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Demanding more from machine learning pipelines

Meta-learning:  
a popular multi-task formulation of these objectives

Source: Taboola Engineering
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• improves ML by “learning-to-learn” across tasks 

• promising performance in a variety of fields 

• fast-evolving and poorly understood methodology

This talk:  
meta-learning algorithms with provable guarantees.

Meta-learning:  
a popular multi-task formulation of new objectives for ML
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Standard ML: supervised prediction
Configurable 

Function

fθ : 𝒳 ↦ 𝒴

Goal: find θ such that fθ(x) = y for all (x, y) ∼ 𝒟

Input x ∈ 𝒳 Output y ∈ 𝒴

“meta-learning is” “interesting”

How: use training data (x1, y1), …, (xm, ym) ∼ 𝒟
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“meta-learning is” “banana”

training datapick learning rate η > 0
for i = 1,…, m

sample (xi, yi)

fθ1
: 𝒳 ↦ 𝒴

randomly initialize θ1 ∈ Θ

Standard ML: stochastic gradient descent (SGD)



“meta-learning is” “wooden”

training datapick learning rate η > 0
for i = 1,…, m

sample (xi, yi)
θi+1 ← θi − η∇L( fθi

(xi), yi)

fθ100
: 𝒳 ↦ 𝒴

differentiable 
loss function

randomly initialize θ1 ∈ Θ

Standard ML: stochastic gradient descent (SGD)



“meta-learning is” “boring”

pick learning rate η > 0
for i = 1,…, m

sample (xi, yi)
θi+1 ← θi − η∇L( fθi

(xi), yi)

fθ1E4
: 𝒳 ↦ 𝒴

randomly initialize θ1 ∈ Θ

Standard ML: stochastic gradient descent (SGD)

training data

differentiable 
loss function



“meta-learning is” “fine”

training datapick learning rate η > 0
for i = 1,…, m

sample (xi, yi)
θi+1 ← θi − η∇L( fθi

(xi), yi)

fθ1E6
: 𝒳 ↦ 𝒴

differentiable 
loss function

randomly initialize θ1 ∈ Θ

Standard ML: stochastic gradient descent (SGD)



“meta-learning is” “interesting”

training datapick learning rate η > 0
for i = 1,…, m

sample (xi, yi)
θi+1 ← θi − η∇L( fθi

(xi), yi)
return ̂θ ← θm+1

f ̂θ : 𝒳 ↦ 𝒴

randomly initialize θ1 ∈ Θ

Standard ML: stochastic gradient descent (SGD)
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“meta-learning is” “interesting”

training datapick learning rate η > 0
for i = 1,…, m

sample (xi, yi)
θi+1 ← θi − η∇L( fθi

(xi), yi)

f ̂θ : 𝒳 ↦ 𝒴

no personalization

Can we just use a single global model?

randomly initialize θ1 ∈ Θ

return ̂θ ← θm+1



Can we train one model per person?

“meta-learning is”

training datapick learning rate η > 0
for i = 1,…, m

sample (xi, yi)
θi+1 ← θi − η∇L( fθi

(xi), yi)

f ̂θ : 𝒳 ↦ 𝒴

randomly initialize θ1 ∈ Θ

return ̂θ ← θm+1



“meta-learning is” “guarantees”

training datapick learning rate η > 0
for i = 1,…, m

sample (xi, yi)
θi+1 ← θi − η∇L( fθi

(xi), yi)

f ̂θ : 𝒳 ↦ 𝒴

not enough data

Can we train one model per person?

randomly initialize θ1 ∈ Θ

return ̂θ ← θm+1
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f ̂θ : 𝒳 ↦ 𝒴

Can we learn an initialization for SGD?

return ̂θ ← θm+1



“meta-learning is” “great!”

training data
use learned initialization θ1 = ̂ϕ
pick learning rate η > 0
for i = 1,…, m

sample (xi, yi)
θi+1 ← θi − η∇L( fθi

(xi), yi)

f ̂θ : 𝒳 ↦ 𝒴

Can we learn an initialization for SGD?

