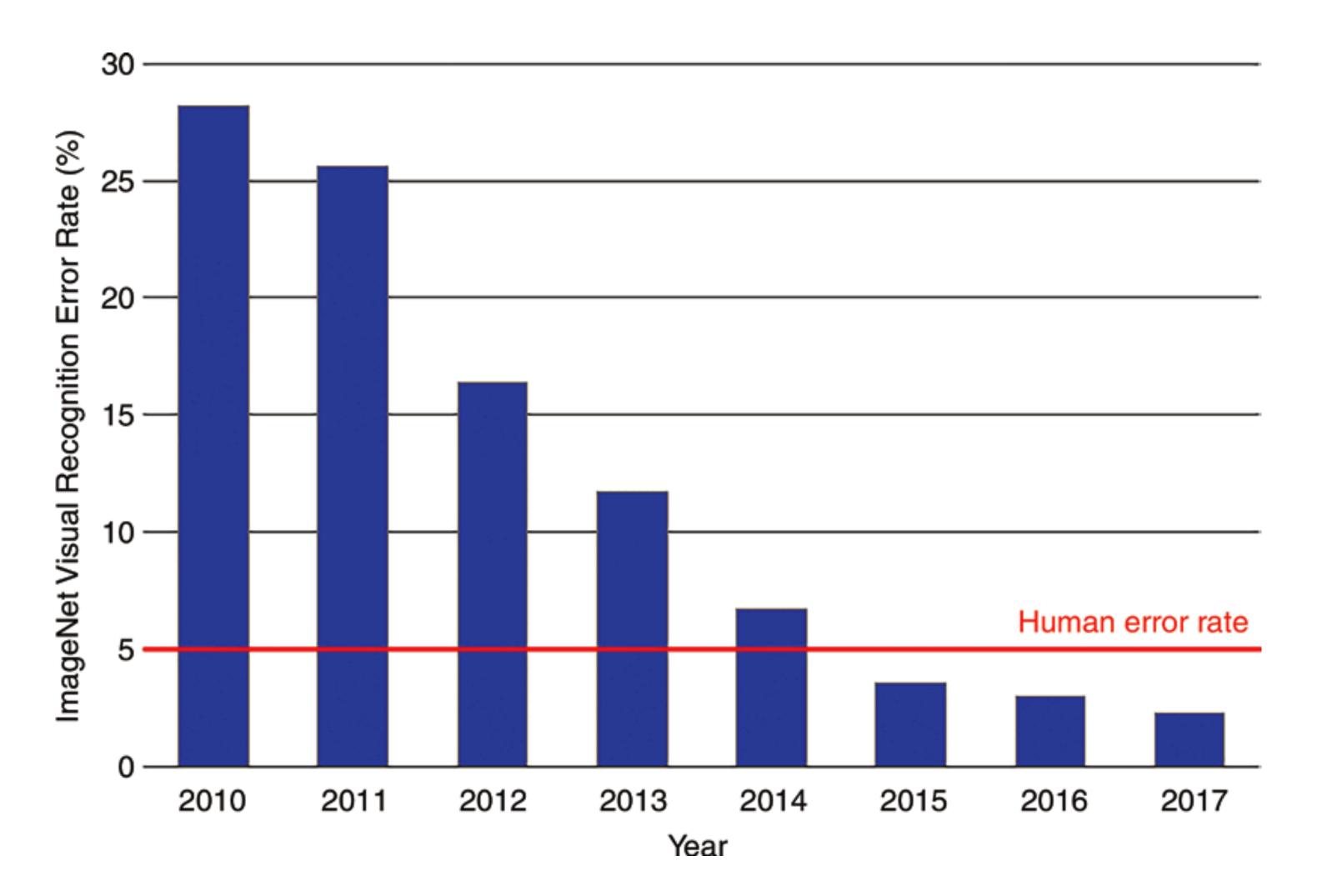
ARUBA: Efficient and Adaptive Meta-Learning with Provable Guarantees

Misha Khodak 3 December 2019

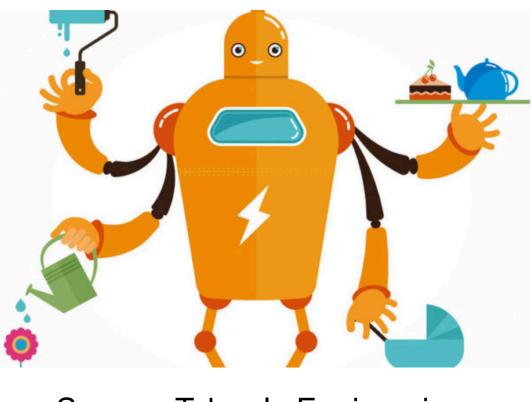
Based on joint work with:

- Nina Balcan, Ameet Talwalkar
- Jeff Li, Sebastian Caldas, Ameet Talwalkar



learning deep models with limited data from many tasks

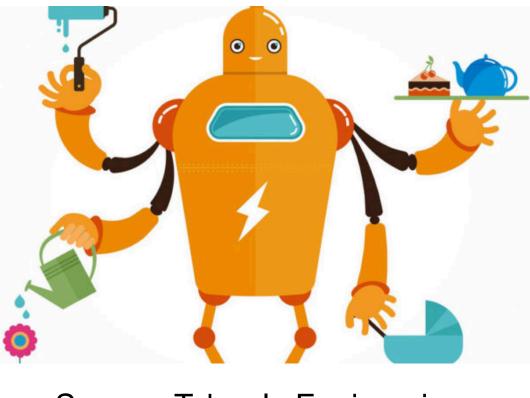
Demanding more from machine learning pipelines



learning deep models with limited data from many tasks

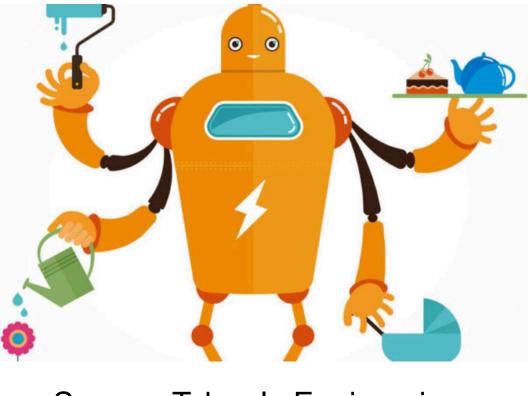
sustained performance in changing environments

Demanding more from machine learning pipelines



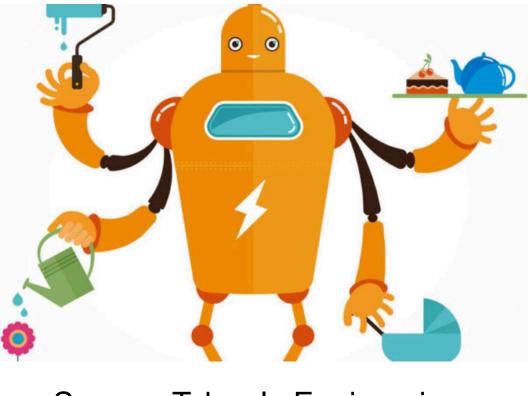
- learning deep models with limited data from many tasks
- sustained performance in changing environments
- fast adaptation to unseen distributions

Demanding more from machine learning pipelines



- learning deep models with limited data from many tasks
- sustained performance in changing environments
- fast adaptation to unseen distributions
- distributed training and inference

Demanding more from machine learning pipelines

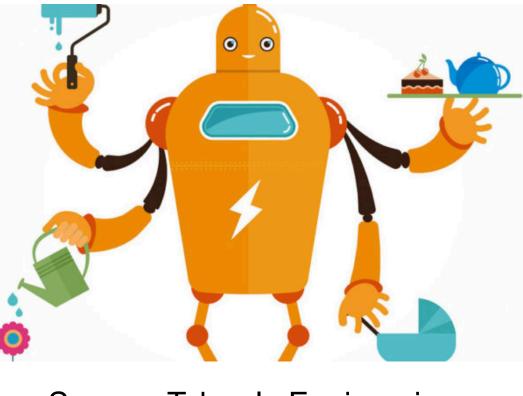


- learning deep models with limited data from many tasks [multi-task]
- sustained performance in changing environments
- fast adaptation to unseen distributions [transfer]
- distributed training and inference

Demanding more from machine learning pipelines

[federated]

[lifelong



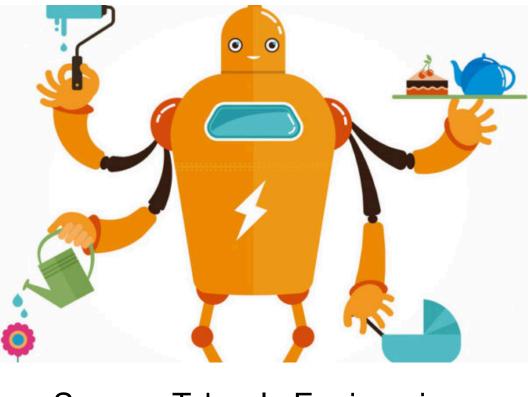
- learning deep models with limited data from many tasks [multi-task]
- sustained performance in changing environments
- fast adaptation to unseen distributions [transfer]
- distributed training and inference

Meta-learning: a popular multi-task formulation of these objectives

Demanding more from machine learning pipelines

[lifelonc

[federated]



Meta-learning: a popular multi-task formulation of new objectives for ML

- improves ML by "learning-to-learn" across tasks
- promising performance in a variety of fields
- fast-evolving and poorly understood methodology

Meta-learning: a popular multi-task formulation of new objectives for ML

- Improves ML by "learning-to-learn" across tasks
- promising performance in a variety of fields
- fast-evolving and poorly understood methodology

This talk: meta-learning algorithms with provable guarantees.

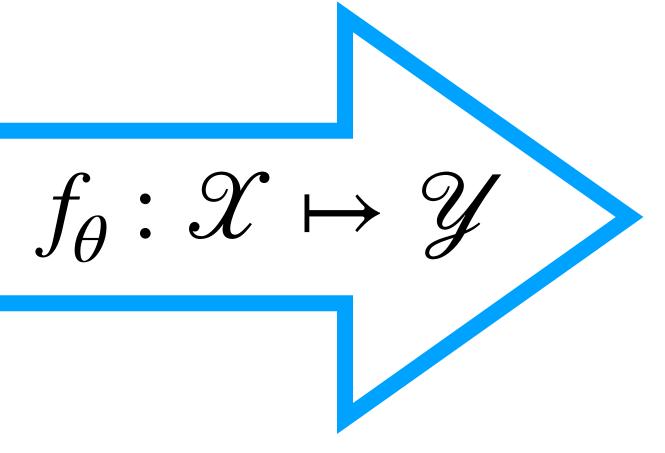
Standard ML: supervised predictionInput $x \in \mathcal{X}$ Configurable
Function

Output $y \in \mathscr{Y}$

Standard ML: supervised prediction Configurable Input $x \in \mathcal{X}$ **Function**

"meta-learning is"

Output $y \in \mathscr{Y}$



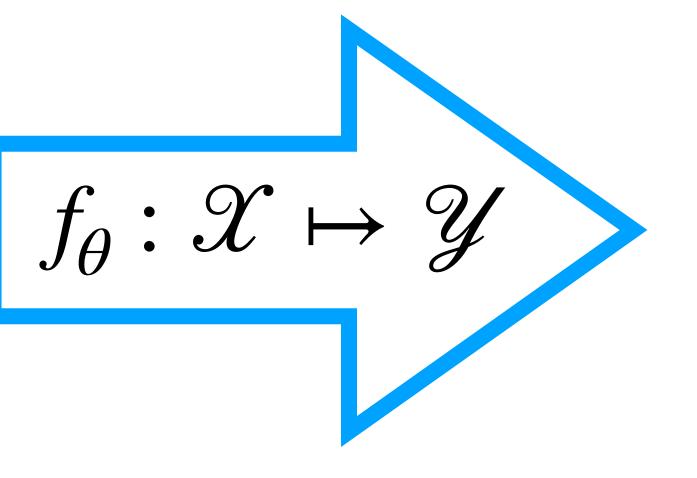
"interesting"

Standard ML: supervised prediction Configurable Input $x \in \mathcal{X}$ **Function**

"meta-learning is"

Goal: find θ such that $f_{\theta}(x) = y$ for all $(x, y) \sim \mathscr{D}$

Output $y \in \mathcal{Y}$

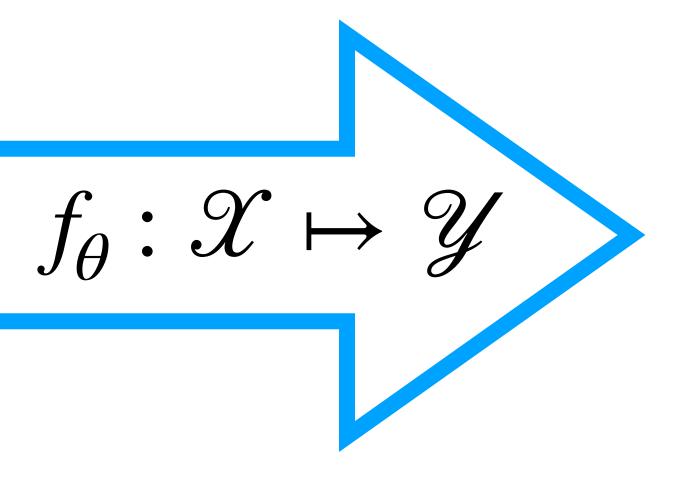


"interesting"

Standard ML: supervised prediction Configurable Input $x \in \mathcal{X}$ **Function**

"meta-learning is"

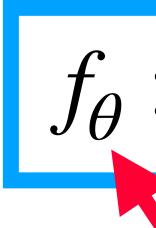
Output $y \in \mathcal{Y}$



"interesting"

Goal: find θ **such that** $f_{\theta}(x) = y$ **for all** $(x, y) \sim \mathscr{D}$ **How: use training data** $(x_1, y_1), ..., (x_m, y_m) \sim \mathscr{D}$

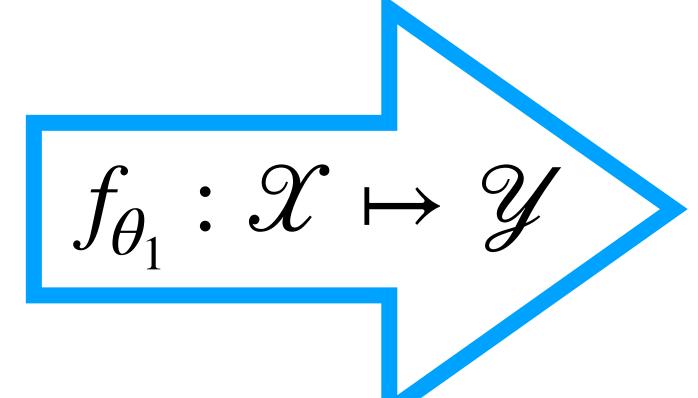
Standard ML: supervised prediction $f_{\theta}: \mathcal{X} \mapsto \mathcal{Y}$ "interesting" "meta-learning is" training data



Project Hutenberg

"meta-learning is"

randomly initialize $\theta_1 \in \Theta$

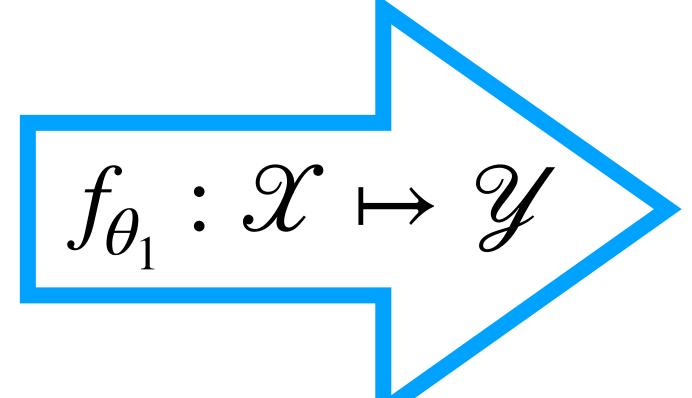


"banana"



"meta-learning is"

randomly initialize $\theta_1 \in \Theta$ pick learning rate $\eta > 0$

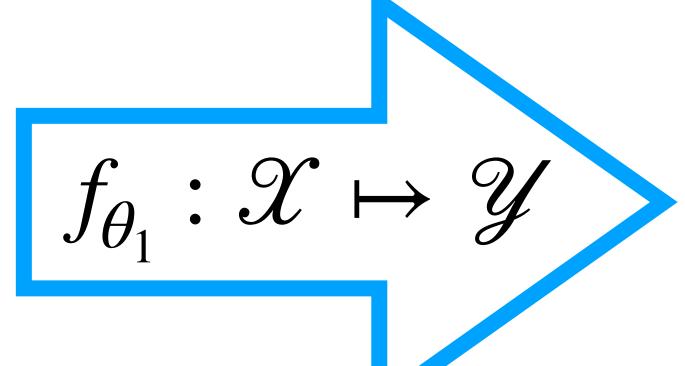


"banana"



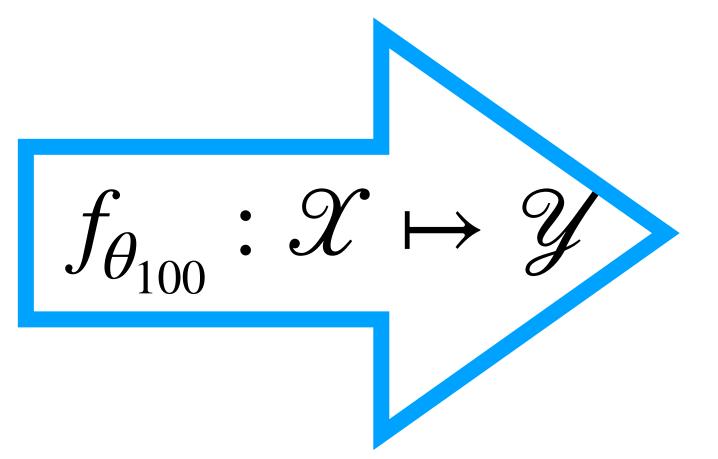
"meta-learning is"

randomly initialize $\theta_1 \in \Theta$ pick learning rate $\eta > 0$ for i = 1, ..., msample (x_i, y_i)



"banana"

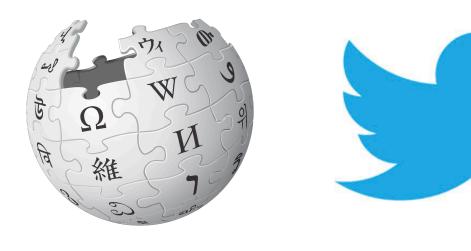
"meta-learning is"



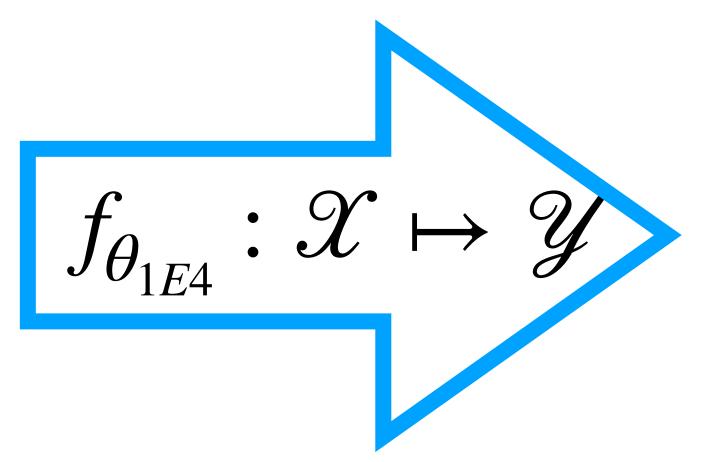
randomly initialize $\theta_1 \in \Theta$ pick learning rate $\eta > 0$ for i = 1, ..., msample (x_i, y_i) $\theta_{i+1} \leftarrow \theta_i - \eta \nabla L(f_{\theta_i}(x_i), y_i)$

differentiable loss function

"wooden"



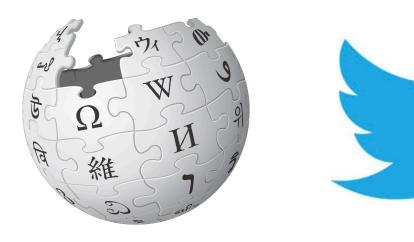
"meta-learning is"



