ

T

∑
t=1

Ut(ϕ)) + min
ϕ∈Θ

1
T

T

∑
t=1

Ut(ϕ)

=
1
T (

T

∑
t=1

∥θ*t − ϕt∥2
2

2η
− min

ϕ∈Θ

∥θ*t − ϕ∥2
2

2η) + min
ϕ∈Θ

1
T

T

∑
t=1

∥θ*t − ϕ∥2
2

2η
+ ηm

1. Control average within-task performance using average regret-upper-bound

2. Use across-task OGD to set initialization so that average upper bound is small

3. Analyze impact of task-relatedness on resulting bound

definition of task-similarity

V2 = min
ϕ∈Θ

T
∑
t=1

∥θ*t − ϕ∥2
2

+ …

= 𝒪 (log T
ηT) + 𝒪 (V2

η
+ ηm)

Step 3: Impact of Task Relatedness

1. Within-task OGD: RUB controls performance as data-dependent () function of

2. Across-task OGD: Choose initializations such that RUB is small on Average

3. Task-Relatedness: Analyze its impact on resulting bound

3 Key Steps of ARUBA Framework

Step 2: Across-task OGD

Addition/SubtractionStep 1: Substitute
Regret-Upper-Bound

1
T

T

∑
t=1

Rt ≤
1
T

T

∑
t=1

Ut(ϕt) =
1
T (

T

∑
t=1

Ut(ϕt) − min
ϕ∈Θ

T

∑
t=1

Ut(ϕ)) + min
ϕ∈Θ

1
T

T

∑
t=1

Ut(ϕ)

=
1
T (

T

∑
t=1

∥θ*t − ϕt∥2
2

2η
− min

ϕ∈Θ

∥θ*t − ϕ∥2
2

2η) + min
ϕ∈Θ

1
T

T

∑
t=1

∥θ*t − ϕ∥2
2

2η
+ ηm

1. Control average within-task performance using average regret-upper-bound

2. Use across-task OGD to set initialization so that average upper bound is small

3. Analyze impact of task-relatedness on resulting bound

= 𝒪 (log T
ηT) + 𝒪 (V2

η
+ ηm)

Step 3: Impact of Task Relatedness

1. Within-task OGD: RUB controls performance as data-dependent () function of

2. Across-task OGD: Choose initializations such that RUB is small on Average

3. Task-Relatedness: Analyze its impact on resulting bound

3 Key Steps of ARUBA Framework

Step 2: Across-task OGD

Addition/SubtractionStep 1: Substitute
Regret-Upper-Bound

1
T

T

∑
t=1

Rt ≤
1
T

T

∑
t=1

Ut(ϕt) =
1
T (

T

∑
t=1

Ut(ϕt) − min
ϕ∈Θ

T

∑
t=1

Ut(ϕ)) + min
ϕ∈Θ

1
T

T

∑
t=1

Ut(ϕ)

=
1
T (

T

∑
t=1

∥θ*t − ϕt∥2
2

2η
− min

ϕ∈Θ

∥θ*t − ϕ∥2
2

2η) + min
ϕ∈Θ

1
T

T

∑
t=1

∥θ*t − ϕ∥2
2

2η
+ ηm

1. Control average within-task performance using average regret-upper-bound

2. Use across-task OGD to set initialization so that average upper bound is small

3. Analyze impact of task-relatedness on resulting bound

η = V/ msubstitute

Step 3: Impact of Task Relatedness

1. Within-task OGD: RUB controls performance as data-dependent () function of

2. Across-task OGD: Choose initializations such that RUB is small on Average

3. Task-Relatedness: Analyze its impact on resulting bound

1. Control average within-task performance using average regret-upper-bound

2. Use across-task OGD to set initialization so that average upper bound is small

3. Analyze impact of task-relatedness on resulting bound

3 Key Steps of ARUBA Framework

Step 2: Across-task OGD

1
T

T

∑
t=1

Rt ≤
1
T

T

∑
t=1

Ut(ϕt) =
1
T (

T

∑
t=1

Ut(ϕt) − min
ϕ∈Θ

T

∑
t=1

Ut(ϕ)) + min
ϕ∈Θ

1
T

T

∑
t=1

Ut(ϕ)