return ̂θ ← θm+1
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pick meta-learning rate α > 0
randomly meta-initialize ϕ1 ∈ Θ

for task t = 1,…, T

sample task 𝒟t

training tasks

task data
initialize θt,1 = ϕt

for i = 1,…, m
sample (xt,i, yt,i)
θt,i+1 ← θt,i − η∇L( fθt,i

(xt,i), yt,i)

pick learning rate η > 0

̂θt ← θt,m+1

Gradient-Based Meta-Learning



pick meta-learning rate α > 0
randomly meta-initialize ϕ1 ∈ Θ

for task t = 1,…, T

sample task 𝒟t

training tasks

task datâθt ← within-task SGD(𝒟t, ϕt)

Gradient-Based Meta-Learning



pick meta-learning rate α > 0
randomly meta-initialize ϕ1 ∈ Θ

for task t = 1,…, T

sample task 𝒟t

training tasks

task data

ϕt+1 ← (1 − α)ϕt + α ̂θt
“meta-update”

̂θt ← within-task SGD(𝒟t, ϕt)

Gradient-Based Meta-Learning



pick meta-learning rate α > 0
randomly meta-initialize ϕ1 ∈ Θ

for task t = 1,…, T

sample task 𝒟t

training tasks

task data
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pick meta-learning rate α > 0
randomly meta-initialize ϕ1 ∈ Θ

for task t = 1,…, T

sample task 𝒟t

training tasks

task data

ϕt+1 ← (1 − α)ϕt + α ̂θt

return ϕT+1

̂θt ← within-task SGD(𝒟t, ϕt)

(later called ̂ϕ)

Gradient-Based Meta-Learning



pick meta-learning rate α > 0
randomly meta-initialize ϕ1 ∈ Θ

for task t = 1,…, T

sample task 𝒟t

ϕt+1 ← (1 − α)ϕt + α ̂θt

Reptile [Nichol-Achiam-Schulman]

Few-Shot Learning

Some successful gradient-based algorithms

̂θt ← within-task SGD(𝒟t, ϕt)

return ϕT+1



pick meta-learning rate α > 0
randomly meta-initialize ϕ1 ∈ Θ

for task t = 1,…, T

sample task 𝒟t

ϕt+1 ← (1 − α)ϕt + α ̂θt

MAML [Finn-Abbeel-Levine]

Meta Reinforcement Learning 

replace by (non-stochastic) 
gradient descent

̂θt ← within-task SGD(𝒟t, ϕt)

return ϕT+1

Some successful gradient-based algorithms



pick meta-learning rate α > 0
randomly meta-initialize ϕ1 ∈ Θ

for task t = 1,…, T

sample task 𝒟t

ϕt+1 ← (1 − α)ϕt + α ̂θt

FedAvg [McMahan et al.]

Federated Learning with Personalization

run k tasks in parallel, update  
using their average last iterate

̂θt ← within-task SGD(𝒟t, ϕt)

return ϕT+1

Some successful gradient-based algorithms



Gradient-based meta-learning is simple & flexible…

Input: T few-shot training tasks 

Algorithm: General; only assumes gradient updates 

Output: Initialization      for few-shot test task̂ϕ

{𝒟}T
1



…what is it doing?

Why/when do gradient-based methods work?  

Input: T few-shot training tasks 

Algorithm: General; only assumes gradient updates 

Output: Initialization      for few-shot test task̂ϕ

{𝒟}T
1



Why/when do gradient-based methods work?  
‣ What provable guarantees do these algorithms have? 
‣ Can we design new algorithms for settings of interest?

Input: T few-shot training tasks 

Algorithm: General; only assumes gradient updates 

Output: Initialization      for few-shot test task̂ϕ

{𝒟}T
1

…what is it doing?