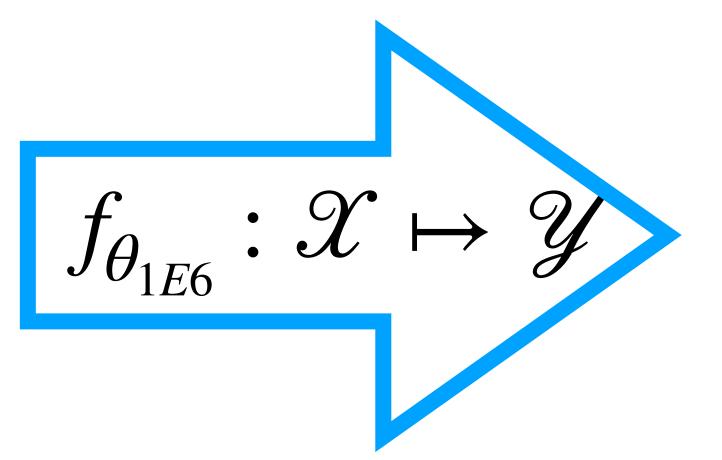
randomly initialize $\theta_1 \in \Theta$ pick learning rate $\eta > 0$ for i = 1, ..., msample (x_i, y_i) $\theta_{i+1} \leftarrow \theta_i - \eta \nabla L(f_{\theta_i}(x_i), y_i)$

differentiable loss function

"boring"



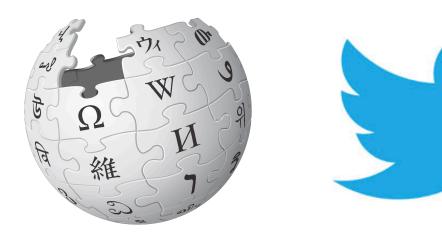
"meta-learning is"



randomly initialize $\theta_1 \in \Theta$ pick learning rate $\eta > 0$ for i = 1, ..., msample (x_i, y_i) $\theta_{i+1} \leftarrow \theta_i - \eta \nabla L(f_{\theta_i}(x_i), y_i)$

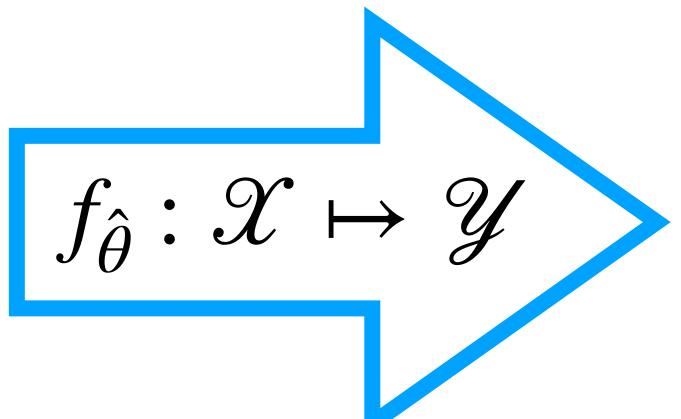
differentiable loss function

"fine"



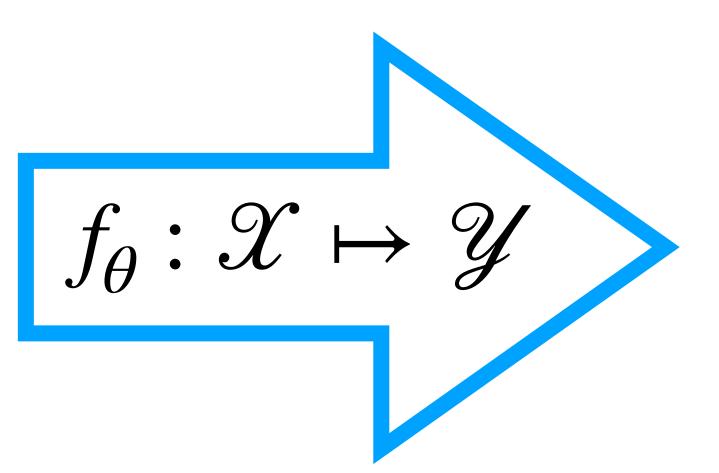
"meta-learning is"

randomly initialize $\theta_1 \in \Theta$ pick learning rate $\eta > 0$ for i = 1, ..., msample (x_i, y_i) $\theta_{i+1} \leftarrow \theta_i - \eta \nabla L(f_{\theta_i}(x_i), y_i)$ return $\hat{\theta} \leftarrow \theta_{m+1}$

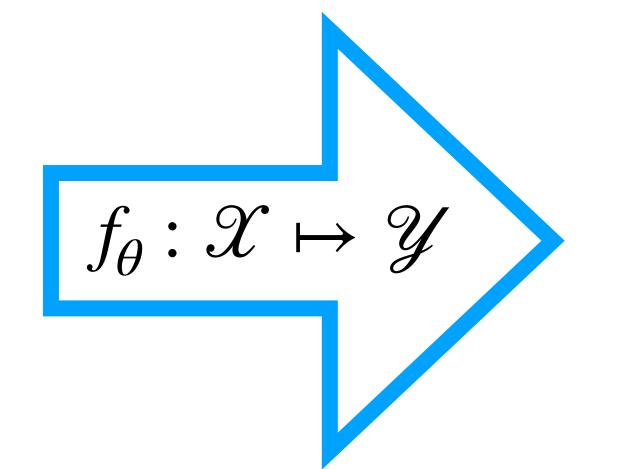


"interesting"

"meta-learning is"



"interesting"



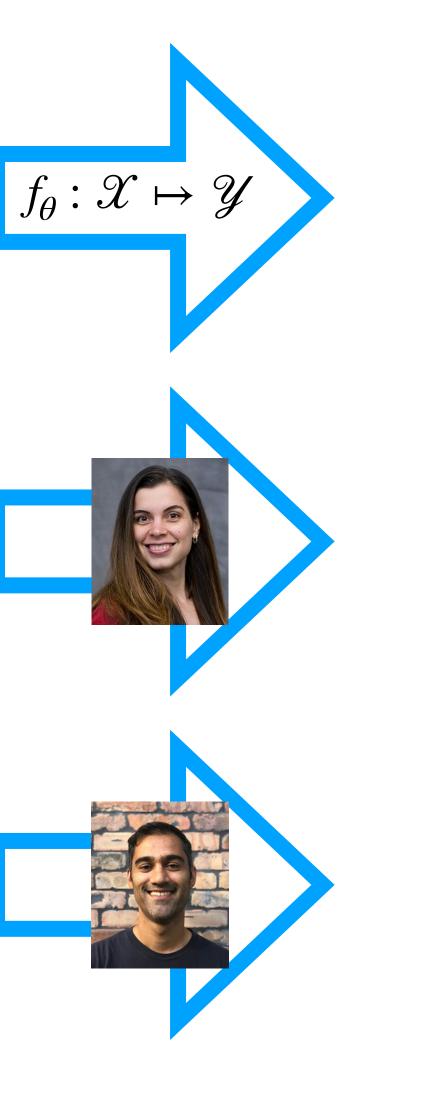
"meta-learning is"

"meta-learning is"

"interesting"

"meta-learning is"

"meta-learning is"



"interesting"

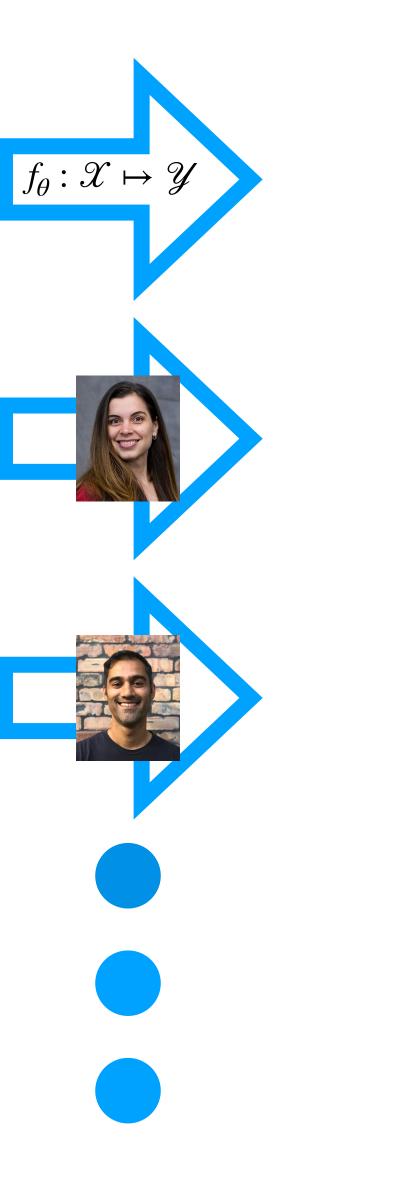
"great!"

"dope"

"meta-learning is"

"meta-learning is"

"meta-learning is"



"interesting"

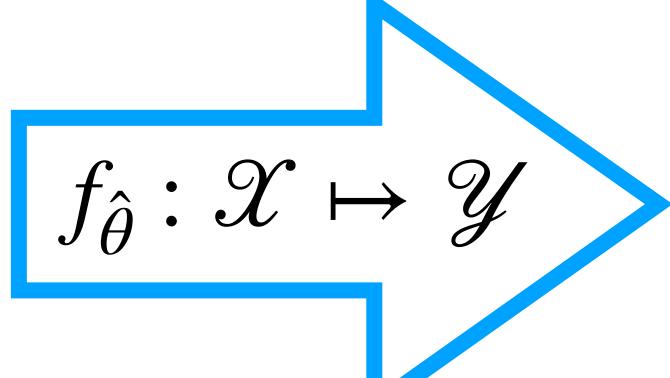
"great!"

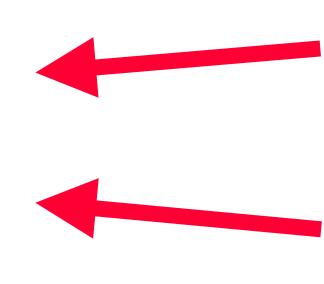
"dope"

Can we just use a single global model?

"meta-learning is"

randomly initialize $\theta_1 \in \Theta$ pick learning rate $\eta > 0$ for i = 1, ..., msample (x_i, y_i) $\theta_{i+1} \leftarrow \theta_i - \eta \nabla L(f_{\theta_i}(x_i), y_i)$ **return** $\hat{\theta} \leftarrow \theta_{m+1}$

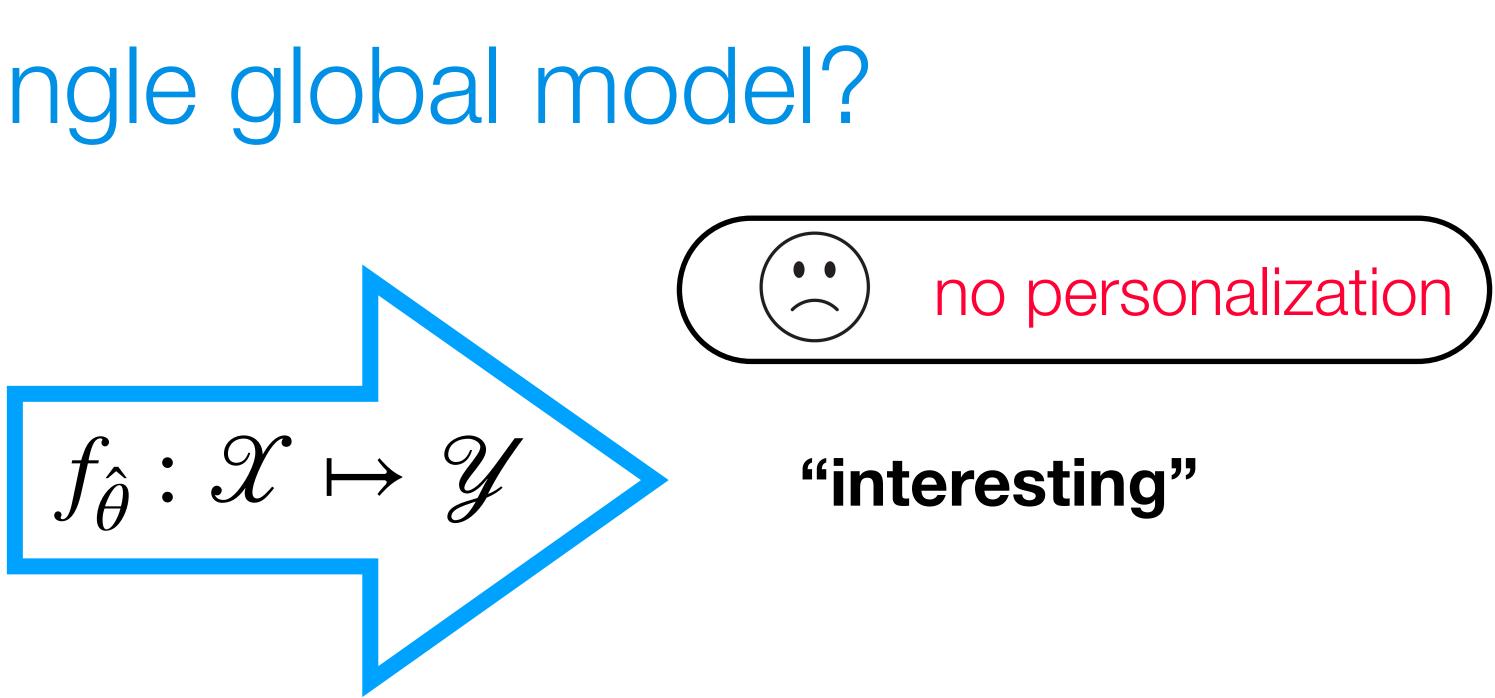


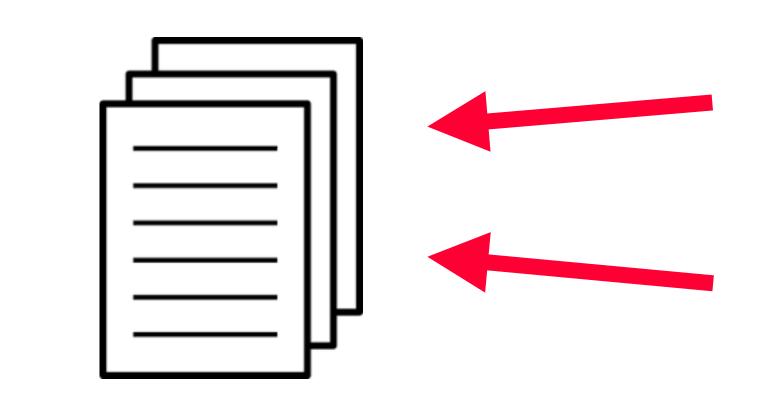


Can we just use a single global model?

"meta-learning is"

randomly initialize $\theta_1 \in \Theta$ pick learning rate $\eta > 0$ for i = 1, ..., msample (x_i, y_i) $\theta_{i+1} \leftarrow \theta_i - \eta \nabla L(f_{\theta_i}(x_i), y_i)$ return $\hat{\theta} \leftarrow \theta_{m+1}$

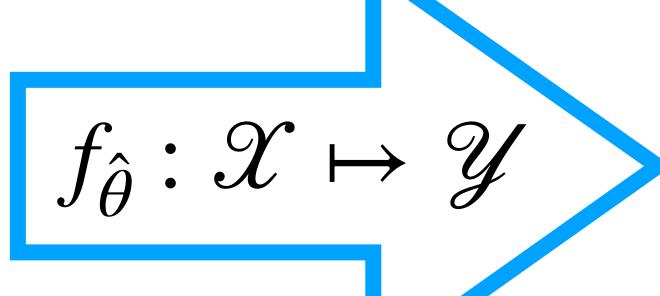




Can we train one model per person?

"meta-learning is"

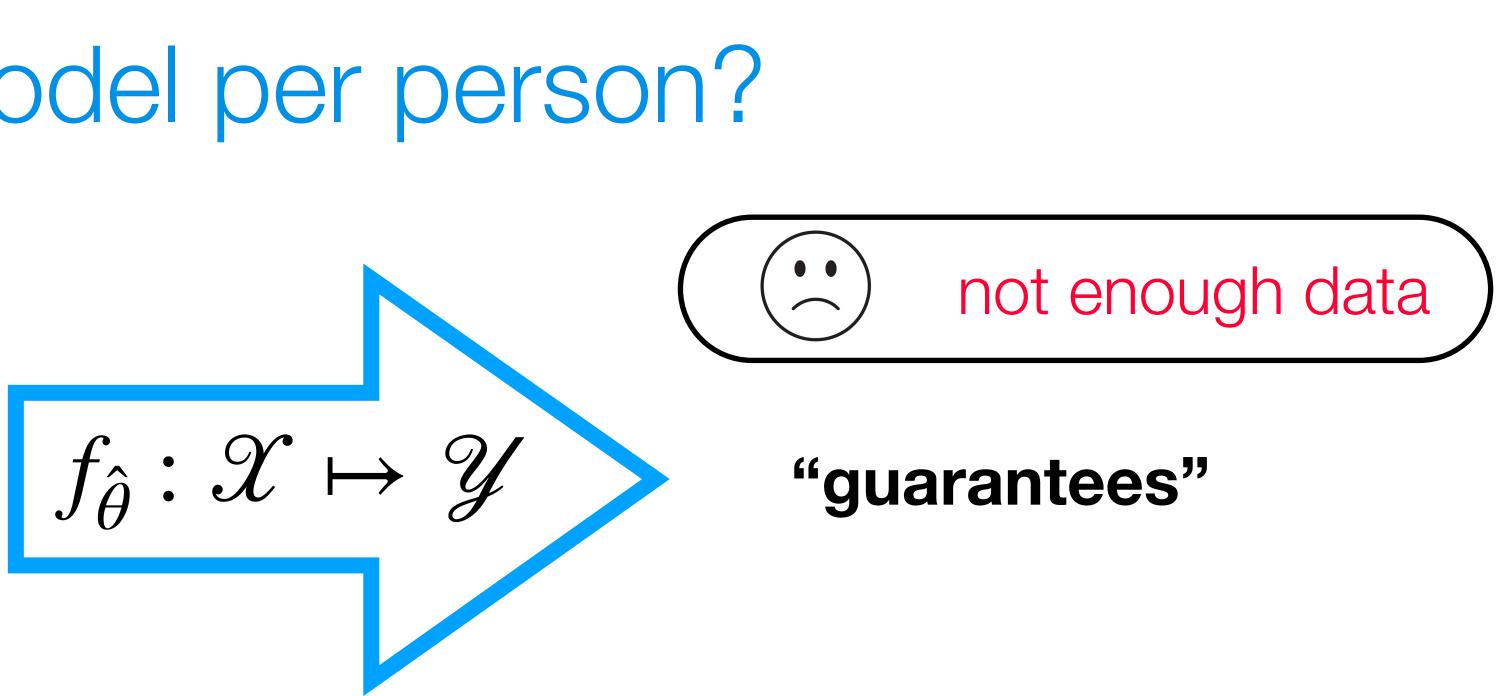
randomly initialize $\theta_1 \in \Theta$ pick learning rate $\eta > 0$ for i = 1, ..., msample (x_i, y_i) $\theta_{i+1} \leftarrow \theta_i - \eta \, \nabla L(f_{\theta_i}(x_i), y_i)$ **return** $\hat{\theta} \leftarrow \theta_{m+1}$



Can we train one model per person?

"meta-learning is"

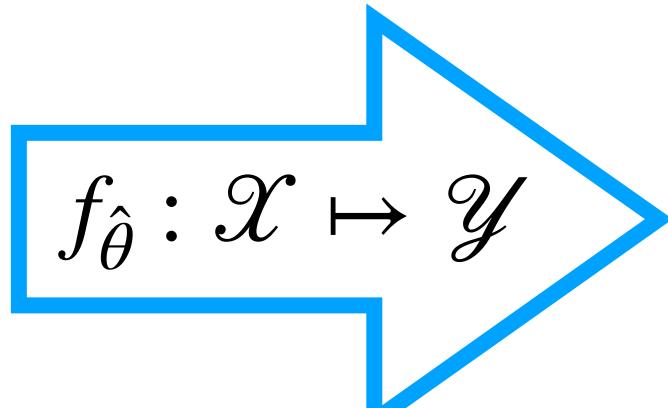
randomly initialize $\theta_1 \in \Theta$ pick learning rate $\eta > 0$ for i = 1, ..., msample (x_i, y_i) $\theta_{i+1} \leftarrow \theta_i - \eta \nabla L(f_{\theta_i}(x_i), y_i)$ **return** $\hat{\theta} \leftarrow \theta_{m+1}$



Can we learn an initialization for SGD?

"meta-learning is"

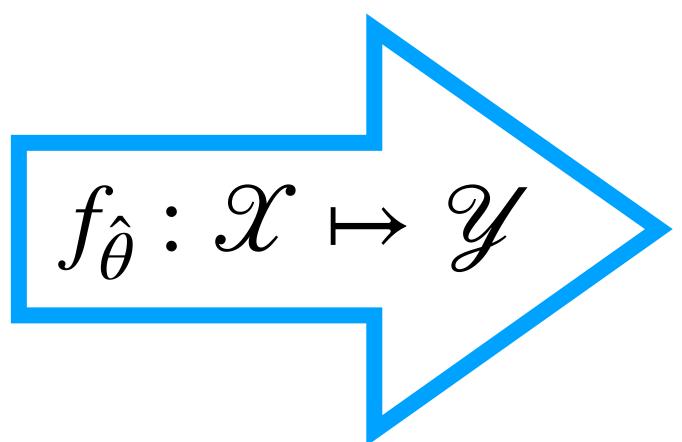
use learned initialization $\theta_1 = \hat{\phi}$ pick learning rate $\eta > 0$ for i = 1, ..., msample (x_i, y_i) $\theta_{i+1} \leftarrow \theta_i - \eta \nabla L(f_{\theta_i}(x_i), y_i)$ **return** $\hat{\theta} \leftarrow \theta_{m+1}$



Can we learn an initialization for SGD?