=
1
T (

T

∑
t=1

∥θ*t − ϕt∥2
2

2η
− min

ϕ∈Θ

∥θ*t − ϕ∥2
2

2η) + min
ϕ∈Θ

1
T

T

∑
t=1

∥θ*t − ϕ∥2
2

2η
+ ηm

Step 1: Substitute
Regret-Upper-Bound Addition/Subtraction

= 𝒪 (log T
VT) m + 𝒪 (V m)

η = V/ msubstitute

Task Similarity V

Our Guarantee: R̄ = 𝒪 (V +
log T
VT) m

Rt = Ω (D m)Single-Task Lower Bound:

Multi-Task Lower Bound: R̄ = Ω (V m)

Recap: what have we achieved?

V

V

D

When optimal task parameters are close together,
meta-learning yields much better average performance

Our results in context
Online learning of multi-task representations:
• Linear representations using online Frank-Wolfe or matrix multiplicative weights [Bullins-Hazan-

Kalai-Livni, ALT 2019]

Online meta-initialization learning:
• Average regret bounds for online gradient descent [K-Balcan-Talwalkar, ICML 2019]

• Excess transfer risk bounds on regularized SGD via online-to-batch conversion [Denevi-Ciliberto-

Grazzi-Pontil, ICML 2019]

• Learnability of MAML via Follow-the-Leader [Finn-Rajeswaran-Kakade-Levine, ICML 2019]

General online frameworks for learning parameterized algorithms:
• ARUBA [K-Balcan-Talwalkar, NeurIPS 2019]

• Primal-dual approach [Denevi-Ciliberto-Grazzi-Pontil, NeurIPS 2019]

Non-convex stochastic optimization for parameter-transfer:
• Stationary-point convergence for MAML [Fallah-Mokhtari-Ozdaglar, 2019]

• Stationary-point convergence of proximal update [Zhou-Yuan-Xu-Yan-Feng, NeurIPS 2019]

Our results in context
Online learning of multi-task representations:
• Linear representations using online Frank-Wolfe or matrix multiplicative weights [Bullins-Hazan-

Kalai-Livni, ALT 2019]

Online meta-initialization learning:
• Average regret bounds for online gradient descent [K-Balcan-Talwalkar, ICML 2019]

• Excess transfer risk bounds on regularized SGD via online-to-batch conversion [Denevi-Ciliberto-

Grazzi-Pontil, ICML 2019]

• Learnability of MAML via Follow-the-Leader [Finn-Rajeswaran-Kakade-Levine, ICML 2019]

General online frameworks for learning parameterized algorithms:
• ARUBA [K-Balcan-Talwalkar, NeurIPS 2019]

• Primal-dual approach [Denevi-Ciliberto-Grazzi-Pontil, NeurIPS 2019]

Non-convex stochastic optimization for parameter-transfer:
• Stationary-point convergence for MAML [Fallah-Mokhtari-Ozdaglar, 2019]

• Stationary-point convergence of proximal update [Zhou-Yuan-Xu-Yan-Feng, NeurIPS 2019]

Our results in context
Online learning of multi-task representations:
• Linear representations using online Frank-Wolfe or matrix multiplicative weights [Bullins-Hazan-

Kalai-Livni, ALT 2019]

Online meta-initialization learning:
• Average regret bounds for online gradient descent [K-Balcan-Talwalkar, ICML 2019]

• Excess transfer risk bounds on regularized SGD via online-to-batch conversion [Denevi-Ciliberto-

Grazzi-Pontil, ICML 2019]

• Learnability of MAML via Follow-the-Leader [Finn-Rajeswaran-Kakade-Levine, ICML 2019]

General online frameworks for learning parameterized algorithms:
• ARUBA [K-Balcan-Talwalkar, NeurIPS 2019]

• Primal-dual approach [Denevi-Ciliberto-Grazzi-Pontil, NeurIPS 2019]