ARUBA: Our new theoretical 
framework for meta-learning

Nina Balcan Ameet Talwalkar



Use online learning to obtain the first provable guarantees for 
initialization-based meta-learning 

Provide guarantees that depend natural notions of task-similarity 

Derive new methods for a broad variety of multi-task settings

ARUBA: Our new theoretical 
framework for meta-learning
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Use online learning to obtain the first provable guarantees for 
initialization-based meta-learning 

Guarantees improve with natural notions of task-similarity 

Derive new methods for a broad variety of multi-task settings

ARUBA: Our new theoretical 
framework for meta-learning



ARUBA Framework 
‣ Low-sample learning and gradient-based meta-learning 
‣ An illustrative result for learning an initialization 

Applications
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R =
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in hindsight
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pick action θi ∈ Θ
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Measure per-task performance via regret 
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Non-IID Data / Tasks: Models realistic settings (e.g. mobile, RL data; lifelong learning)  
IID Implications: Online-to-batch conversion results 
Generality: Can adapt / generalize numerous online learning results to meta-learning

Measure per-task performance via regret 
Online Learning

R =
m

∑
i=1

ℓi(θi) − ℓi(θ*)

best fixed action 
in hindsight

suffer loss ℓi(θi)

for i = 1,…, m
pick action θi ∈ Θ

Meta-learning through the lens of online learning



Training Data                      Hypothesis Class                     Loss Function                               
(x1, y1), …, (xm, ym) {fθ : 𝒳 ↦ 𝒴 : θ ∈ Θ ⊂ ℝd} ℓi(θ) = L( fθ(xi), yi)

L : 𝒴 × 𝒴 ↦ ℝ

Single-Task Learning

R =
m

∑
i=1

ℓi(θi) − ℓi(θ*)

best fixed action 
in hindsight



Single-Task Learning

suffer ℓi(θi)

θi+1 ← θi − η∇ℓi(θi)

randomly initialize θ1 ∈ Θ, η > 0

for i = 1,…, m

Online Gradient Descent (OGD)

Training Data                      Hypothesis Class                     Loss Function                               
(x1, y1), …, (xm, ym) {fθ : 𝒳 ↦ 𝒴 : θ ∈ Θ ⊂ ℝd} ℓi(θ) = L( fθ(xi), yi)
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∑
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ℓi(θi) − ℓi(θ*)

best fixed action 
in hindsight



Single-Task Regret

R = 𝒪(D m)

D = radius(Θ)

OGD upper-bound: 

Size of Action Space: 
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Single-Task Regret

R = 𝒪(D m)

R = Ω (D m)Matching lower-bound:  
(for any algorithm)

OGD upper-bound: 

Size of Action Space: 

Online Gradient Descent (OGD)

Training Data                      Hypothesis Class                     Loss Function                               
(x1, y1), …, (xm, ym) {fθ : 𝒳 ↦ 𝒴 : θ ∈ Θ ⊂ ℝd} ℓi(θ) = L( fθ(xi), yi)

[Abernethy-Bartlett-Rakhlin-Tewari]

D = radius(Θ)

Cannot hope to 
do well when  
m is small
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Single-Task Regret

R = 𝒪(D m)

R = Ω (D m)Matching lower-bound:  
(for any algorithm)

OGD upper-bound: 

Size of Action Space: 

Online Gradient Descent (OGD)

Training Data                      Hypothesis Class                     Loss Function                               
(x1, y1), …, (xm, ym) {fθ : 𝒳 ↦ 𝒴 : θ ∈ Θ ⊂ ℝd} ℓi(θ) = L( fθ(xi), yi)

[Abernethy-Bartlett-Rakhlin-Tewari]

D = radius(Θ)

Key Question:  
can we do better using  
on-average across tasks?

Learn an initialization 
sequentially from 
previous t tasks
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{fθ : 𝒳 ↦ 𝒴 : θ ∈ Θ ⊂ ℝd} ℓt,i(θ) = L( fθ(xt,i), yt,i)

R̄ =
1
T

T

∑
t=1

Rt =
1
T

T

∑
t=1

m

∑
i=1

ℓt,i(θt,i) − ℓt,i(θ*t )

V2 = min
ϕ∈Θ

1
T

T

∑
t=1

∥θ*t − ϕ∥2
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Average Regret and Task Similarity