"meta-learning is"

use learned initialization $\theta_1 = \hat{\phi}$ pick learning rate $\eta > 0$ for i = 1, ..., msample (x_i, y_i) $\theta_{i+1} \leftarrow \theta_i - \eta \nabla L(f_{\theta_i}(x_i), y_i)$ **return** $\hat{\theta} \leftarrow \theta_{m+1}$

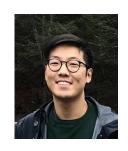


"great!"

randomly meta-initialize $\phi_1 \in \Theta$ pick meta-learning rate $\alpha > 0$

for task t = 1, ..., T

training tasks

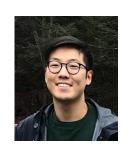


randomly meta-initialize $\phi_1 \in \Theta$ pick meta-learning rate $\alpha > 0$

for task t = 1, ..., T

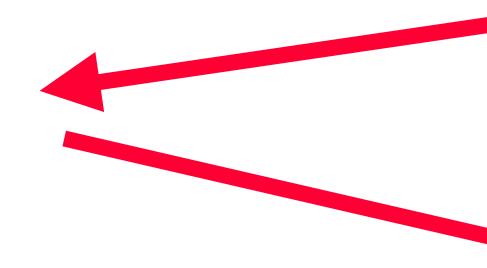
sample task \mathcal{D}_t

training tasks



- randomly meta-initialize $\phi_1 \in \Theta$ pick meta-learning rate $\alpha > 0$
- for task t = 1, ..., T

sample task \mathcal{D}_t



training tasks

task data

randomly meta-initialize $\phi_1 \in \Theta$ pick meta-learning rate $\alpha > 0$

for task t = 1, ..., T

sample task \mathcal{D}_t initialize $\theta_{t,1} = \phi_t$ pick learning rate $\eta > 0$ for i = 1, ..., msample $(x_{t,i}, y_{t,i})$ $\theta_{t,i+1} \leftarrow \theta_{t,i} - \eta \nabla L(f_{\theta_{t,i}}(x_{t,i}), y_{t,i})$ $\hat{\theta}_t \leftarrow \theta_{t,m+1}$

training tasks

task data

- randomly meta-initialize $\phi_1 \in \Theta$ pick meta-learning rate $\alpha > 0$
- for task t = 1, ..., T
 - sample task \mathcal{D}_t

 $\hat{\theta}_t \leftarrow \text{within-task SGD}(\mathcal{D}_t, \phi_t)$

randomly meta-initialize $\phi_1 \in \Theta$ pick meta-learning rate $\alpha > 0$

for task t = 1, ..., T

 $\hat{\theta}_t \leftarrow \text{within-task SGD}(\mathcal{D}_t, \phi_t)$

 $\phi_{t+1} \leftarrow (1 - \alpha)\phi_t + \alpha\hat{\theta}_t$

"meta-update"

randomly meta-initialize $\phi_1 \in \Theta$ pick meta-learning rate $\alpha > 0$

for task t = 1, ..., T

sample task \mathcal{D}_t

 $\hat{\theta}_t \leftarrow \text{within-task SGD}(\mathcal{D}_t, \phi_t)$

$$\phi_{t+1} \leftarrow (1 - \alpha)\phi_t + \alpha\hat{\theta}_t$$

return ϕ_{T+1}

randomly meta-initialize $\phi_1 \in \Theta$ pick meta-learning rate $\alpha > 0$

for task t = 1, ..., T

 $\hat{\theta}_t \leftarrow \text{within-task SGD}(\mathcal{D}_t, \phi_t)$

$$\phi_{t+1} \leftarrow (1 - \alpha)\phi_t + \alpha\hat{\theta}_t$$

return ϕ_{T+1}

(later called $\hat{\phi}$)

Some successful gradient-based algorithms

randomly meta-initialize $\phi_1 \in \Theta$ pick meta-learning rate $\alpha > 0$

for task t = 1, ..., T

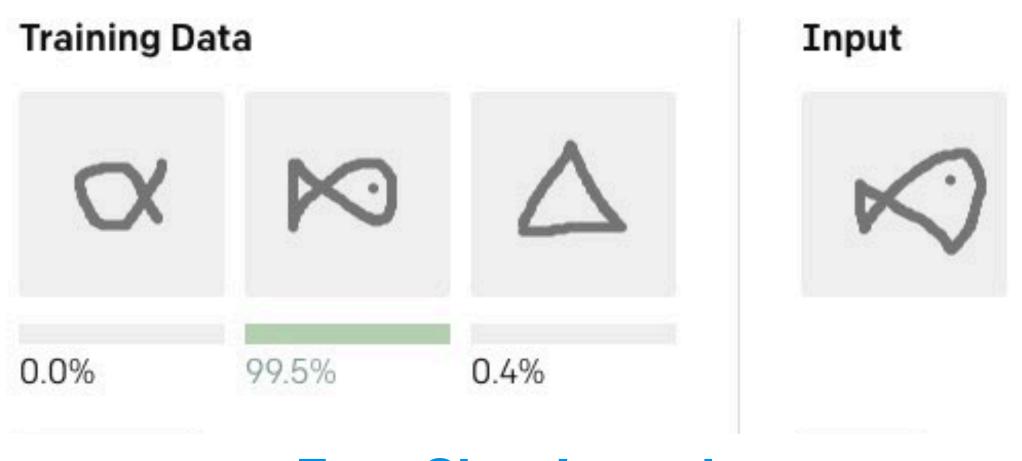
sample task \mathcal{D}_t

 $\hat{\theta}_t \leftarrow \text{within-task SGD}(\mathcal{D}_t, \phi_t)$

$$\phi_{t+1} \leftarrow (1 - \alpha)\phi_t + \alpha\hat{\theta}_t$$

return ϕ_{T+1}

Reptile [Nichol-Achiam-Schulman]



Few-Shot Learning

Some successful gradient-based algorithms

randomly meta-initialize $\phi_1 \in \Theta$ pick meta-learning rate $\alpha > 0$

for task t = 1, ..., T

sample task \mathcal{D}_t

 $\hat{\theta}_t \leftarrow \text{within-task SGD}(\mathcal{D}_t, \phi_t)$

$$\phi_{t+1} \leftarrow (1 - \alpha)\phi_t + \alpha\hat{\theta}_t$$

return ϕ_{T+1}

replace by (non-stochastic) gradient descent

MAML [Finn-Abbeel-Levine]

Meta Reinforcement Learning

Some successful gradient-based algorithms

randomly meta-initialize $\phi_1 \in \Theta$ pick meta-learning rate $\alpha > 0$

for task t = 1, ..., T

sample task \mathcal{D}_{t}

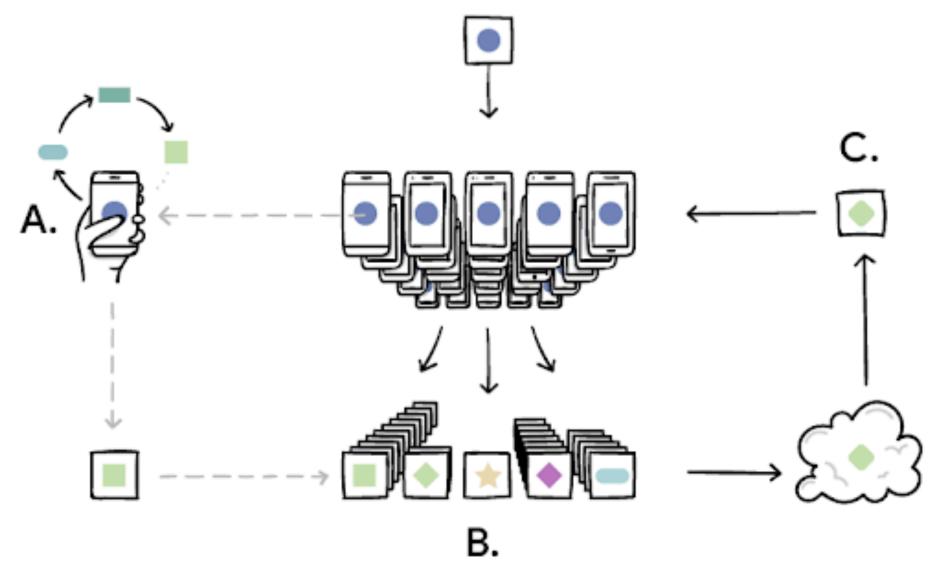
 $\hat{\theta}_t \leftarrow \text{within-task SGD}(\mathcal{D}_t, \phi_t)$

$$\phi_{t+1} \leftarrow (1 - \alpha)\phi_t + \alpha\hat{\theta}_t$$

return ϕ_{T+1}

run k tasks in parallel, update using their average last iterate

FedAvg [McMahan et al.]



Federated Learning with Personalization

Gradient-based meta-learning is simple & flexible.

Input: *T* few-shot training tasks $\{\mathscr{D}\}_{1}^{T}$

- Algorithm: General; only assumes gradient updates
- **Output**: Initialization $\hat{\phi}$ for few-shot test task

...what is it doing?

Input: *T* few-shot training tasks $\{\mathscr{D}\}_{1}^{T}$ **Output**: Initialization $\hat{\phi}$ for few-shot test task

Why/when do gradient-based methods work?

- **Algorithm:** General; only assumes gradient updates

...what is it doing?

Input: T few-shot training tasks $\{\mathcal{D}\}_{1}^{T}$ **Output**: Initialization $\hat{\phi}$ for few-shot test task

Why/when do gradient-based methods work?

- **Algorithm**: General; only assumes gradient updates

What provable guarantees do these algorithms have? Can we design new algorithms for settings of interest?

ARUBA: Our new theoretical framework for meta-learning

Nina Balcan

Ameet Talwalkar

Use online learning to obtain the **first provable guarantees** for initialization-based meta-learning

ARUBA: Our new theoretical framework for meta-learning

ARUBA: Our new theoretical framework for meta-learning

Adapt to changing task-environments

ARUBA: Our new theoretical framework for meta-learning

Obtain faster statistical rates

ARUBA: Our new theoretical framework for meta-learning

Derive new methods for a broad variety of multi-task settings

ARUBA: Our new theoretical framework for meta-learning

ARUBA Framework

- Low-sample learning and gradient-based meta-learning An illustrative result for learning an initialization

Applications

Meta-learning through the lens of online learning

Online Learning

for i = 1, ..., mpick action $\theta_i \in \Theta$ suffer loss $\ell_i(\theta_i)$

Meta-learning through the lens of online learning

Measure per-task performance via regret

$$R = \sum_{i=1}^{m} \ell_i(\theta_i) - \ell_i(\theta^*)$$
 best in

Online Learning

for i = 1, ..., mpick action $\theta_i \in \Theta$ suffer loss $\ell_i(\theta_i)$

fixed action hindsight

Meta-learning through the lens of online learning Online Learning Measure per-task performance via regret for i = 1, ..., m

$$R = \sum_{i=1}^{m} \ell_i(\theta_i) - \ell_i(\theta^*)$$
 best in

Non-IID Data / Tasks: Models realistic settings (e.g. mobile, RL data; lifelong learning)

pick action $\theta_i \in \Theta$ suffer loss $\ell_i(\theta_i)$

t fixed action hindsight

Meta-learning through the lens of online learning Online Learning Measure per-task performance via regret for i = 1, ..., m

$$R = \sum_{i=1}^{m} \ell_i(\theta_i) - \ell_i(\theta^*)$$
 best in

Non-IID Data / Tasks: Models realistic settings (e.g. mobile, RL data; lifelong learning) **IID Implications:** Online-to-batch conversion results

pick action $\theta_i \in \Theta$ suffer loss $\ell_i(\theta_i)$

t fixed action hindsight

Meta-learning through the lens of online learning Online Learning Measure per-task performance via regret for i = 1, ..., m

$$R = \sum_{i=1}^{m} \ell_i(\theta_i) - \ell_i(\theta^*)$$
 best in

IID Implications: Online-to-batch conversion results

pick action $\theta_i \in \Theta$ suffer loss $\ell_i(\theta_i)$

fixed action hindsight

- **Non-IID Data / Tasks:** Models realistic settings (e.g. mobile, RL data; lifelong learning)
- **Generality:** Can adapt / generalize numerous online learning results to meta-learning

Single-Task Learning

Training Data $(x_1, y_1), \dots, (x_m, y_m)$

best fixed action in hindsight

 \mathcal{M} $R = \sum_{i} \ell_{i}(\theta_{i}) - \ell_{i}(\theta^{*})$ i = 1

Hypothesis Class $\{f_{\theta}: \mathcal{X} \mapsto \mathcal{Y}: \theta \in \Theta \subset \mathbb{R}^d\}$

Loss Function $\mathscr{C}_{i}(\theta) = L(f_{\theta}(x_{i}), y_{i})$ $L:\mathscr{Y}\times\mathscr{Y}\mapsto\mathbb{R}$

Single-Task Learning

Training Data $(x_1, y_1), \dots, (x_m, y_m)$ Hypothesis Class $\{f_{\theta} : \mathcal{X} \mapsto \mathcal{Y} : \theta \in \Theta \subset \mathbb{R}^d\}$

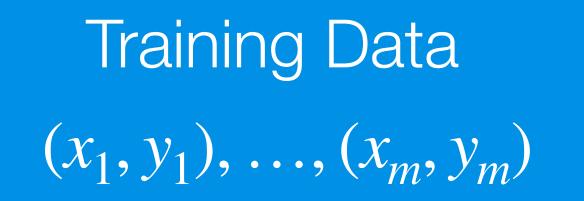
best fixed action in hindsight

 \mathcal{M} $R = \sum_{i} \ell_{i}(\theta_{i}) - \ell_{i}(\theta^{*})$ i=1

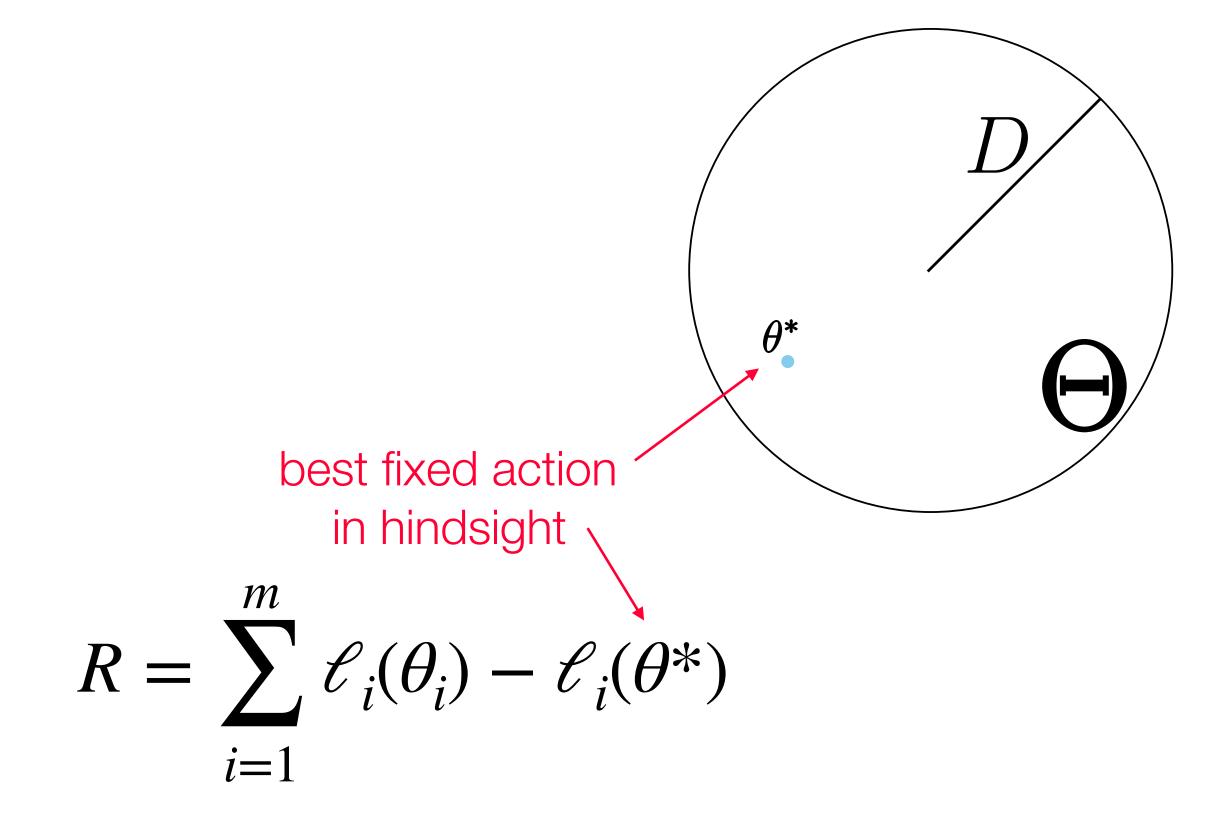
Loss Function $\ell_i(\theta) = L(f_{\theta}(x_i), y_i)$

Online Gradient Descent (OGD)

randomly initialize $\theta_1 \in \Theta, \quad \eta > 0$ **for** i = 1, ..., m $\theta_{i+1} \leftarrow \theta_i - \eta \nabla \ell_i(\theta_i)$ **suffer** $\ell_i(\theta_i)$



Hypothesis Class $\{f_{\theta} : \mathcal{X} \mapsto \mathcal{Y} : \theta \in \Theta \subset \mathbb{R}^d\}$

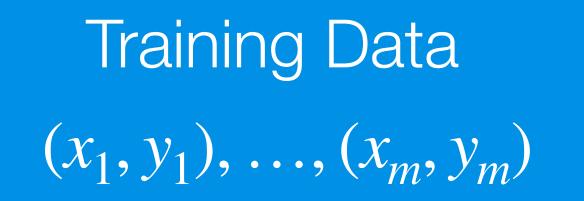


Loss Function $\ell_i(\theta) = L(f_{\theta}(x_i), y_i)$

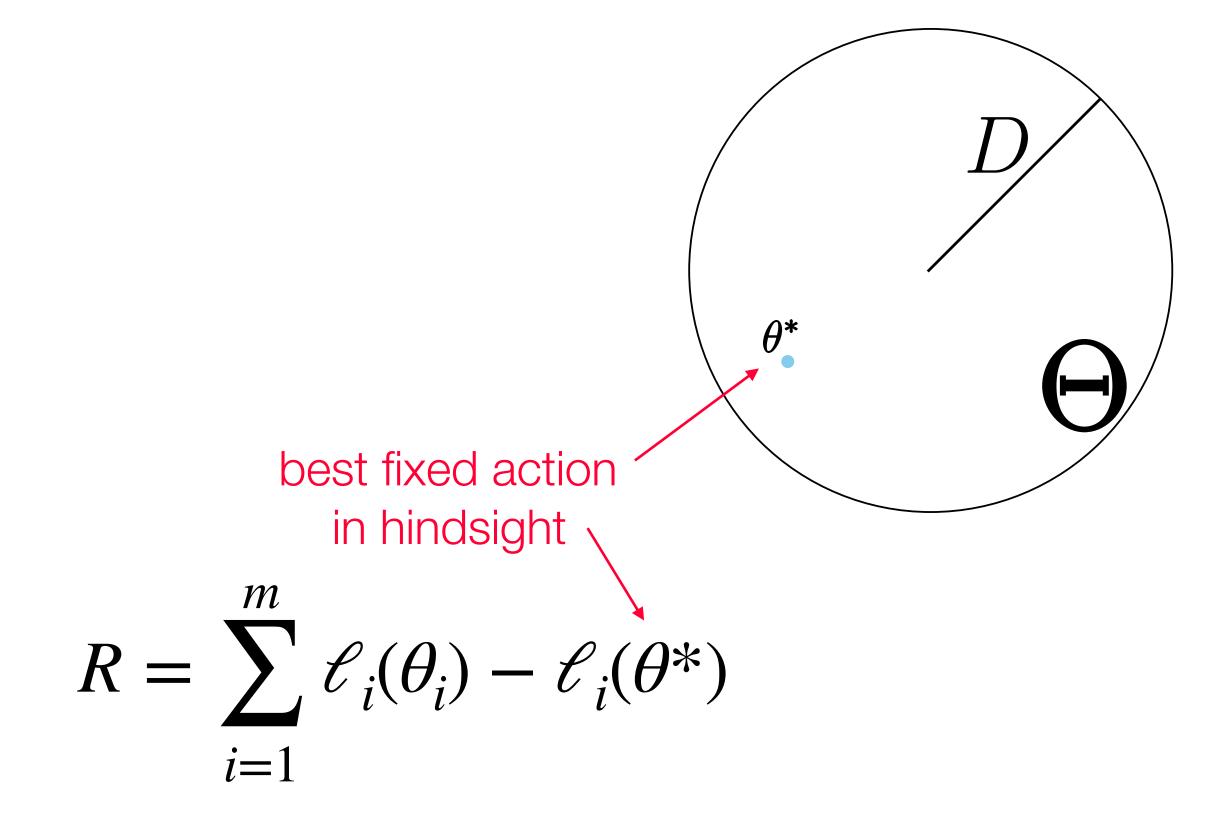
Online Gradient Descent (OGD)