Non-convex stochastic optimization for parameter-transfer:
• Stationary-point convergence for MAML [Fallah-Mokhtari-Ozdaglar, 2019]

• Stationary-point convergence of proximal update [Zhou-Yuan-Xu-Yan-Feng, NeurIPS 2019]

Our results in context
Online learning of multi-task representations:
• Linear representations using online Frank-Wolfe or matrix multiplicative weights [Bullins-Hazan-

Kalai-Livni, ALT 2019]

Online meta-initialization learning:
• Average regret bounds for online gradient descent [K-Balcan-Talwalkar, ICML 2019]

• Excess transfer risk bounds on regularized SGD via online-to-batch conversion [Denevi-Ciliberto-

Grazzi-Pontil, ICML 2019]

• Learnability of MAML via Follow-the-Leader [Finn-Rajeswaran-Kakade-Levine, ICML 2019]

General online frameworks for learning parameterized algorithms:
• ARUBA [K-Balcan-Talwalkar, NeurIPS 2019]

• Primal-dual approach [Denevi-Ciliberto-Grazzi-Pontil, NeurIPS 2019]

Non-convex stochastic optimization for meta-initialization:
• Stationary-point convergence for MAML [Fallah-Mokhtari-Ozdaglar, 2019]

• Stationary-point convergence of proximal update [Zhou-Yuan-Xu-Yan-Feng, NeurIPS 2019]

What else can we get by applying ARUBA?

Adaptivity

‣ Learn any base-learner parameter from data
‣ e.g., improved training algorithms for learning and simultaneously

Generality

‣ Low-dynamic-regret algorithms for changing task-environments

‣ Stronger online-to-batch conversions for faster statistical rates
‣ Specialized within-task algorithms, e.g., satisfying privacy guarantees

ϕ η

What else can we get by applying ARUBA?

Adaptivity

‣ Learn any base-learner parameter from data
‣ e.g., improved training algorithms for learning and simultaneously

Generality

‣ Low-dynamic-regret algorithms for changing task-environments

‣ Stronger online-to-batch conversions for faster statistical rates

‣ Specialized within-task algorithms, e.g., satisfying privacy guarantees

ϕ η

ARUBA Framework
Applications
‣ Adaptivity for improved few-shot learning
‣ Federated learning & private meta-learning

θt,i+1 = θt,i − ηt,i ⊙ ∇t,i

gradient on sample i
from task t

per-coordinate
learning rate

Is learning an initialization good enough?

θt,i+1 = θt,i − ηt,i ⊙ ∇t,i

gradient on sample i
from task t

per-coordinate
learning rate

Is learning an initialization good enough?

When is pre-conditioned online gradient descent useful?
The convex case:

θt,i+1 = θt,i − ηt,i ⊙ ∇t,i

gradient on sample i
from task t

per-coordinate
learning rate

Is learning an initialization good enough?

When is pre-conditioned online gradient descent useful?
The convex case:

θt,i+1 = θt,i − ηt,i ⊙ ∇t,i

gradient on sample i
from task t

per-coordinate
learning rate

Is learning an initialization good enough?

When is pre-conditioned online gradient descent useful?
The convex case:

non-isotropic
task-similarity

θt,i+1 = θt,i − ηt,i ⊙ ∇t,i

gradient on sample i
from task t

per-coordinate
learning rate

Is learning an initialization good enough?

When is pre-conditioned online gradient descent useful?
The neural network case:

Source: Towards Data Science

θt,i+1 = θt,i − ηt,i ⊙ ∇t,i

gradient on sample i
from task t

per-coordinate
learning rate

Is learning an initialization good enough?

When is pre-conditioned online gradient descent useful?
The neural network case:

feature extractors
shared across tasks

θt,i+1 = θt,i − ηt,i ⊙ ∇t,i

gradient on sample i
from task t

per-coordinate
learning rate

Is learning an initialization good enough?

When is pre-conditioned online gradient descent useful?
The neural network case:

feature extractors
shared across tasks

classification weights
adapted for each task

θt,i+1 = θt,i − ηt,i ⊙ ∇t,i

gradient on sample i
from task t

per-coordinate
learning rate

Is learning an initialization good enough?