Training Data                      Hypothesis Class                     Loss Function                               
{fθ : 𝒳 ↦ 𝒴 : θ ∈ Θ ⊂ ℝd} ℓt,i(θ) = L( fθ(xt,i), yt,i)

R̄ =
1
T

T

∑
t=1

Rt =
1
T

T

∑
t=1

m

∑
i=1

ℓt,i(θt,i) − ℓt,i(θ*t )

V2 = min
ϕ∈Θ

1
T

T

∑
t=1

∥θ*t − ϕ∥2
2

Average Regret:

Task Similarity:
V is small when optimal 

parameters are close together

(x1,1, y1,1), …, (xT,m, yT,m)



Task Similarity V

Our Guarantee: R̄ = 𝒪 (V +
log T
VT ) m

Rt = Ω (D m)Single-Task Lower Bound:

Multi-Task Lower Bound: R̄ = Ω (V m)

ARUBA: An Illustrative Result

V

V

D



Task Similarity V

When optimal task parameters are close together, 
meta-learning yields much better average performance

Our Guarantee: R̄ = 𝒪 (V +
log T
VT ) m

Rt = Ω (D m)Single-Task Lower Bound:

Multi-Task Lower Bound: R̄ = Ω (V m)

ARUBA: An Illustrative Result

V

V

D



Recall: generic gradient-based algorithm (Reptile)

for task t = 1,…, T

sample task 𝒟t

update ϕt+1 using ̂θt

̂θt ← within-task SGD(𝒟t, ϕt)



sample task 𝒟t

̂θt ← within-task OGD(𝒟t, ϕt)

replace SGD by  
online gradient descent (OGD)

update ϕt+1 using ̂θt

for task t = 1,…, T

Recall: generic gradient-based algorithm (Reptile)



sample task 𝒟t

within-task OGD(𝒟t, ϕt)

replace last iterate by  
optimum-in-hindsight

for task t = 1,…, T

update ϕt+1 using θ*t

Recall: generic gradient-based algorithm (Reptile)



sample task 𝒟t

within-task OGD(𝒟t, ϕt)

replace last iterate by  
optimum-in-hindsight

(assumes oracle access to last iterate  
after task completion)

for task t = 1,…, T

update ϕt+1 using θ*t

Recall: generic gradient-based algorithm (Reptile)
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Average Regret-Upper-Bound Analysis:  
reduce the analysis of meta-learning algorithms to 
online learning over within-task regret-upper-bounds
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Key Idea: apply OGD 
Use online learning to optimize a  
sequence of OGD regret bounds.
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Key Idea: apply OGD 
Regret guarantee: 
sequence of OGD regret bounds.
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Task Similarity V

Our Guarantee: R̄ = 𝒪 (V +
log T
VT ) m

Rt = Ω (D m)Single-Task Lower Bound:

Multi-Task Lower Bound: R̄ = Ω (V m)

Recap: what have we achieved?

V

V

D

When optimal task parameters are close together, 
meta-learning yields much better average performance
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• Stationary-point convergence of proximal update [Zhou-Yuan-Xu-Yan-Feng, NeurIPS 2019]
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• ARUBA [K-Balcan-Talwalkar, NeurIPS 2019]

• Primal-dual approach [Denevi-Ciliberto-Grazzi-Pontil, NeurIPS 2019]


Non-convex stochastic optimization for parameter-transfer: 
• Stationary-point convergence for MAML [Fallah-Mokhtari-Ozdaglar, 2019]

• Stationary-point convergence of proximal update [Zhou-Yuan-Xu-Yan-Feng, NeurIPS 2019]
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What else can we get by applying ARUBA?

Adaptivity 

‣ Learn any base-learner parameter from data 
‣ e.g., improved training algorithms for learning     and     simultaneously 

Generality 

‣ Low-dynamic-regret algorithms for changing task-environments 

‣ Stronger online-to-batch conversions for faster statistical rates 
‣ Specialized within-task algorithms, e.g., satisfying privacy guarantees
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ARUBA Framework 
Applications 
‣ Adaptivity for improved few-shot learning 
‣ Federated learning & private meta-learning
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When is pre-conditioned online gradient descent useful? 
The neural network case:

Source: Towards Data Science
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Is learning an initialization good enough?