Size of Action Space: $D = radius(\Theta)$

OGD upper-bound: $R = \mathcal{O}(D\sqrt{m})$



Hypothesis Class $\{f_{\theta}: \mathcal{X} \mapsto \mathcal{Y}: \theta \in \Theta \subset \mathbb{R}^{d}\}$



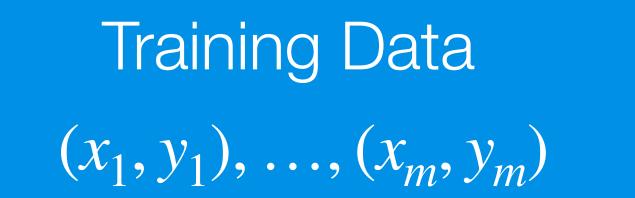
Loss Function $\ell_i(\theta) = L(f_{\theta}(x_i), y_i)$

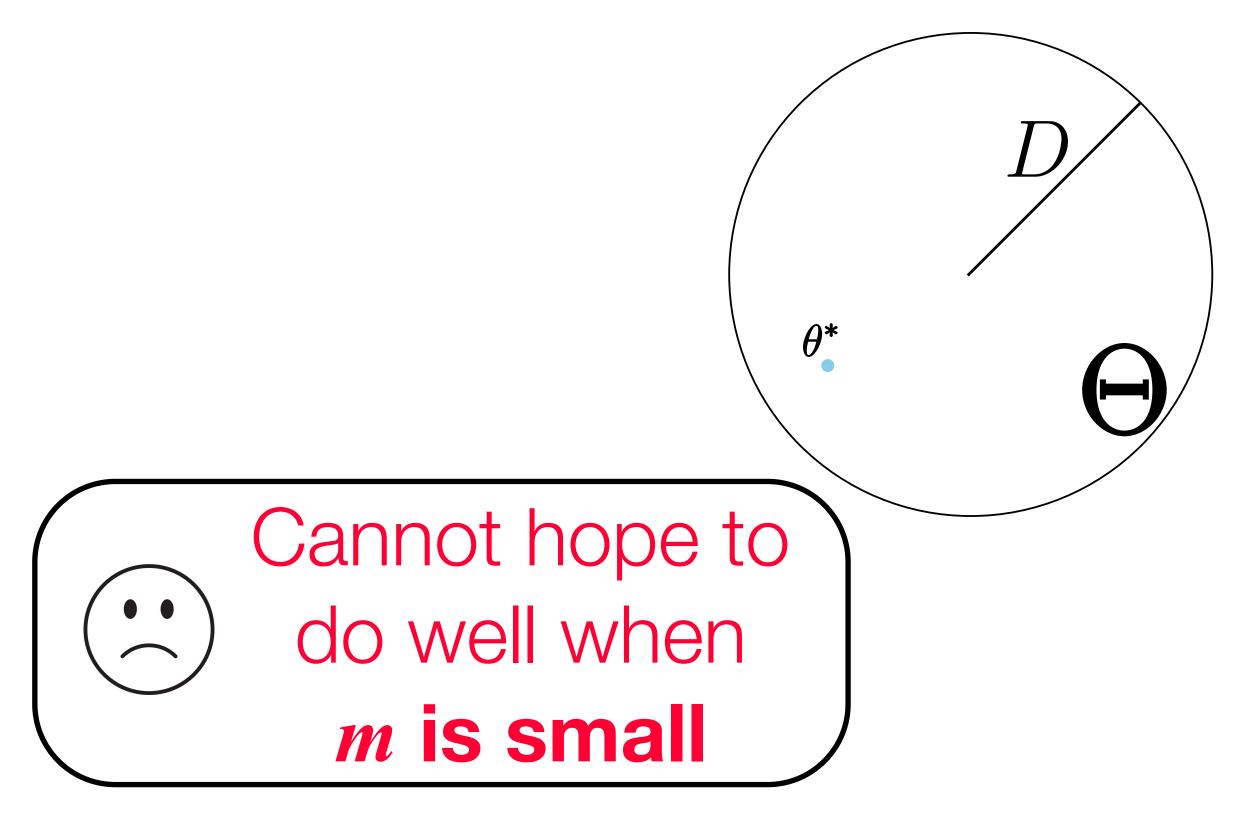
Online Gradient Descent (OGD)

Size of Action Space: $D = radius(\Theta)$

OGD upper-bound: $R = \mathcal{O}(D\sqrt{m})$

Matching lower-bound: $R = \Omega \left(D \sqrt{m} \right)$





Hypothesis Class $\{f_{\theta}: \mathcal{X} \mapsto \mathcal{Y}: \theta \in \Theta \subset \mathbb{R}^d\}$

Loss Function $\mathscr{C}_i(\theta) = L(f_{\theta}(x_i), y_i)$

Online Gradient Descent (OGD)

Size of Action Space: $D = radius(\Theta)$

OGD upper-bound: $R = \mathcal{O}(D\sqrt{m})$

Matching lower-bound: $R = \Omega \left(D \sqrt{m} \right)$ (for any algorithm)

Training Data $(x_1, y_1), \dots, (x_m, y_m)$

 θ^*

Key Question: can we do better using multi-task information?

Hypothesis Class $\{f_{\theta}: \mathcal{X} \mapsto \mathcal{Y}: \theta \in \Theta \subset \mathbb{R}^d\}$

Loss Function $\mathscr{C}_i(\theta) = L(f_{\theta}(x_i), y_i)$

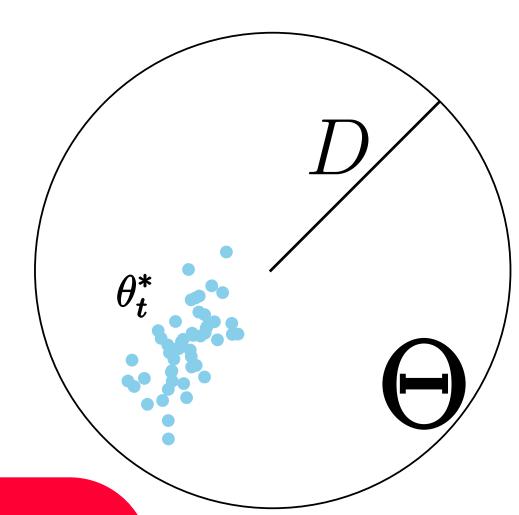
Online Gradient Descent (OGD)

Size of Action Space: $D = radius(\Theta)$

OGD upper-bound: $R = \mathcal{O}(D\sqrt{m})$

Matching lower-bound: $R = \Omega \left(D \sqrt{m} \right)$ (for any algorithm)

Training Data $(x_1, y_1), \dots, (x_m, y_m)$



Key Question: can we do better using on-average across tasks?

Hypothesis Class $\{f_{\theta}: \mathcal{X} \mapsto \mathcal{Y}: \theta \in \Theta \subset \mathbb{R}^d\}$

Loss Function $\mathscr{C}_i(\theta) = L(f_{\theta}(x_i), y_i)$

Online Gradient Descent (OGD)

Size of Action Space: $D = radius(\Theta)$

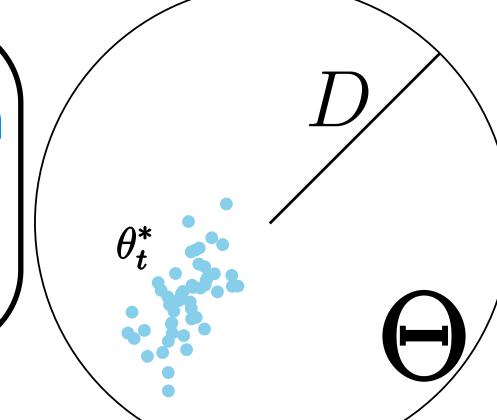
OGD upper-bound: $R = \mathcal{O}(D\sqrt{m})$

Matching lower-bound: $R = \Omega \left(D \sqrt{m} \right)$ (for any algorithm)

Training Data $(x_1, y_1), \dots, (x_m, y_m)$ Hypothesis Class $\{f_{\theta}: \mathcal{X} \mapsto \mathcal{Y}: \theta \in \Theta \subset \mathbb{R}^d\}$

Learn an initialization

sequentially from
 previous *t* tasks



Key Question: can we do better using on-average across tasks? Loss Function $\ell_i(\theta) = L(f_{\theta}(x_i), y_i)$

Online Gradient Descent (OGD)

Size of Action Space: $D = radius(\Theta)$

OGD upper-bound: $R = \mathcal{O}(D\sqrt{m})$

Matching lower-bound: $R = \Omega \left(D \sqrt{m} \right)$

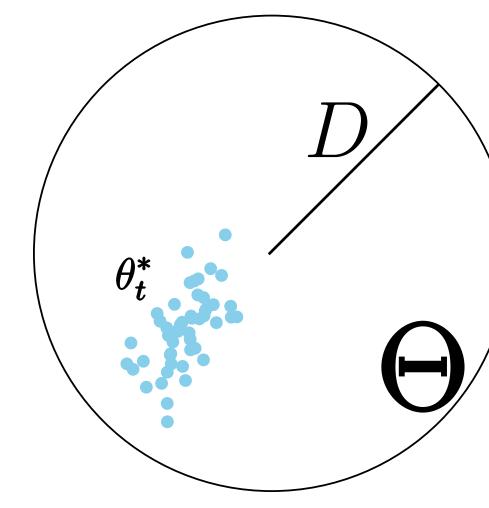
Training DataHypothesis Class $(x_{1,1}, y_{1,1}), \dots, (x_{T,m}, y_{T,m})$ $\{f_{\theta} : \mathcal{X} \mapsto \mathcal{Y} : \theta \in \Theta \subset \mathbb{R}^d\}$

Loss Function $\ell_{t,i}(\theta) = L(f_{\theta}(x_{t,i}), y_{t,i})$

Training DataHypothesis Class $(x_{1,1}, y_{1,1}), \dots, (x_{T,m}, y_{T,m})$ $\{f_{\theta} : \mathcal{X} \mapsto \mathcal{Y} : \theta \in \Theta \subset \mathbb{R}^d\}$

Average Regret: $\bar{R} = \frac{1}{T} \sum_{t=1}^{T} R_t = \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{m} \ell_{t,i}(\theta_{t,i}) - \ell_{t,i}(\theta_t^*)$

Loss Function $\ell_{t,i}(\theta) = L(f_{\theta}(x_{t,i}), y_{t,i})$

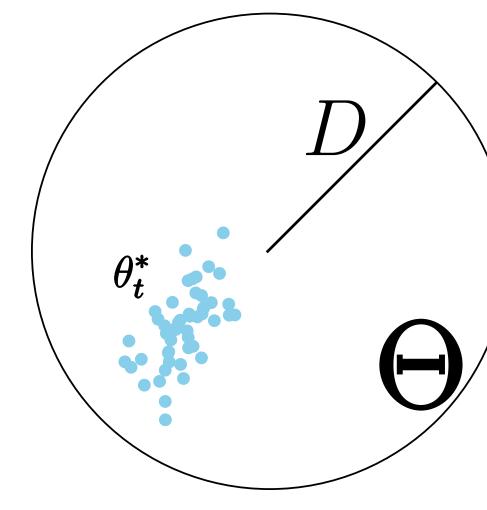


Training DataHypothesis Class $(x_{1,1}, y_{1,1}), \dots, (x_{T,m}, y_{T,m})$ $\{f_{\theta} : \mathcal{X} \mapsto \mathcal{Y} : \theta \in \Theta \subset \mathbb{R}^d\}$

Average Regret: $\bar{R} = \frac{1}{T} \sum_{t=1}^{T} R_t = \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{m} \ell_{t,i}(\theta_{t,i}) - \ell_{t,i}(\theta_t^*)$

Task Similarity: $V^2 = \min_{\phi \in \Theta} \frac{1}{T} \sum_{t=1}^{T} ||\theta_t^* - \phi||_2^2$

Loss Function $\mathscr{C}_{t,i}(\theta) = L(f_{\theta}(x_{t,i}), y_{t,i})$

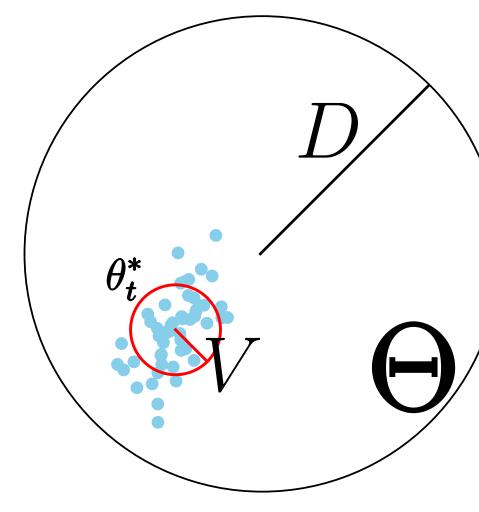


Training DataHypothesis Class $(x_{1,1}, y_{1,1}), \dots, (x_{T,m}, y_{T,m})$ $\{f_{\theta} : \mathcal{X} \mapsto \mathcal{Y} : \theta \in \Theta \subset \mathbb{R}^d\}$

Average Regret: $\bar{R} = \frac{1}{T} \sum_{t=1}^{T} R_t = \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{m} \ell_{t,i}(\theta_{t,i}) - \ell_{t,i}(\theta_t^*)$

Task Similarity: $V^2 = \min_{\phi \in \Theta} \frac{1}{T} \sum_{t=1}^{T} ||\theta_t^* - \phi||_2^2$

Loss Function $\ell_{t,i}(\theta) = L(f_{\theta}(x_{t,i}), y_{t,i})$

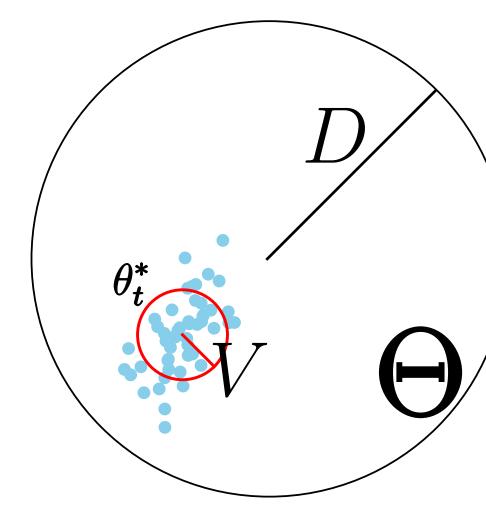


Training Data Hypothesis Class $(x_{1,1}, y_{1,1}), \dots, (x_{T,m}, y_{T,m}) \qquad \{f_{\theta} : \mathcal{X} \mapsto \mathcal{Y} : \theta \in \Theta \subset \mathbb{R}^d\}$

Average Regret: $\bar{R} = \frac{1}{T} \sum_{t=1}^{T} R_t = \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{m} \sum_{i=1}^{m} \ell_{t,i}(\theta_{t,i}) - \ell_{t,i}(\theta_t^*)$

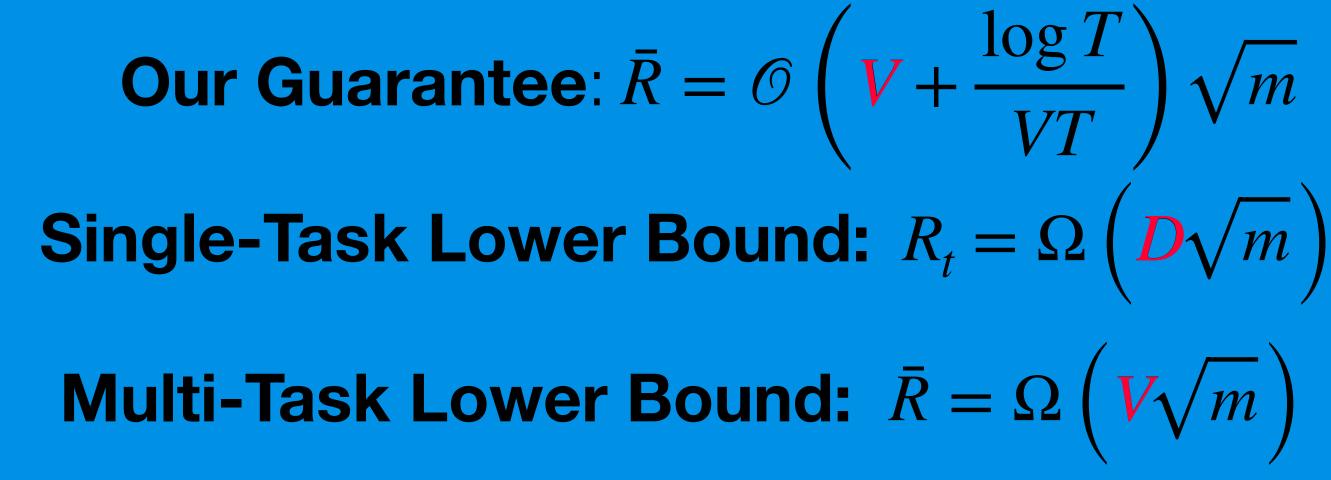
Task Similarity: $V^2 = \min_{\phi \in \Theta} \frac{1}{T} \sum_{t=1}^{T} ||\theta_t^* - \phi||_2^2$ t=1

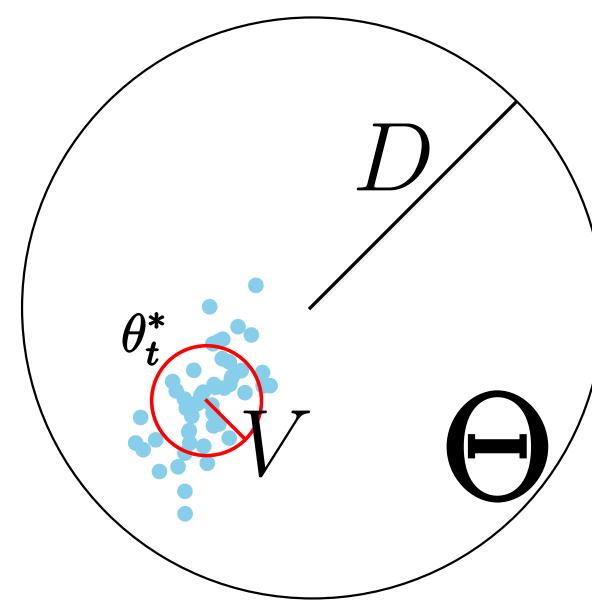
Loss Function $\mathscr{C}_{t,i}(\theta) = L(f_{\theta}(x_{t,i}), y_{t,i})$