When is pre-conditioned online gradient descent useful?
The neural network case:

low learning rate high learning rate

Updating the initialization using online learning

sample task 𝒟t

within-task OGD(𝒟t, ϕt)

update ϕt+1 using θ*t

for task t = 1,…, T

Updating the initialization and the learning rate
using online learning

sample task 𝒟t

within-task OGD(𝒟t, ϕt, ηt)

update ϕt+1 using θ*t

for task t = 1,…, T

update ηt+1

sample task 𝒟t

within-task OGD(𝒟t, ϕt, ηt)

update ϕt+1 using θ*t

for task t = 1,…, T 1
T

T

∑
t=1

Rt

Goal: set ϕt, ηt to get low
average regret across tasks.

update ηt+1

Updating the initialization and the learning rate
using online learning

sample task 𝒟t

within-task OGD(𝒟t, ϕt, ηt)

update ϕt+1 using θ*t

for task t = 1,…, T 1
T

T

∑
t=1

Rt ≤
1
T

T

∑
t=1

Ut(ϕt, ηt)

Goal: set ϕt, ηt to get low
average regret across tasks.

regret-upper-bound

update ηt+1

Updating the initialization and the learning rate
using online learning

Applying ARUBA: the regret-upper-bound

Ut(ϕ, η) =
1
2

∥θ*t − ϕ∥2
1
η

+
m

∑
i=1

∥∇t,i∥2
η

Mahalanobis norm

Single-task regret guarantees are often nice and
data-dependent functions of the algorithm parameters.

Applying ARUBA: the regret-upper-bound
Single-task regret guarantees are often nice and

data-dependent functions of the algorithm parameters.

=
d

∑
j=1

(θ*t,j − ϕj)2

2ηj
+

d

∑
j=1

ηj

m

∑
i=1

∇2
t,i,j

Ut(ϕ, η) =
1
2

∥θ*t − ϕ∥2
1
η

+
m

∑
i=1

∥∇t,i∥2
η

summation over coordinates

Setting the learning rate along coordinate j :

ηj =
Bj

Gj

sum of squared distances
from initialization

sum of squared gradients

Bj =
1
2

T

∑
t=1

(θ*t,j − ϕs,j)2

Gj =
T

∑
t=1

m

∑
i=1

∇2
t,i,j

optimal learning rate

Setting the learning rate along coordinate j :

Bt,j =
1
2 ∑

s<t

(θ*s,j − ϕs,j)2

Gt,j = ∑
s<t

m

∑
i=1

∇2
s,i,j

ηt,j =
Bt,j + εt

Gt,j + ζt

sum of squared distances
from initialization

sum of squared gradients

track quantities
across tasks

learned learning rate

Setting the learning rate along coordinate j :

Bt,j =
1
2 ∑

s<t

(θ*s,j − ϕs,j)2

Gt,j = ∑
s<t

m

∑
i=1

∇2
s,i,j

ηt,j =
Bt,j + εt

Gt,j + ζt

sum of squared distances
from initialization

sum of squared gradients

add smoothing terms

learned learning rate

Setting the learning rate along coordinate j :

Bt,j =
1
2 ∑

s<t

(θ*s,j − ϕs,j)2ηt,j =
Bt,j + εt

Gt,j + ζt

sum of squared distances
from initialization

sum of squared gradients

learned learning rate

Theorem: �̃�(T−2/5) convergence to optimal per-coordinate η

Gt,j = ∑
s<t

m

∑
i=1

∇2
s,i,j

Setting the learning rate along coordinate j :

Bt,j =
1
2 ∑

s<t

(̂θs,j − ϕs,j)2ηt,j =
Bt,j + εt

Gt,j + ζt

sum of squared distances
from initialization

sum of squared gradients

learned learning rate

to obtain a practical
algorithm, use last-iterate

Gt,j = ∑
s<t

m

∑
i=1

∇2
s,i,j

Setting the learning rate along coordinate j :