When is pre-conditioned online gradient descent useful? 
The neural network case:

feature extractors 
shared across tasks

classification weights 
adapted for each task
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When is pre-conditioned online gradient descent useful? 
The neural network case:

low learning rate high learning rate
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sample task 𝒟t

within-task OGD(𝒟t, ϕt, ηt)

update ϕt+1 using θ*t

for task t = 1,…, T 1
T

T

∑
t=1

Rt ≤
1
T

T

∑
t=1

Ut(ϕt, ηt)

Goal: set ϕt, ηt to get low
average regret across tasks.

regret-upper-bound

update ηt+1

Updating the initialization and the learning rate  
using online learning



Applying ARUBA: the regret-upper-bound

Ut(ϕ, η) =
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1
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∥∇t,i∥2
η

Mahalanobis norm

Single-task regret guarantees are often nice and        
data-dependent functions of the algorithm parameters.



Applying ARUBA: the regret-upper-bound
Single-task regret guarantees are often nice and        

data-dependent functions of the algorithm parameters.
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summation over coordinates
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Setting the learning rate along coordinate  j :

Bt,j =
1
2 ∑

s<t

( ̂θs,j − ϕs,j)2ηt,j =
Bt,j + εt

Gt,j + ζt

sum of squared distances 
from initialization

sum of squared gradients

learned learning rate

ηt,j =
η0

Gt,j + δ

compare to AdaGrad [Duchi-Hazan-Singer]
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few-shot image classification
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and adapt  (     )  a four-
layer convolutional 
neural network

̂ϕ
̂η

Mini-ImageNet dataset 
[Ravi-Larochelle]: 

generate n-shot 5-way 
classification tasks by 
sampling n images from 
each of 5 classes

popular per-coordinate 

learning rate [Kingma-Ba]

MAML with per-coordinate

learning rate [Li et al.]
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Our adaptive learning rate after meta-training



ARUBA Framework 
Applications 
‣ Adaptivity for improved few-shot learning 
‣ Federated learning & private meta-learning



Personalized Federated Learning

‣ Massively distributed 
‣ Small sample sizes 
‣ Privacy concerns 
‣ Non-IID data and tasks 
‣ Underlying task similarity



FedAvg ≈ Reptile [with a batch-averaged meta-update]



FedAvg ≈ Reptile [with a batch-averaged meta-update]

‣ Most popular algorithm in federated learning 

‣ Usually run without personalization - just use 
the meta-initialization within-task
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Personalization in Federated 
Learning via Adaptive ARUBA

Results on Shakespeare next-
character prediction task‣ Meta-training: run FedAvg 

with ARUBA optimizer 
within-task 

‣ Meta-testing - use 
(preconditioned) OGD to 
learn a personalized 
model for each user



Differentially Private Federated 
Learning via ARUBA

Ameet TalwalkarJeff Li Sebastian Caldas
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Differentially Private Next-Character Prediction

local differential privacy 
(for three different  
privacy budgets)

our approach 
(for three different  
privacy budgets)

non-private 
learning



Takeaways
ARUBA: a theoretical framework for analyzing and designing meta-learning 
algorithms via reduction to online learning:


• First guarantees for initialization-based meta-learning methods showing 
provable improvement over single-task learning


• New principled algorithm for meta-learning the learning rate in addition to 
the initialization


• Novel practical algorithm for differentially private meta-learning



Next steps

Future directions:


• Beyond adversarial analysis within-task — can the base-learners be 
statistical or reinforcement learning algorithms?


• Better multi-task optimizers for regimes beyond few-shot learning.


• Non-convex losses and non-linear representations



Thank You!

More Info: http://www.cs.cmu.edu/~mkhodak/

ARUBA: https://arxiv.org/abs/1906.02717

Blog: https://blog.ml.cmu.edu/2019/11/22/aruba

http://www.cs.cmu.edu/~mkhodak/
https://arxiv.org/abs/1906.02717
https://blog.ml.cmu.edu/2019/11/22/aruba