V is small when optimal parameters are close together

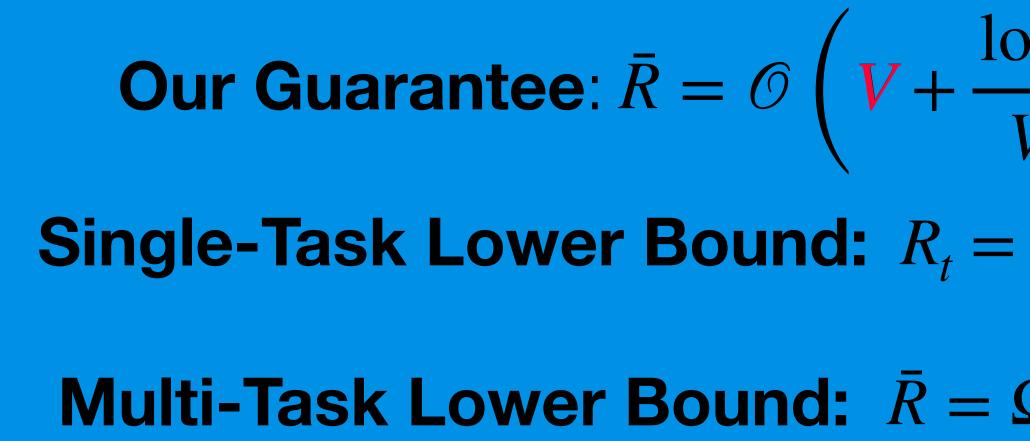
ARUBA: An Illustrative Result





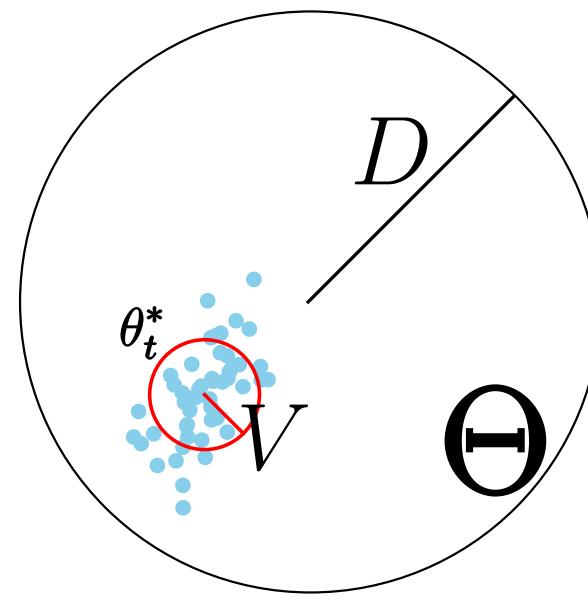
Task Similarity V

ARUBA: An Illustrative Result



$$\frac{\log T}{\sqrt{T}} \sqrt{m}$$

$$\frac{\Omega \left(D \sqrt{m} \right)}{\Omega \left(V \sqrt{m} \right)}$$



Task Similarity V

When optimal task parameters are close together, meta-learning yields much better average performance

for task t = 1, ..., T

sample task \mathcal{D}_t

$\hat{\theta}_t \leftarrow \text{within-task SGD}(\mathcal{D}_t, \phi_t)$

update ϕ_{t+1} using $\hat{\theta}_t$

for task t = 1, ..., T

sample task \mathcal{D}_t

$\hat{\theta}_t \leftarrow \text{within-task OGD}(\mathcal{D}_t, \phi_t)$

update ϕ_{t+1} using $\hat{\theta}_t$

replace SGD by online gradient descent (OGD)

for task t = 1, ..., T

sample task \mathcal{D}_t

within-task OGD(\mathcal{D}_t, ϕ_t)

update ϕ_{t+1} **using** θ_t^*

replace last iterate by optimum-in-hindsight

for task t = 1, ..., T

sample task \mathcal{D}_t

within-task OGD(\mathcal{D}_t, ϕ_t)

update ϕ_{t+1} **using** θ_t^*

replace last iterate by optimum-in-hindsight

(assumes oracle access to last iterate after task completion)

for task t = 1, ..., T

sample task \mathcal{D}_t

within-task OGD(\mathcal{D}_t, ϕ_t)

update ϕ_{t+1} **using** θ_t^*

replace last iterate by optimum-in-hindsight

(assumes oracle access to last iterate after task completion)

(can be relaxed under a non-degeneracy assumption)

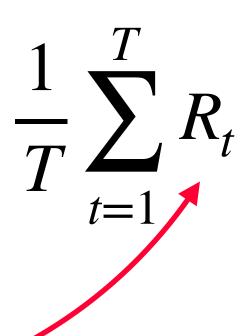
for task t = 1, ..., T

sample task \mathcal{D}_t

within-task OGD(\mathcal{D}_t, ϕ_t)

update ϕ_{t+1} using θ_t^*

Goal: set ϕ_t to get low average regret across tasks.



for task t = 1, ..., T

sample task \mathcal{D}_t

within-task OGD(\mathcal{D}_t, ϕ_t)

update ϕ_{t+1} using θ_t^*

Goal: set ϕ_t to get low average regret across tasks.

$$\frac{1}{T} \sum_{t=1}^{T} R_t \leq \frac{1}{T} \sum_{t=1}^{T} U_t(\phi_t)$$
regret-upper-bound

Key Idea:ÝUse online learning to optimize asequence of OGD regret bounds.

Single-task regret guarantees are often **nice** and data-dependent functions of the algorithm parameters.

for OGD(\mathcal{D}_t, ϕ) :

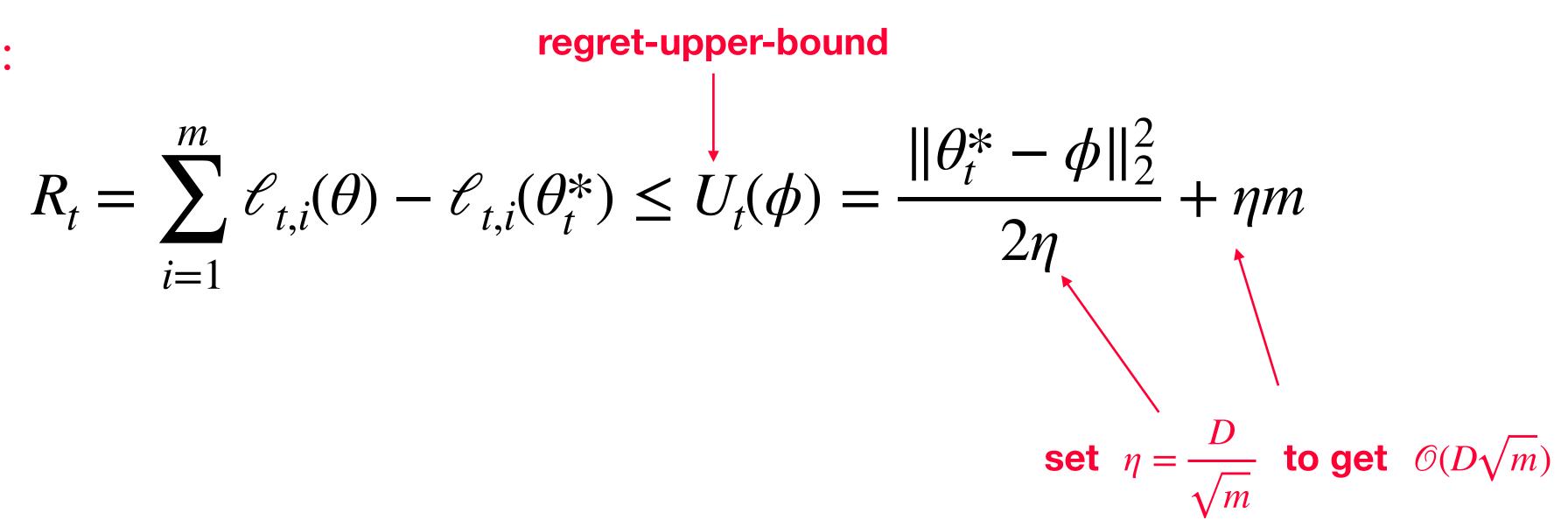
$$R_t = \sum_{i=1}^m \mathscr{C}_{t,i}(\theta) - \mathscr{C}_{t,i}(\theta_t)$$

Single-task regret guarantees are often **nice** and data-dependent functions of the algorithm parameters.

 $\mathcal{P}^*_{\star}) = \mathcal{O}(D\sqrt{m})$

Single-task regret guarantees are often **nice** and data-dependent functions of the algorithm parameters.

for OGD(\mathcal{D}_t, ϕ) :



for OGD(\mathcal{D}_t, ϕ) :

$$R_t = \sum_{i=1}^m \ell_{t,i}(\theta) - \ell_{t,i}(\theta_t)$$

<u>Average Regret-Upper-Bound Analysis:</u>

reduce the analysis of meta-learning algorithms to online learning over within-task regret-upper-bounds

Single-task regret guarantees are often **nice** and data-dependent functions of the algorithm parameters.

regret-upper-bound $(\theta_t^*) \le U_t(\phi) = \frac{\|\theta_t^* - \phi\|_2^2}{2n} + \eta m$

for task t = 1, ..., T

sample task \mathcal{D}_t

within-task OGD(\mathcal{D}_t, ϕ_t)

update ϕ_{t+1} using θ_t^*

Goal: set ϕ_t to get low average regret across tasks.

$$\frac{1}{T} \sum_{t=1}^{T} R_t \leq \frac{1}{T} \sum_{t=1}^{T} U_t(\phi_t)$$

regret-upper-bound

Key Idea:Image: Constraint of the second second

for task t = 1, ..., T

sample task \mathcal{D}_t

within-task OGD(\mathcal{D}_t, ϕ_t)

update ϕ_{t+1} using θ_t^*

Goal: set ϕ_t to get low average regret across tasks.

 2η

$$\frac{1}{T} \sum_{t=1}^{T} R_t \leq \frac{1}{T} \sum_{t=1}^{T} U_t(\phi_t)$$
$$U_t(\phi_t) = \frac{\|\theta_t^* - \phi_t\|_2^2}{2m} + \eta m$$

Key Idea: Use online learning to optimize a sequence of OGD regret bounds.

for task t = 1, ..., T

sample task \mathcal{D}_t

within-task OGD(\mathcal{D}_t, ϕ_t)

update ϕ_{t+1} using θ_t^*

Goal: set ϕ_t to get low average regret across tasks.

$$U_t(\phi_t) = \frac{\|\theta_t^* - \phi_t\|_2^2}{2\eta} + \eta m$$

for task t = 1, ..., T

sample task \mathcal{D}_t

within-task OGD(\mathcal{D}_t, ϕ_t)

Goal: set ϕ_t to get low average regret across tasks.

$$U_t(\phi_t) = \frac{\|\theta_t^* - \phi_t\|_2^2}{2\eta} + \eta m$$

for task t = 1, ..., T

sample task \mathcal{D}_t

within-task OGD(\mathcal{D}_t, ϕ_t)

 $\phi_{t+1} \leftarrow \phi_t - \alpha(\phi_t - \theta_{\star}^*)$

Goal: set ϕ_t to get low average regret across tasks.

$$U_t(\phi_t) = \frac{\|\theta_t^* - \phi_t\|_2^2}{2\eta} + \eta m$$

for task t = 1, ..., T

sample task \mathcal{D}_t

within-task OGD(\mathcal{D}_t, ϕ_t)

 $\phi_{t+1} \leftarrow (1 - \alpha)\phi_t + \alpha \theta_t^*$

Goal: set ϕ_t to get low average regret across tasks.

$$U_t(\phi_t) = \frac{\|\theta_t^* - \phi_t\|_2^2}{2\eta} + \eta m$$

for task t = 1, ..., T

sample task \mathcal{D}_t

within-task OGD(\mathcal{D}_t, ϕ_t)

$$\phi_{t+1} \leftarrow (1 - \alpha)\phi_t + \alpha \theta_t^*$$

(almost) same update as Reptile!

Goal: set ϕ_t to get low average regret across tasks.

$$U_t(\phi_t) = \frac{\|\theta_t^* - \phi_t\|_2^2}{2\eta} + \eta m$$

for task t = 1, ..., T

sample task \mathcal{D}_t

within-task OGD(\mathcal{D}_t, ϕ_t)

$$\phi_{t+1} \leftarrow (1 - \alpha)\phi_t + \alpha \theta_t^*$$

(almost) same update as Reptile!

Goal: set ϕ_t to get low average regret across tasks.

$$U_t(\phi_t) = \frac{\|\theta_t^* - \phi_t\|_2^2}{2\eta} + \eta m$$

Key Idea: apply OGD Regret guarantee:

$$\sum_{t=1}^{T} U_t(\phi_t) - \min_{\phi \in \Theta} \sum_{t=1}^{T} U_t(\phi) \le \mathcal{O}\left(\frac{\log T}{\eta}\right)$$

Step 1: Substitute Regret-Upper-Bound

$$\frac{1}{T} \sum_{t=1}^{T} R_t \le \frac{1}{T} \sum_{t=1}^{T} U_t(\phi_t)$$

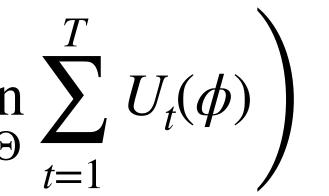
1. Control average within-task performance using average regret-upper-bound

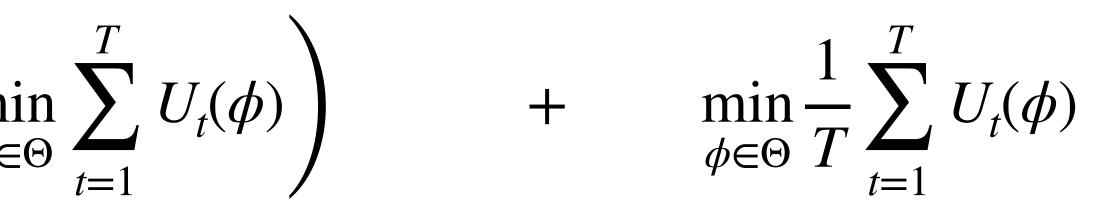
1. Control average within-task performance using average regret-upper-bound

Step 1: Substitute Regret-Upper-Bound

$$\frac{1}{T}\sum_{t=1}^{T} R_t \le \frac{1}{T}\sum_{t=1}^{T} U_t(\phi_t) = \frac{1}{T} \left(\sum_{t=1}^{T} U_t(\phi_t) - \min_{\phi \in \Phi_t} \psi_t(\phi_t) - \min$$

Addition/Subtraction





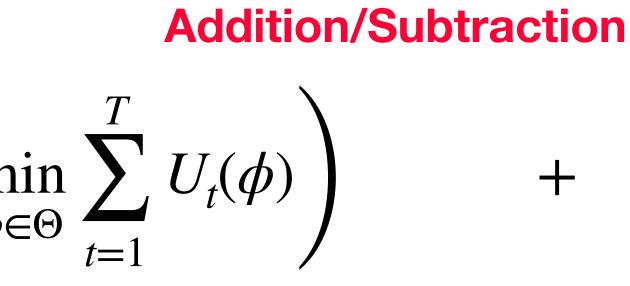
1. Control average within-task performance using average regret-upper-bound

Step 1: Substitute Regret-Upper-Bound

$$\frac{1}{T}\sum_{t=1}^{T} R_t \le \frac{1}{T}\sum_{t=1}^{T} U_t(\phi_t) = \frac{1}{T} \left(\sum_{t=1}^{T} U_t(\phi_t) - \min_{\phi \in \Phi_t} \frac{1}{T} \left$$

Step 2: Across-task OGD $= \frac{1}{T} \left(\sum_{t=1}^{T} \frac{\|\theta_{t}^{*} - \phi_{t}\|_{2}^{2}}{2n} - \frac{\|\theta_{t}^{*} - \phi_{t}\|_{2}^{2}}{2n} \right)$

- 2. Use across-task OGD to set initialization so that average upper bound is small



$$\min_{\phi \in \Theta} \frac{1}{T} \sum_{t=1}^{T} U_t(\phi)$$

$$\min_{\phi \in \Theta} \frac{\|\theta_t^* - \phi\|_2^2}{2\eta} \right)$$

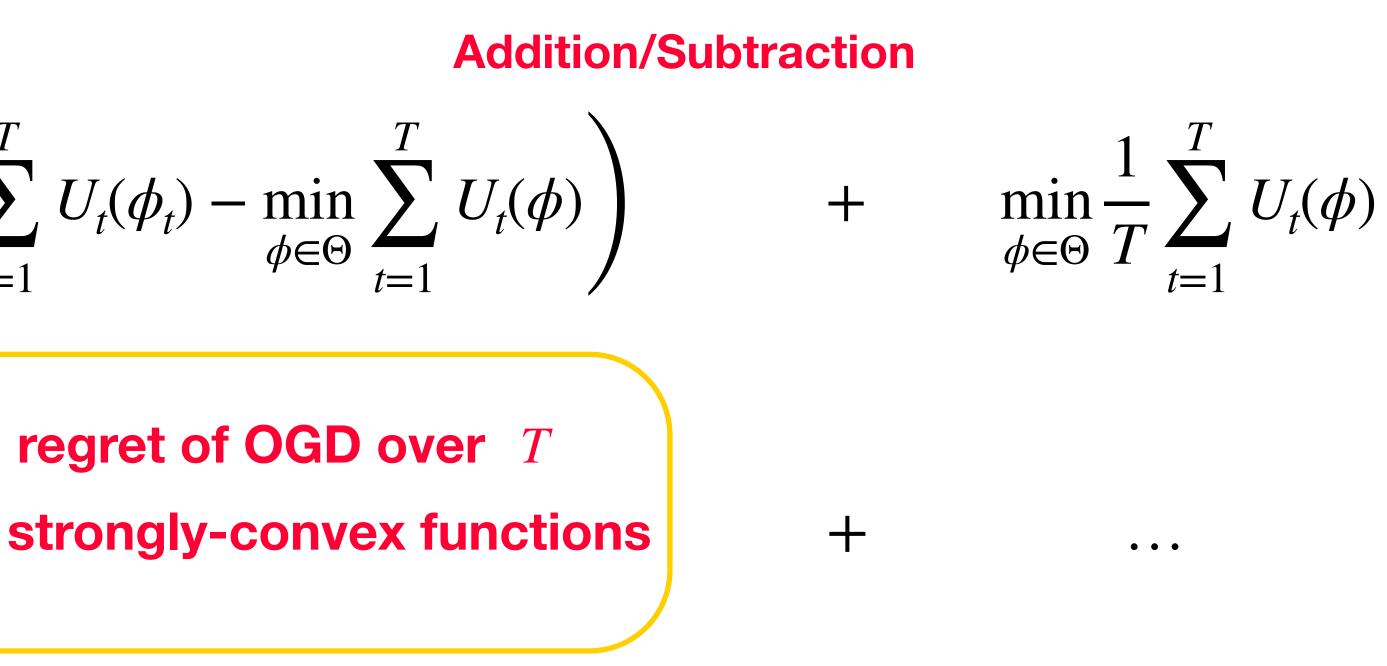
1. Control average within-task performance using average regret-upper-bound

Step 1: Substitute Regret-Upper-Bound

$$\frac{1}{T}\sum_{t=1}^{T} R_t \le \frac{1}{T}\sum_{t=1}^{T} U_t(\phi_t) = \frac{1}{T} \left(\sum_{t=1}^{T} U_t(\phi_t) - \min_{\phi \in \Phi_t} U_t(\phi_t) - \min$$

regret of OGD over T

- 2. Use across-task OGD to set initialization so that average upper bound is small



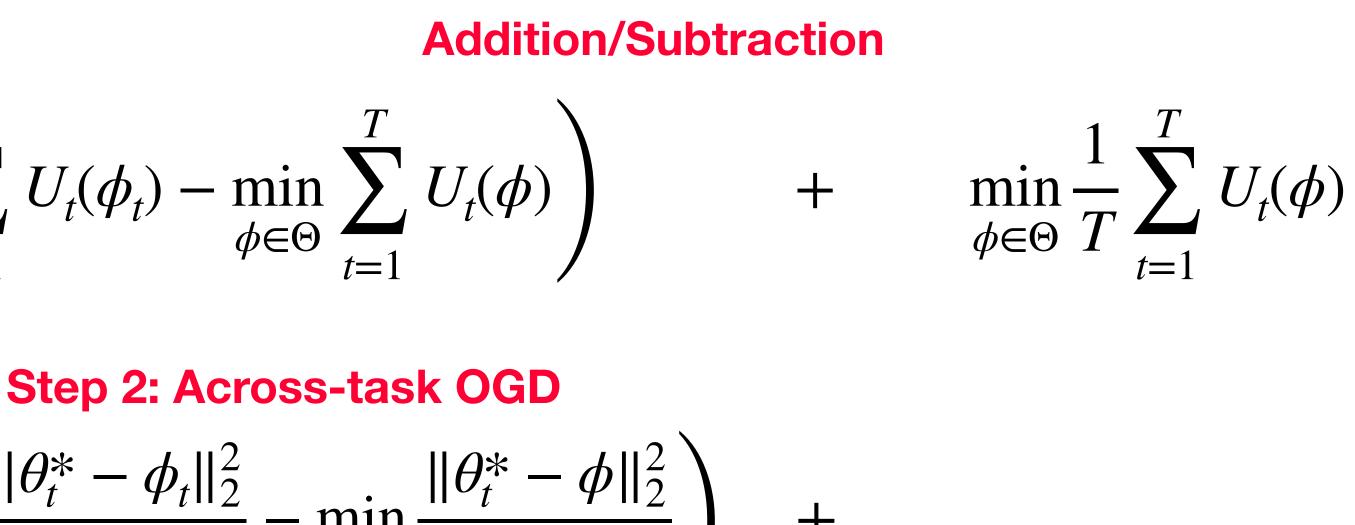
1. Control average within-task performance using average regret-upper-bound

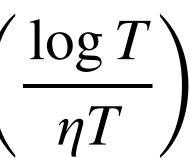
Step 1: Substitute Regret-Upper-Bound

$$\frac{1}{T}\sum_{t=1}^{T} R_t \le \frac{1}{T}\sum_{t=1}^{T} U_t(\phi_t) = \frac{1}{T} \left(\sum_{t=1}^{T} U_t(\phi_t) - \min_{\phi \in \Phi_t} \frac{1}{T} \left$$

 $= \frac{1}{T} \left(\sum_{t=1}^{T} \frac{\|\theta_t^* - \phi_t\|_2^2}{2\eta} - \min_{\phi \in \Theta} \frac{\|\theta_t^* - \phi\|_2^2}{2\eta} \right) +$

- 2. Use across-task OGD to set initialization so that average upper bound is small