Bt,j =
1
2 ∑

s<t

(̂θs,j − ϕs,j)2ηt,j =
Bt,j + εt

Gt,j + ζt

sum of squared distances
from initialization

sum of squared gradients

learned learning rate

ηt,j =
η0

Gt,j + δ

compare to AdaGrad [Duchi-Hazan-Singer]

Gt,j = ∑
s<t

m

∑
i=1

∇2
s,i,j

Applying this meta-learned learning rate on
few-shot image classification

Applying this meta-learned learning rate on
few-shot image classification

Mini-ImageNet dataset
[Ravi-Larochelle]:

generate n-shot 5-way
classification tasks by
sampling n images from
each of 5 classes

Applying this meta-learned learning rate on
few-shot image classification

Meta-Training DataMini-ImageNet dataset
[Ravi-Larochelle]:

generate n-shot 5-way
classification tasks by
sampling n images from
each of 5 classes

Applying this meta-learned learning rate on
few-shot image classification

Meta-Training Data

Meta-Testing Data

Mini-ImageNet dataset
[Ravi-Larochelle]:

generate n-shot 5-way
classification tasks by
sampling n images from
each of 5 classes

Applying this meta-learned learning rate on
few-shot image classification

Meta-Training Data

Meta-Testing Data
Goal:

learn to initialize ()
and adapt () a four-
layer convolutional
neural network

̂ϕ
̂η

Mini-ImageNet dataset
[Ravi-Larochelle]:

generate n-shot 5-way
classification tasks by
sampling n images from
each of 5 classes

Applying this meta-learned learning rate on
few-shot image classification

Goal:
learn to initialize ()
and adapt () a four-
layer convolutional
neural network

̂ϕ
̂η

Mini-ImageNet dataset
[Ravi-Larochelle]:

generate n-shot 5-way
classification tasks by
sampling n images from
each of 5 classes

45

52

59

66

MAML Meta-SGD Reptile
w. Adam

Reptile
w. ARUBA

1-shot
5-shot

Applying this meta-learned learning rate on
few-shot image classification

Goal:
learn to initialize ()
and adapt () a four-
layer convolutional
neural network

̂ϕ
̂η

Mini-ImageNet dataset
[Ravi-Larochelle]:

generate n-shot 5-way
classification tasks by
sampling n images from
each of 5 classes

MAML with per-coordinate

learning rate [Li et al.]

45

52

59

66

MAML Meta-SGD Reptile
w. Adam

Reptile
w. ARUBA

1-shot
5-shot

Applying this meta-learned learning rate on
few-shot image classification

Goal:
learn to initialize ()
and adapt () a four-
layer convolutional
neural network

̂ϕ
̂η

Mini-ImageNet dataset
[Ravi-Larochelle]:

generate n-shot 5-way
classification tasks by
sampling n images from
each of 5 classes

popular per-coordinate

learning rate [Kingma-Ba]

MAML with per-coordinate

learning rate [Li et al.]

45

52

59

66

MAML Meta-SGD Reptile
w. Adam

Reptile
w. ARUBA

1-shot
5-shot

Our adaptive learning rate after meta-training

ARUBA Framework
Applications
‣ Adaptivity for improved few-shot learning
‣ Federated learning & private meta-learning

Personalized Federated Learning

‣ Massively distributed
‣ Small sample sizes
‣ Privacy concerns
‣ Non-IID data and tasks
‣ Underlying task similarity

FedAvg ≈ Reptile [with a batch-averaged meta-update]

FedAvg ≈ Reptile [with a batch-averaged meta-update]

‣ Most popular algorithm in federated learning

‣ Usually run without personalization - just use
the meta-initialization within-task

Personalization in Federated
Learning via Adaptive ARUBA

‣ Meta-training: run FedAvg
with ARUBA optimizer
within-task

Personalization in Federated
Learning via Adaptive ARUBA

‣ Meta-training: run FedAvg
with ARUBA optimizer
within-task

‣ Meta-testing - use
(preconditioned) OGD to
learn a personalized
model for each user