1. Control average within-task performance using average regret-upper-bound

3. Analyze impact of task-relatedness on resulting bound

Step 1: Substitute Regret-Upper-Bound

$$\frac{1}{T}\sum_{t=1}^{T} R_t \le \frac{1}{T}\sum_{t=1}^{T} U_t(\phi_t) = \frac{1}{T} \left(\sum_{t=1}^{T} U_t(\phi_t) - \min_{\phi \in \Theta} \sum_{t=1}^{T} U_t(\phi)\right)$$

Step 2: Across-task OGD $= \frac{1}{T} \left(\sum_{t=1}^{T} \frac{\|\theta_{t}^{*} - \phi_{t}\|_{2}^{2}}{2n} - \frac{\|\theta_{t}^{*} - \phi_{t}\|_{2}^{2}}{2n} \right)$

 $(\frac{\log T}{\eta T})$

- 2. Use across-task OGD to set initialization so that average upper bound is small

Addition/Subtraction

+

$$\min_{\phi \in \Theta} \frac{1}{T} \sum_{t=1}^{T} U_t(\phi)$$

Step 3: Impact of Task Relatedness

$$\min_{\phi \in \Theta} \frac{\|\theta_t^* - \phi\|_2^2}{2\eta}$$

$$\min_{\phi \in \Theta} \frac{1}{T} \sum_{t=1}^{T} \frac{\|\theta_t^* - \phi\|_2^2}{2\eta} + \eta t$$

1. Control average within-task performance using average regret-upper-bound

3. Analyze impact of task-relatedness on resulting bound

Step 1: Substitute Regret-Upper-Bound

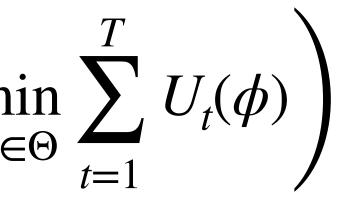
$$\frac{1}{T}\sum_{t=1}^{T} R_t \le \frac{1}{T}\sum_{t=1}^{T} U_t(\phi_t) = \frac{1}{T} \left(\sum_{t=1}^{T} U_t(\phi_t) - \min_{\phi \in \Phi_t} \frac{1}{T} \left$$

Step 2: Across-task OGD $= \frac{1}{T} \left(\sum_{t=1}^{T} \frac{\|\theta_{t}^{*} - \phi_{t}\|_{2}^{2}}{2n} - \prod_{t=1}^{T} \frac{\|\theta_{t}\|_{2}^{2}}{2n} - \prod_{t=1}^{T} \frac{\|\theta_{t$

 $(\frac{\log T}{\eta T})$

- 2. Use across-task OGD to set initialization so that average upper bound is small

Addition/Subtraction



+

$$\min_{\phi \in \Theta} \frac{1}{T} \sum_{t=1}^{T} U_t(\phi)$$

Step 3: Impact of Task Relatedness

$$\min_{\phi \in \Theta} \frac{\|\theta_t^* - \phi\|_2^2}{2\eta} \right)$$

$$\min_{\phi \in \Theta} \frac{1}{T} \sum_{t=1}^{T} \frac{\|\theta_t^* - \phi\|_2^2}{2\eta} + \eta t$$

1. Control average within-task performance using average regret-upper-bound

3. Analyze impact of task-relatedness on resulting bound

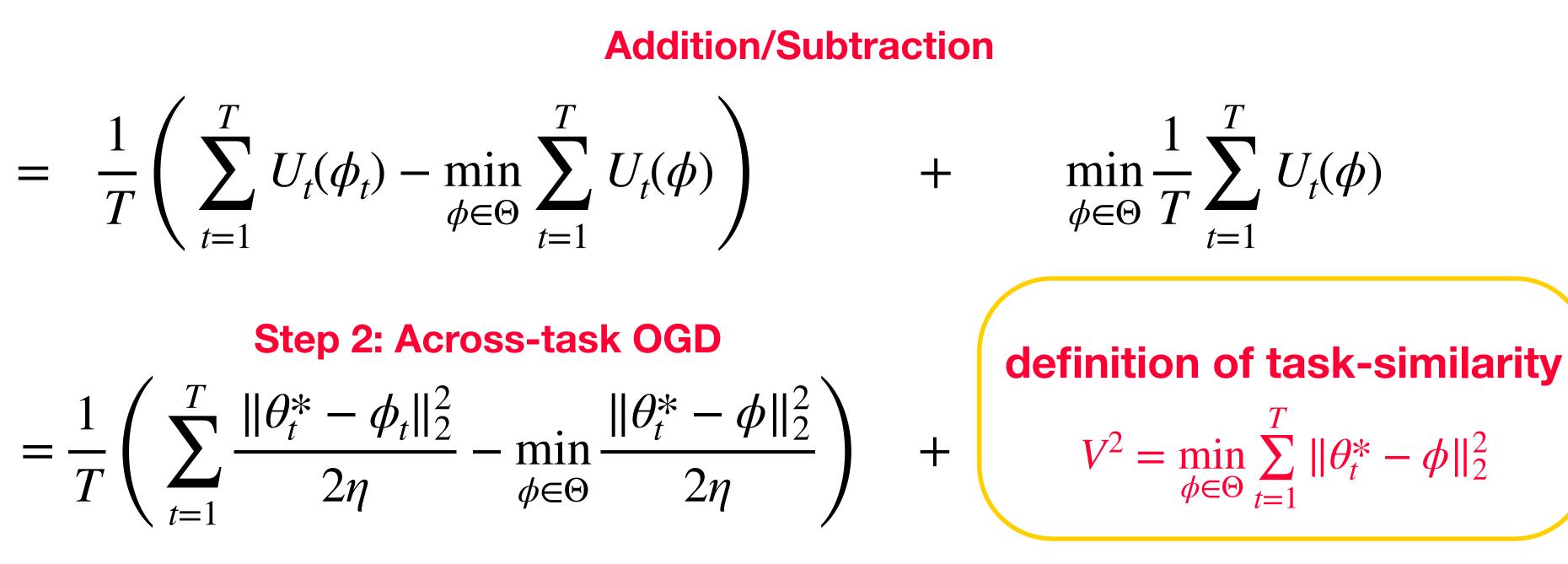
Step 1: Substitute Regret-Upper-Bound

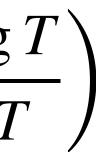
$$\frac{1}{T}\sum_{t=1}^{T} R_t \le \frac{1}{T}\sum_{t=1}^{T} U_t(\phi_t) = \frac{1}{T} \left(\sum_{t=1}^{T} U_t(\phi_t) - \min_{\phi \in \Phi_t} \frac{1}{T} \left$$

Step 2: Across-task OGD

 $\frac{\log 7}{\eta T}$)

- 2. Use across-task OGD to set initialization so that average upper bound is small





1. Control average within-task performance using average regret-upper-bound

3. Analyze impact of task-relatedness on resulting bound

Step 1: Substitute Regret-Upper-Bound

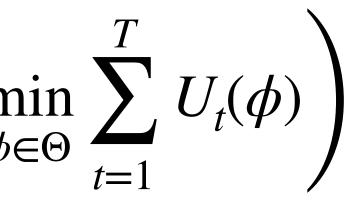
$$\frac{1}{T}\sum_{t=1}^{T} R_t \le \frac{1}{T}\sum_{t=1}^{T} U_t(\phi_t) = \frac{1}{T} \left(\sum_{t=1}^{T} U_t(\phi_t) - \min_{\phi \in \Phi_t} \frac{1}{T} \left$$

Step 2: Across-task OGD $= \frac{1}{T} \left(\sum_{t=1}^{T} \frac{\|\theta_{t}^{*} - \phi_{t}\|_{2}^{2}}{2n} - \frac{\|\theta_{t}^{*} - \phi_{t}\|_{2}^{2}}{2n} \right)$

 $\frac{\log T}{\eta T}$,

- 2. Use across-task OGD to set initialization so that average upper bound is small

Addition/Subtraction



$$+$$

+

╋

$$\min_{\phi \in \Theta} \frac{1}{T} \sum_{t=1}^{T} U_t(\phi)$$

Step 3: Impact of Task Relatedness

$$\min_{\phi \in \Theta} \frac{\|\theta_t^* - \phi\|_2^2}{2\eta}$$

$$\min \frac{1}{2} \sum_{t=1}^{T} \frac{\|\theta_t^* - \phi\|_2^2}{\|\theta_t^* - \phi\|_2^2} \perp n$$

$$\lim_{\phi \in \Theta} \overline{T} \sum_{t=1}^{-1} 2\eta$$

$$\mathcal{O}\left(\frac{V^2}{\eta} + \eta m\right)$$

1. Control average within-task performance using average regret-upper-bound

3. Analyze impact of task-relatedness on resulting bound

Step 1: Substitute Regret-Upper-Bound

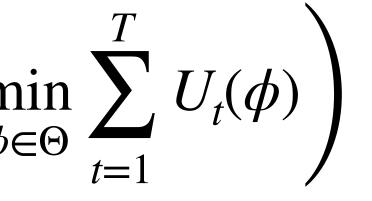
$$\frac{1}{T}\sum_{t=1}^{T} R_t \le \frac{1}{T}\sum_{t=1}^{T} U_t(\phi_t) = \frac{1}{T} \left(\sum_{t=1}^{T} U_t(\phi_t) - \min_{\phi \in \Phi_t} \frac{1}{T} \left$$

Step 2: Across-task OGD $= \frac{1}{T} \left(\sum_{t=1}^{T} \frac{\|\theta_{t}^{*} - \phi_{t}\|_{2}^{2}}{2n} - \frac{\|\theta_{t}\|_{2}^{2}}{2n} - \frac{\|\theta_{t}\|_{2}^{2}}{2n}$

 $\frac{\log T}{nT}$

- 2. Use across-task OGD to set initialization so that average upper bound is small

Addition/Subtraction

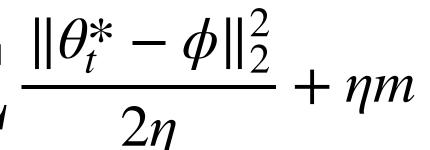


$$\min_{\phi \in \Theta} \frac{1}{T} \sum_{t=1}^{T} U_t(\phi)$$

Step 3: Impact of Task Relatedness

$$-\min_{\phi\in\Theta} \frac{\|\theta_t^* - \phi\|_2^2}{2\eta} + \min_{\phi\in\Theta} \frac{1}{T} \sum_{t=1}^{T} \sum_{t=1}^{T} \frac{1}{t} \sum_$$

$$\mathcal{O}\left(\frac{V^2}{\eta} + \eta m\right)$$



1. Control average within-task performance using average regret-upper-bound

3. Analyze impact of task-relatedness on resulting bound

Step 1: Substitute Regret-Upper-Bound

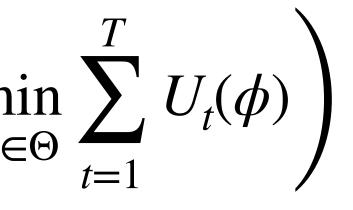
$$\frac{1}{T}\sum_{t=1}^{T} R_t \le \frac{1}{T}\sum_{t=1}^{T} U_t(\phi_t) = \frac{1}{T} \left(\sum_{t=1}^{T} U_t(\phi_t) - \min_{\phi \in \Phi_t} U_t(\phi_t) - \min$$

Step 2: Across-task OGD $= \frac{1}{T} \left(\sum_{t=1}^{T} \frac{\|\theta_{t}^{*} - \phi_{t}\|_{2}^{2}}{2n} - \frac{\|\theta_{t}^{*} - \phi_{t}\|_{2}^{2}}{2n} \right)$

 $\left(\frac{\log T}{VT} \right) v'$

- 2. Use across-task OGD to set initialization so that average upper bound is small

Addition/Subtraction



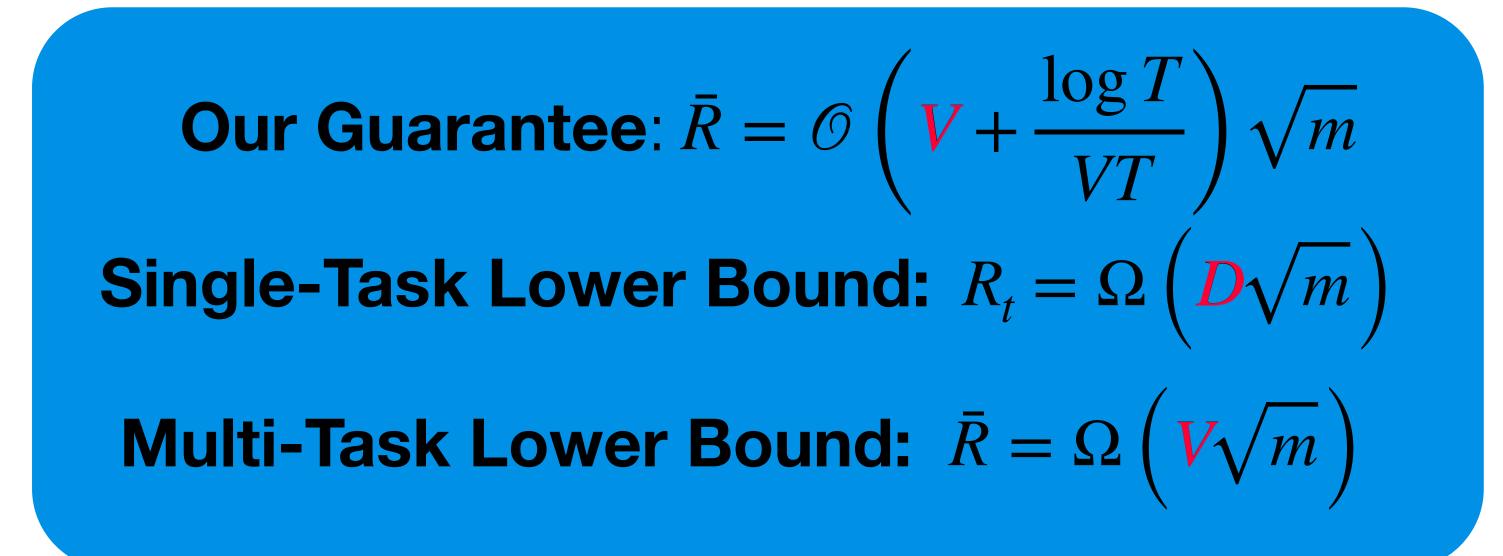
$$\min_{\phi \in \Theta} \frac{1}{T} \sum_{t=1}^{T} U_t(\phi)$$

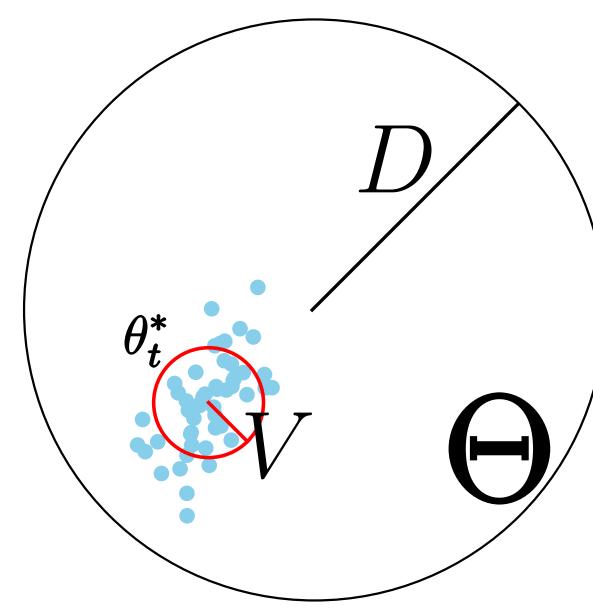
Step 3: Impact of Task Relatedness

$$\min_{\phi \in \Theta} \frac{\|\theta_t^* - \phi\|_2^2}{2\eta} + \min_{\phi \in \Theta} \frac{1}{T} \sum_{t=1}^T \frac{\|\theta_t^* - \phi\|_2^2}{2\eta} + \eta$$

$$\sum_{v \in \Theta} \frac{\text{substitute } \eta = V/\sqrt{m}}{+ O\left(V\sqrt{m}\right)}$$

Recap: what have we achieved?





Task Similarity V

When optimal task parameters are close together, meta-learning yields much better average performance

Online learning of multi-task representations:

Kalai-Livni, ALT 2019]

• Linear representations using online Frank-Wolfe or matrix multiplicative weights [Bullins-Hazan-

Online learning of multi-task representations:

Kalai-Livni, ALT 2019]

Online meta-initialization learning:

- Average regret bounds for online gradient descent [K-Balcan-Talwalkar, ICML 2019]
- Grazzi-Pontil, ICML 2019]
- Learnability of MAML via Follow-the-Leader [Finn-Rajeswaran-Kakade-Levine, ICML 2019]

• Linear representations using online Frank-Wolfe or matrix multiplicative weights [Bullins-Hazan-

• Excess transfer risk bounds on regularized SGD via online-to-batch conversion [Denevi-Ciliberto-

Online learning of multi-task representations:

Kalai-Livni, ALT 2019]

Online meta-initialization learning:

- Average regret bounds for online gradient descent [K-Balcan-Talwalkar, ICML 2019]
- Grazzi-Pontil, ICML 2019]
- Learnability of MAML via Follow-the-Leader [Finn-Rajeswaran-Kakade-Levine, ICML 2019]

General online frameworks for learning parameterized algorithms:

- ARUBA [K-Balcan-Talwalkar, NeurIPS 2019]
- Primal-dual approach [Denevi-Ciliberto-Grazzi-Pontil, NeurIPS 2019]

• Linear representations using online Frank-Wolfe or matrix multiplicative weights [Bullins-Hazan-

• Excess transfer risk bounds on regularized SGD via online-to-batch conversion [Denevi-Ciliberto-

Online learning of multi-task representations:

Kalai-Livni, ALT 2019]

Online meta-initialization learning:

- Average regret bounds for online gradient descent [K-Balcan-Talwalkar, ICML 2019]
- Grazzi-Pontil, ICML 2019]
- Learnability of MAML via Follow-the-Leader [Finn-Rajeswaran-Kakade-Levine, ICML 2019]

General online frameworks for learning parameterized algorithms:

- ARUBA [K-Balcan-Talwalkar, NeurIPS 2019]
- Primal-dual approach [Denevi-Ciliberto-Grazzi-Pontil, NeurIPS 2019]

Non-convex stochastic optimization for meta-initialization:

- Stationary-point convergence for MAML [Fallah-Mokhtari-Ozdaglar, 2019]

• Linear representations using online Frank-Wolfe or matrix multiplicative weights [Bullins-Hazan-

• Excess transfer risk bounds on regularized SGD via online-to-batch conversion [Denevi-Ciliberto-

• Stationary-point convergence of proximal update [Zhou-Yuan-Xu-Yan-Feng, NeurIPS 2019]

What else can we get by applying ARUBA?

Adaptivity

- Learn any base-learner parameter from data

• e.g., improved training algorithms for learning ϕ and η simultaneously

What else can we get by applying ARUBA?

Adaptivity

- Learn any base-learner parameter from data • e.g., improved training algorithms for learning ϕ and η simultaneously Generality
 - Low-dynamic-regret algorithms for changing task-environments Stronger online-to-batch conversions for faster statistical rates

 - Specialized within-task algorithms, e.g., satisfying privacy guarantees

Applications

Adaptivity for improved few-shot learning Federated learning & private meta-learning

ARUBA Framework

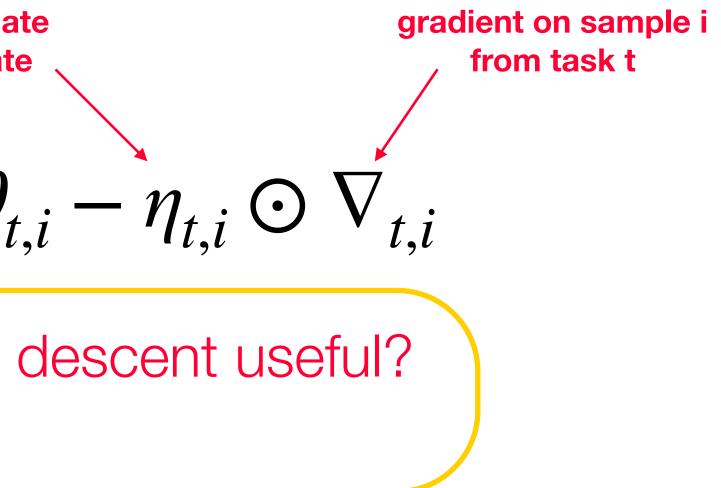
per-coordinate gradient on sample i learning rate from task t $P_{t,i} - \eta_{t,i} \odot \nabla_{t,i}$

$$\theta_{t,i+1} = \theta_t$$

per-coordinate learning rate

$$\theta_{t,i+1} = \theta_t$$

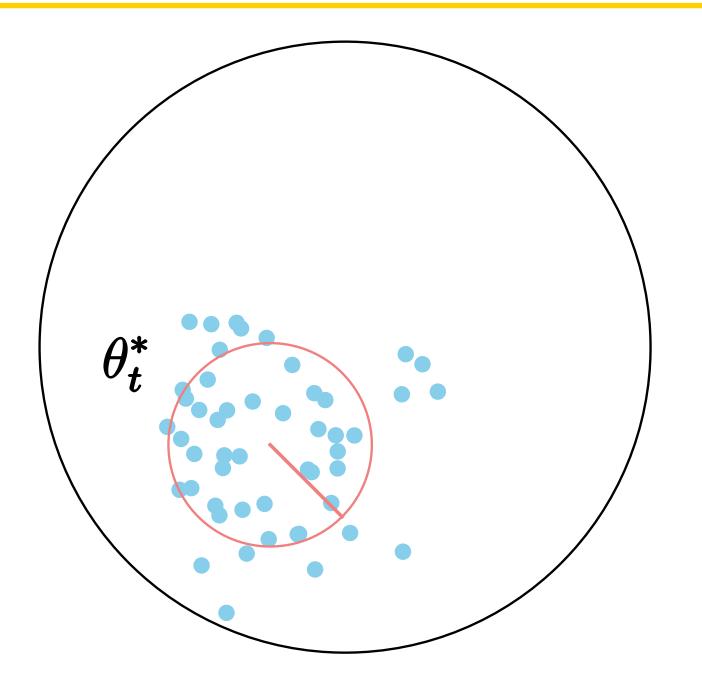
When is pre-conditioned online gradient descent useful?

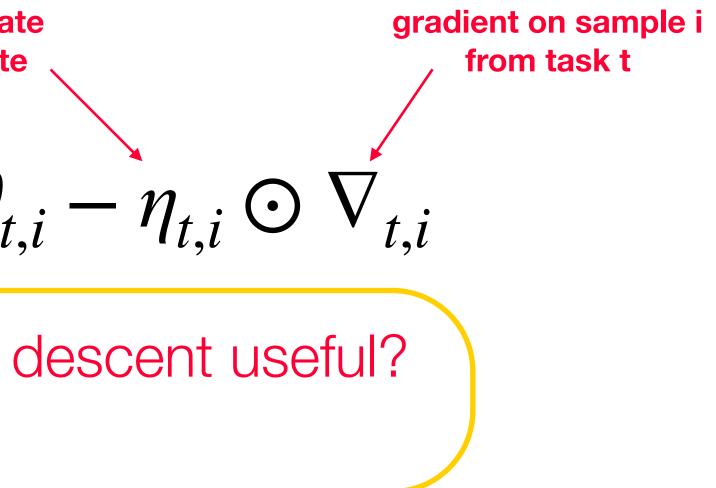


per-coordinate learning rate

$$\theta_{t,i+1} = \theta_t$$

When is pre-conditioned online gradient descent useful? **The convex case:**

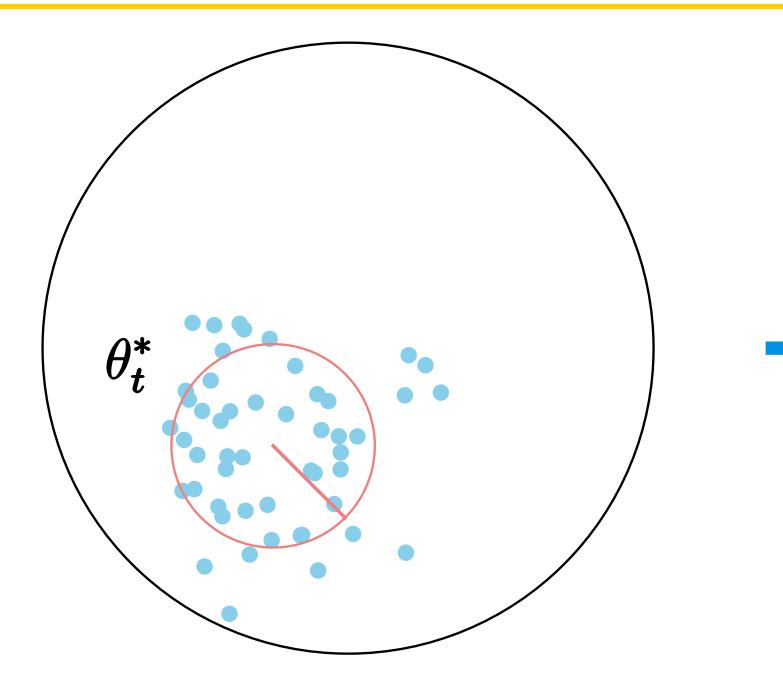


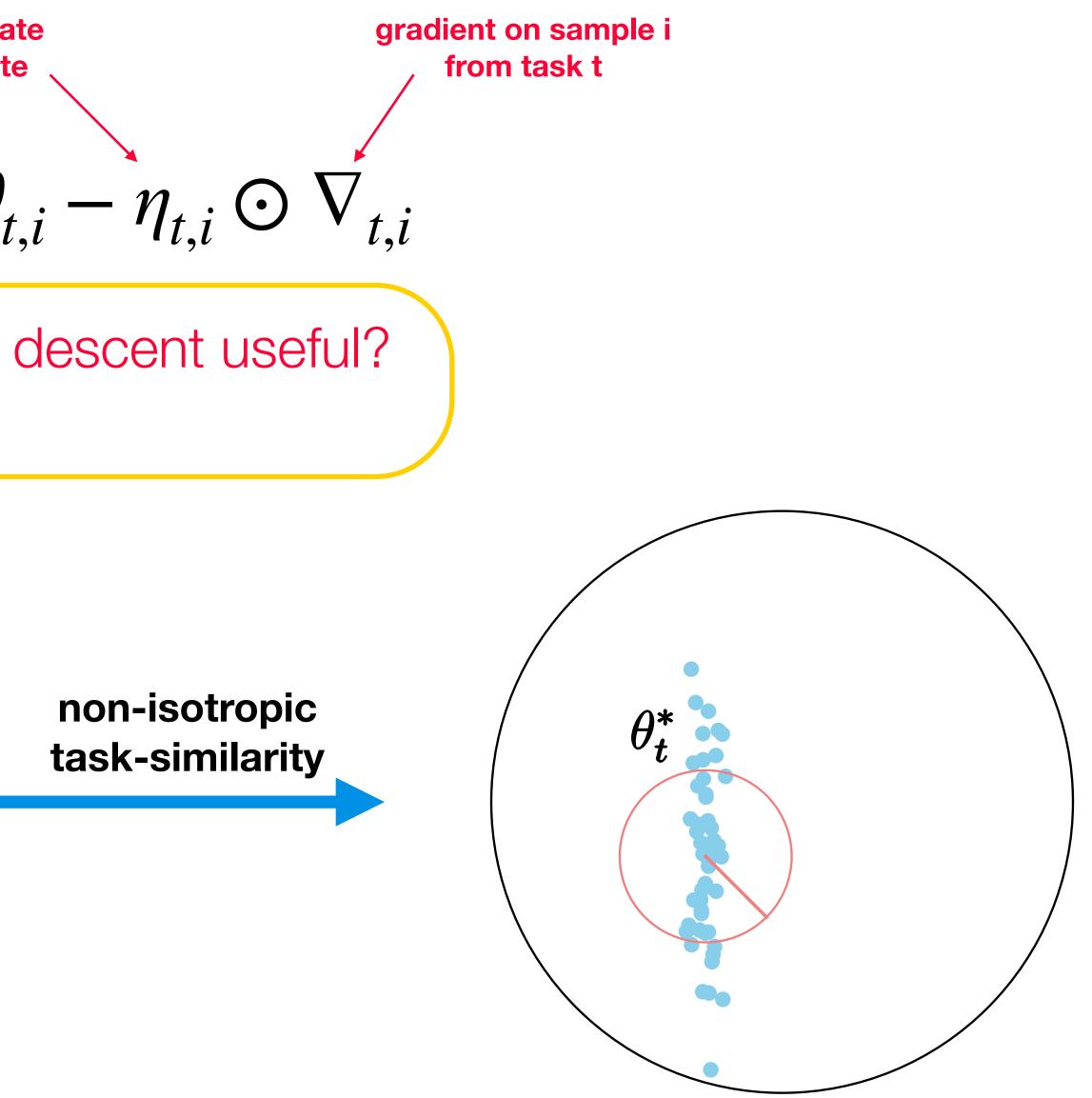


per-coordinate learning rate

$$\theta_{t,i+1} = \theta_t$$

When is pre-conditioned online gradient descent useful? **The convex case:**

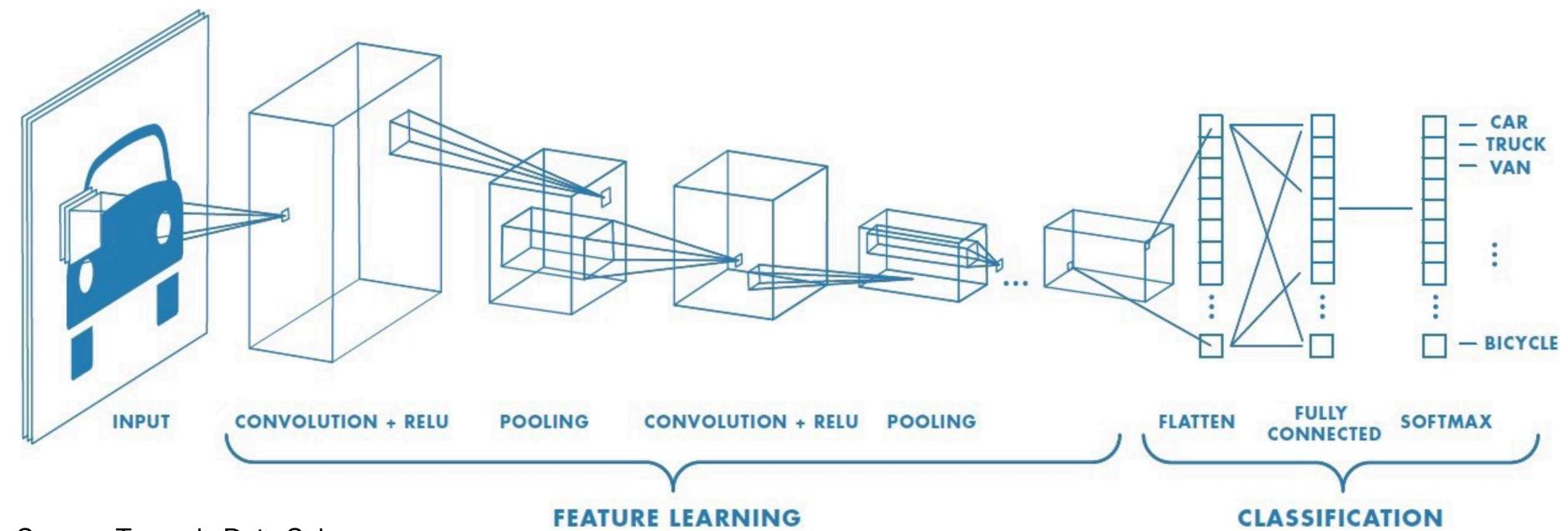




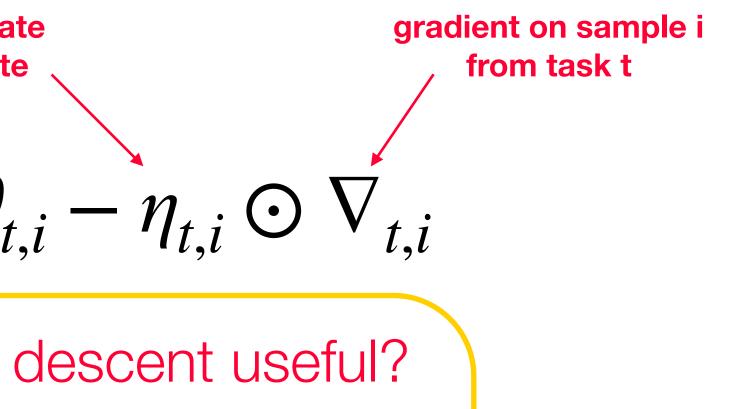
per-coordinate learning rate

$$\theta_{t,i+1} = \theta_t$$

When is pre-conditioned online gradient descent useful? **The neural network case:**



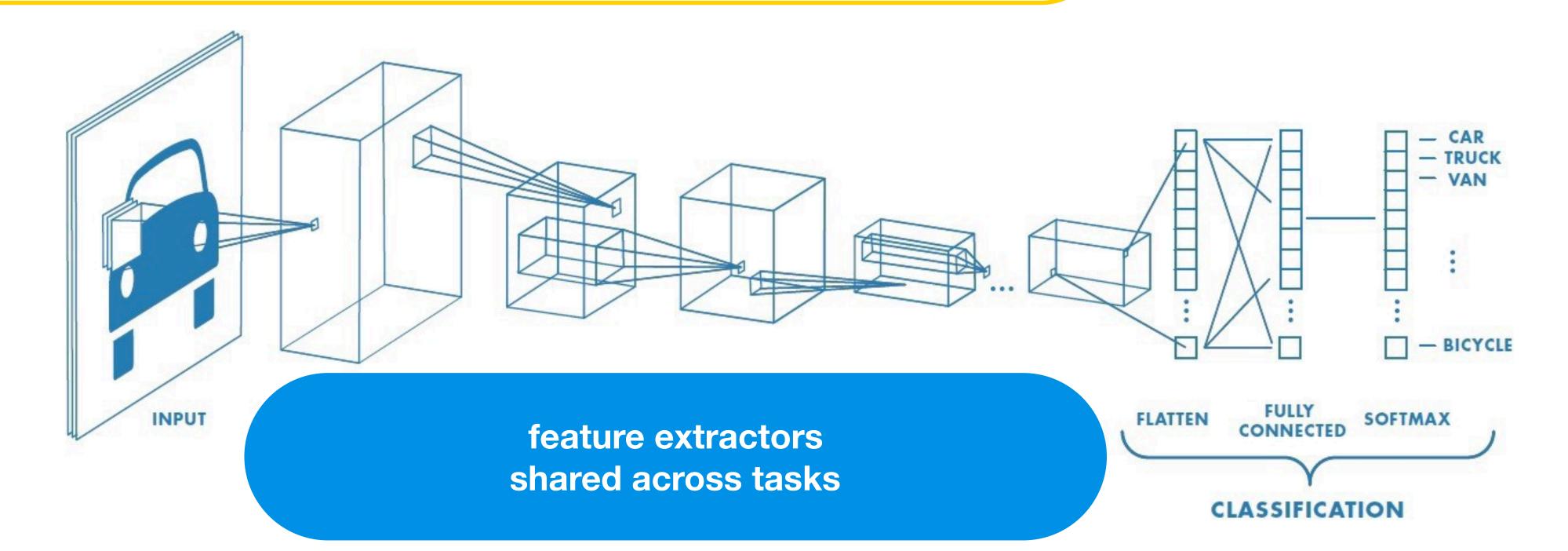
Source: Towards Data Science

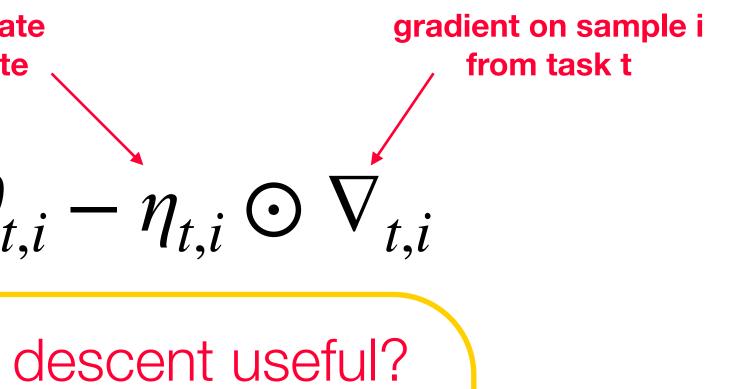


per-coordinate learning rate

$$\theta_{t,i+1} = \theta_t$$

When is pre-conditioned online gradient descent useful? **The neural network case:**

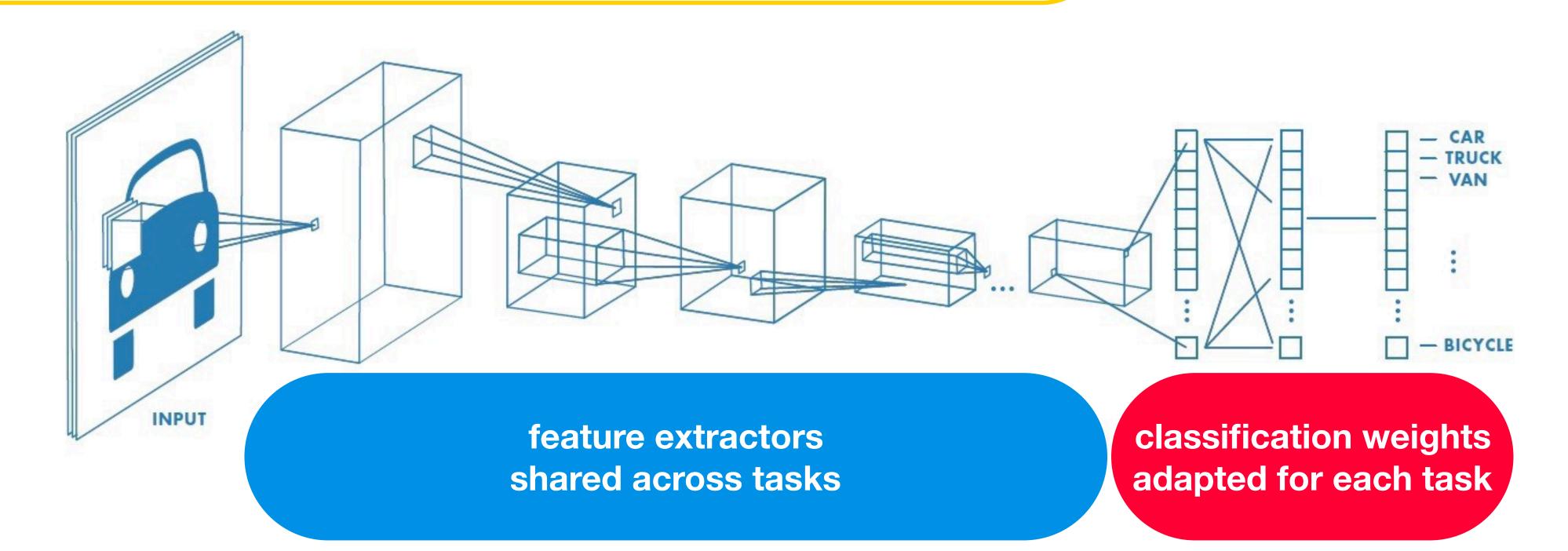


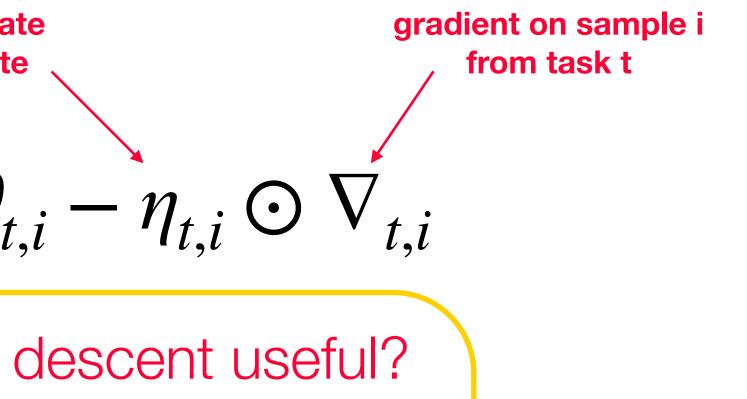


per-coordinate learning rate

$$\theta_{t,i+1} = \theta_t$$

When is pre-conditioned online gradient descent useful? **The neural network case:**