Personalization in Federated
Learning via Adaptive ARUBA

Results on Shakespeare next-
character prediction task‣ Meta-training: run FedAvg

with ARUBA optimizer
within-task

‣ Meta-testing - use
(preconditioned) OGD to
learn a personalized
model for each user

Differentially Private Federated
Learning via ARUBA

Ameet TalwalkarJeff Li Sebastian Caldas

Differentially Private Federated
Learning via ARUBA

Motivation:
• protect user data from untrusted

central server - the meta-learner
• avoid utility loss associated with

local differential privacy

Differentially Private Federated
Learning via ARUBA

for task t = 1,…, T

sample task 𝒟t

ϕt+1 ← (1 − α)ϕt + α ̂θt

return ̂ϕ = ϕT+1

̂θt ← within-task SGD(𝒟t, ϕt)

Motivation:
• protect user data from untrusted

central server - the meta-learner
• avoid utility loss associated with

local differential privacy

Differentially Private Federated
Learning via ARUBA

for task t = 1,…, T

sample task 𝒟t

ϕt+1 ← (1 − α)ϕt + α ̂θt

return ̂ϕ = ϕT+1

̂θt ← within-task SGD(𝒟t, ϕt)

not private to
central server

Motivation:
• protect user data from untrusted

central server - the meta-learner
• avoid utility loss associated with

local differential privacy

Differentially Private Federated
Learning via ARUBA

for task t = 1,…, T

sample task 𝒟t

ϕt+1 ← (1 − α)ϕt + α ̂θt

return ̂ϕ = ϕT+1

̂θt ← within-task noisy SGD(𝒟t, ϕt)

Motivation:
• protect user data from untrusted

central server - the meta-learner
• avoid utility loss associated with

local differential privacy

Differentially Private Federated
Learning via ARUBA

for task t = 1,…, T

sample task 𝒟t

return ̂ϕ = ϕT+1

̂θt ← within-task noisy SGD(𝒟t, ϕt)

Motivation:
• protect user data from untrusted

central server - the meta-learner
• avoid utility loss associated with

local differential privacy

ϕt+1 ← (1 − α)ϕt + α ̂θt

Our results:
• immediate user-record-level

privacy guarantee for any model
• in the convex case: bound on

excess transfer risk that improves
with task-similarity

Differentially Private Federated
Learning via ARUBA

for task t = 1,…, T

sample task 𝒟t

return ̂ϕ = ϕT+1

̂θt ← within-task noisy SGD(𝒟t, ϕt)

Motivation:
• protect user data from untrusted

central server - the meta-learner
• avoid utility loss associated with

local differential privacy

ϕt+1 ← (1 − α)ϕt + α ̂θt

Our results:
• immediate user-record-level

privacy guarantee for any model
• in the convex case: bound on

excess transfer risk that improves
with task-similarity

Differentially Private Next-Character Prediction

local differential privacy
(for three different
privacy budgets)

Differentially Private Next-Character Prediction

local differential privacy
(for three different
privacy budgets)

our approach
(for three different
privacy budgets)

Differentially Private Next-Character Prediction

local differential privacy
(for three different
privacy budgets)

our approach
(for three different
privacy budgets)

non-private
learning

Takeaways
ARUBA: a theoretical framework for analyzing and designing meta-learning
algorithms via reduction to online learning:

• First guarantees for initialization-based meta-learning methods showing
provable improvement over single-task learning

• New principled algorithm for meta-learning the learning rate in addition to
the initialization

• Novel practical algorithm for differentially private meta-learning

Next steps

Future directions:

• Beyond adversarial analysis within-task — can the base-learners be
statistical or reinforcement learning algorithms?

• Better multi-task optimizers for regimes beyond few-shot learning.

• Non-convex losses and non-linear representations

Thank You!

More Info: http://www.cs.cmu.edu/~mkhodak/

ARUBA: https://arxiv.org/abs/1906.02717

Blog: https://blog.ml.cmu.edu/2019/11/22/aruba

http://www.cs.cmu.edu/~mkhodak/
https://arxiv.org/abs/1906.02717
https://blog.ml.cmu.edu/2019/11/22/aruba