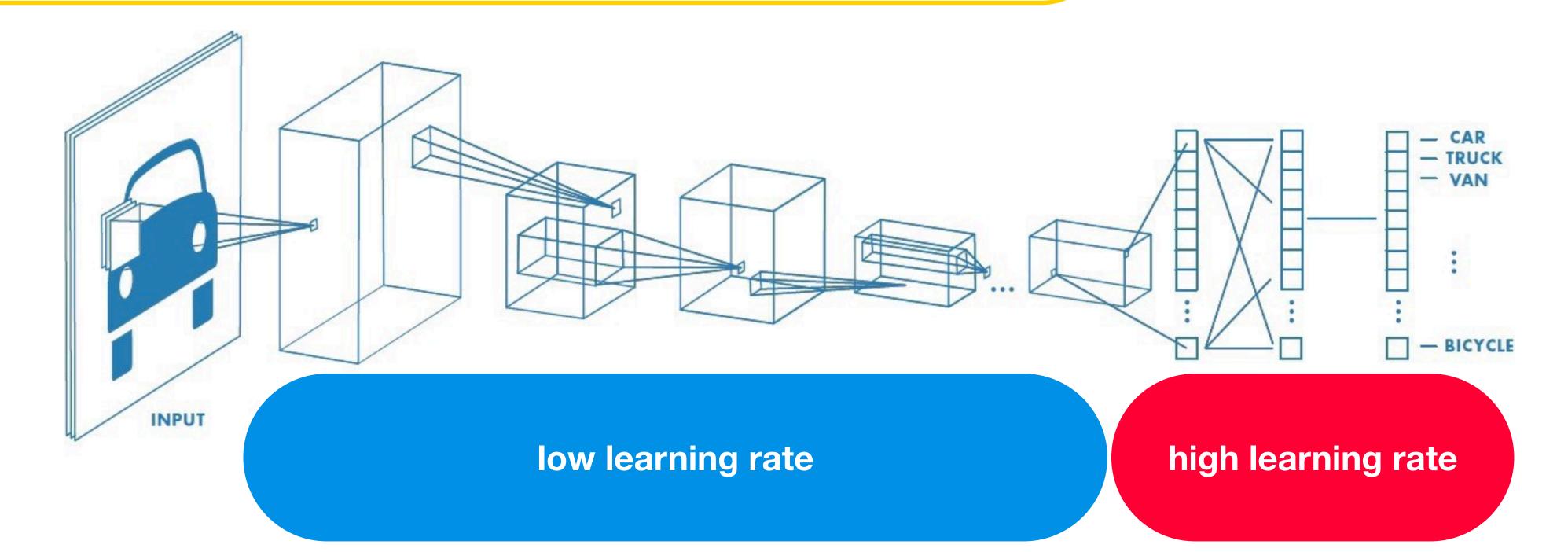


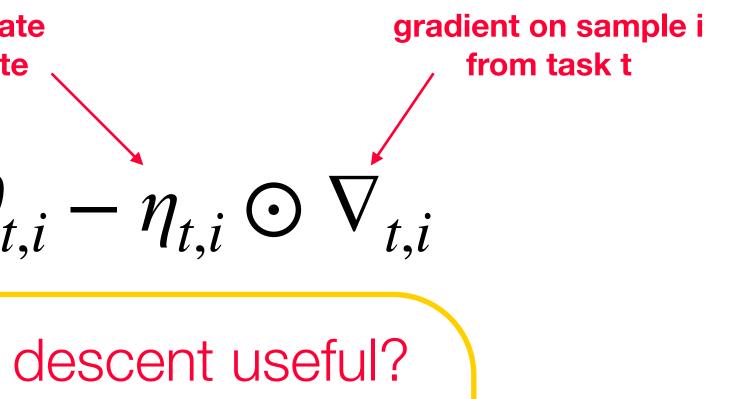


per-coordinate learning rate

$$\theta_{t,i+1} = \theta_t$$

When is pre-conditioned online gradient descent useful? **The neural network case:**





Updating the initialization using online learning

for task t = 1, ..., T

sample task \mathcal{D}_t

within-task OGD(\mathcal{D}_t, ϕ_t)

update ϕ_{t+1} using θ_t^*

Updating the initialization and the learning rate using online learning

for task t = 1, ..., T

sample task \mathcal{D}_{t}

within-task OGD($\mathcal{D}_t, \phi_t, \eta_t$)

update ϕ_{t+1} using θ_t^*

update η_{t+1}

Updating the initialization and the learning rate using online learning

for task t = 1, ..., T

sample task \mathcal{D}_{t}

within-task OGD($\mathcal{D}_t, \phi_t, \eta_t$)

update ϕ_{t+1} using θ_t^*

update η_{t+1}

Goal: set ϕ_t, η_t to get low average regret across tasks.

$$\frac{1}{T} \sum_{t=1}^{T} R_t$$

Updating the initialization and the learning rate using online learning

for task t = 1, ..., T

sample task \mathcal{D}_{t}

within-task OGD($\mathcal{D}_t, \phi_t, \eta_t$)

update ϕ_{t+1} using θ_t^*

update η_{t+1}

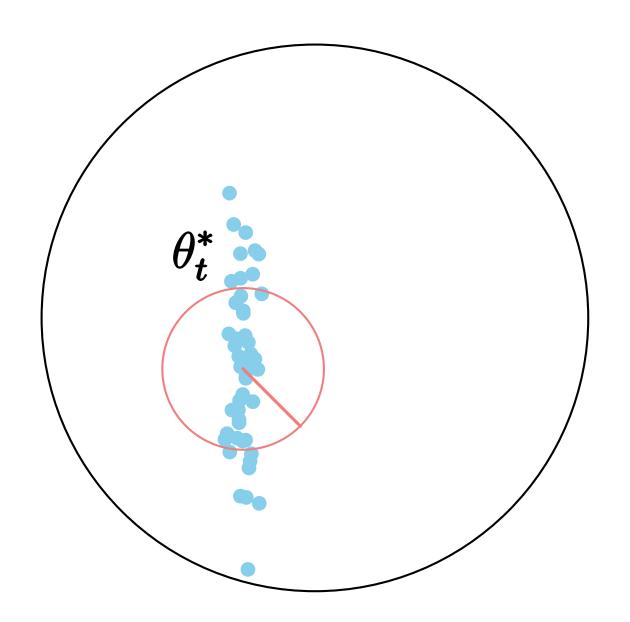
Goal: set ϕ_t, η_t to get low average regret across tasks.

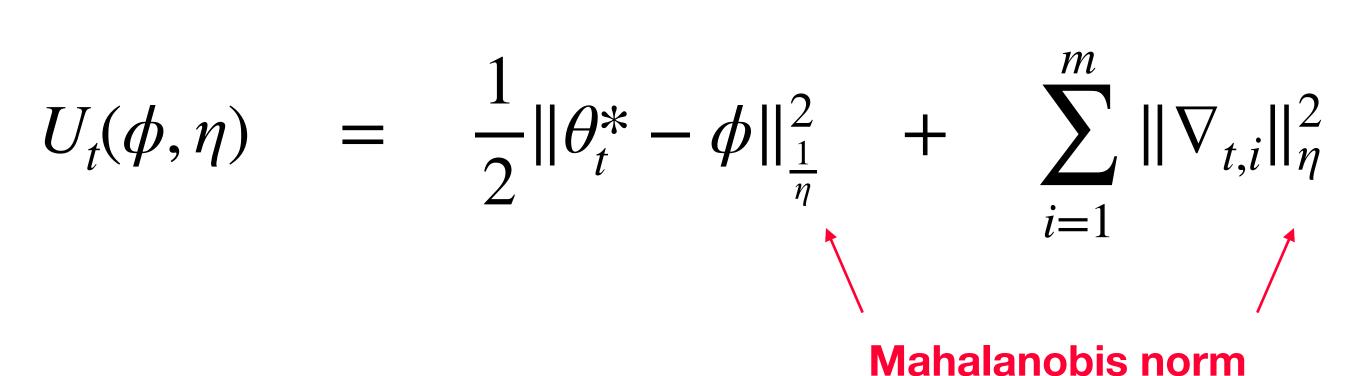
$$\frac{1}{T} \sum_{t=1}^{T} R_t \leq \frac{1}{T} \sum_{t=1}^{T} U_t(\phi_t, \eta_t)$$

regret-upper-bound

Applying ARUBA: the regret-upper-bound

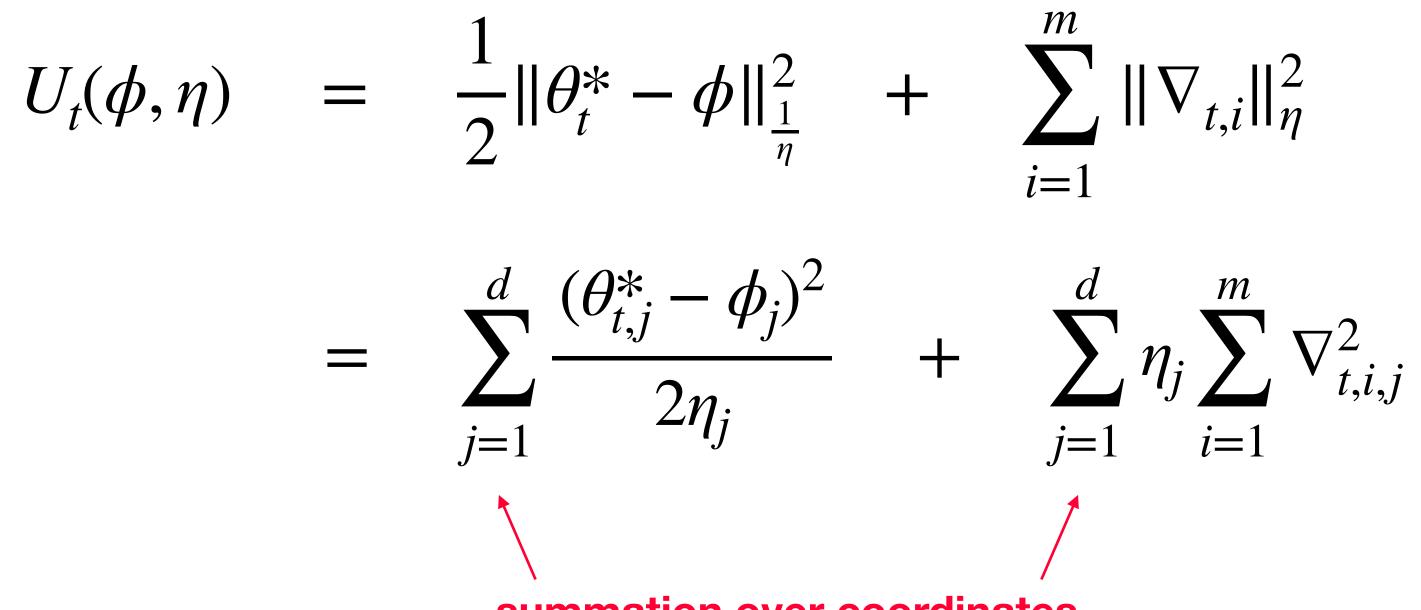
Single-task regret guarantees are often **nice** and data-dependent functions of the algorithm parameters.

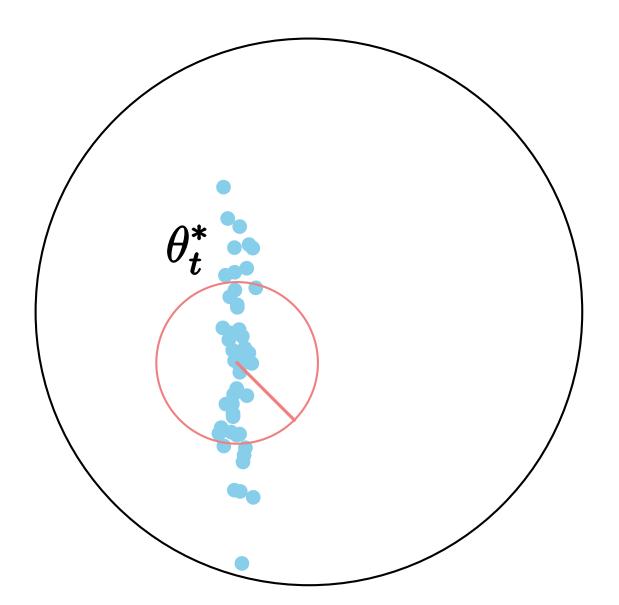


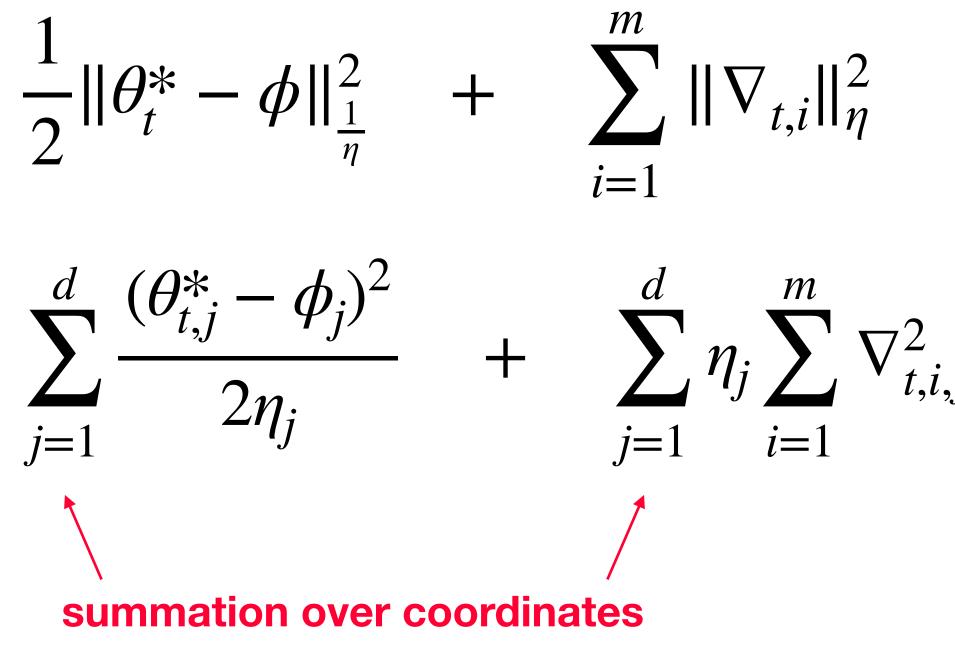


Applying ARUBA: the regret-upper-bound

Single-task regret guarantees are often **nice** and data-dependent functions of the algorithm parameters.







optimal learning rate

$$\eta_j = \sqrt{\frac{B_j}{G_j}}$$

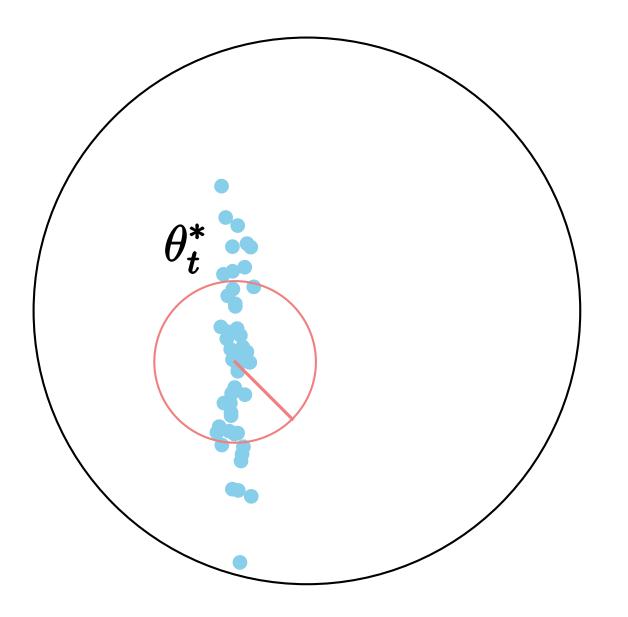
$$B_{j} = \frac{1}{2} \sum_{t=1}^{T} (\theta_{t,j}^{*} - \phi_{s,j})^{2}$$

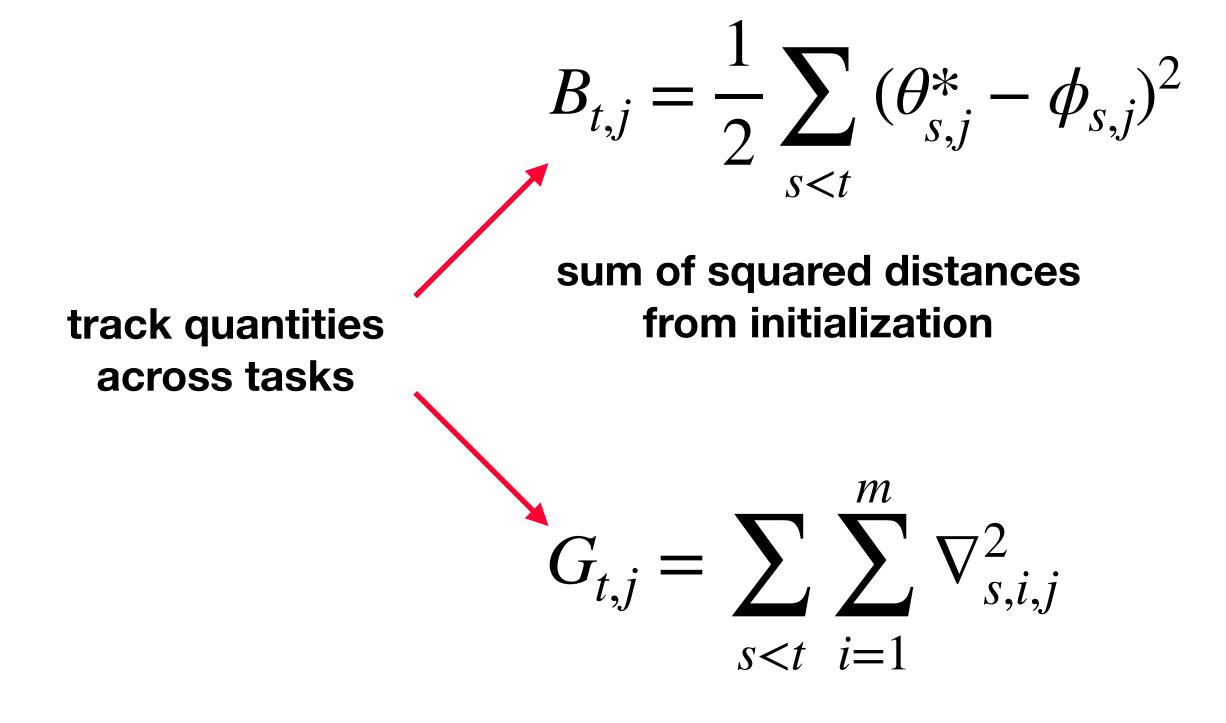
sum of squared distances from initialization

$$G_j = \sum_{t=1}^T \sum_{i=1}^m \nabla_{t,i,j}^2$$

learned learning rate

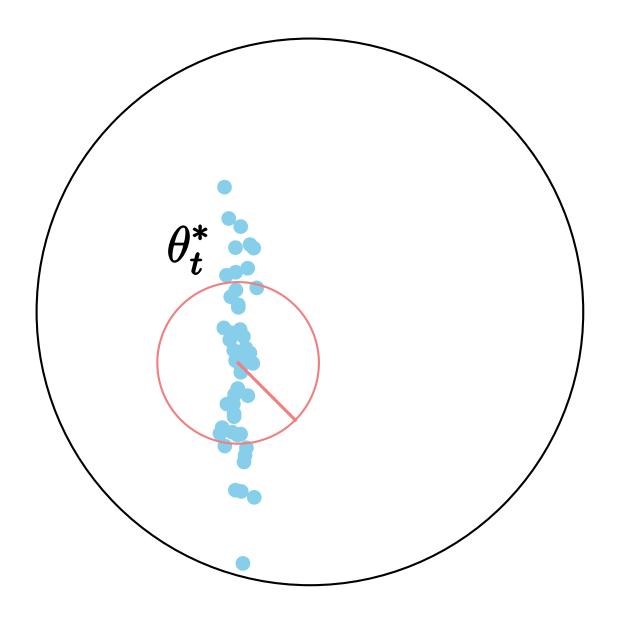
$$\eta_{t,j} = \sqrt{\frac{B_{t,j} + \varepsilon_t}{G_{t,j} + \zeta_t}}$$





learned learning rate

$$\eta_{t,j} = \sqrt{\frac{B_{t,j} + \varepsilon_t}{G_{t,j} + \zeta_t}}$$
 add smoo



othing terms

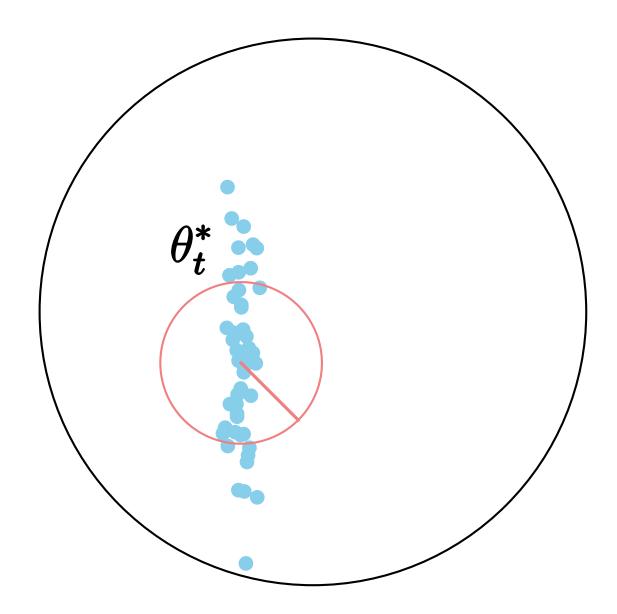
$$B_{t,j} = \frac{1}{2} \sum_{s < t} (\theta_{s,j}^* - \phi_{s,j})$$

sum of squared distances from initialization

$$G_{t,j} = \sum_{s < t} \sum_{i=1}^{m} \nabla_{s,i,j}^2$$

learned learning rate

$$\eta_{t,j} = \sqrt{\frac{B_{t,j} + \varepsilon_t}{G_{t,j} + \zeta_t}}$$



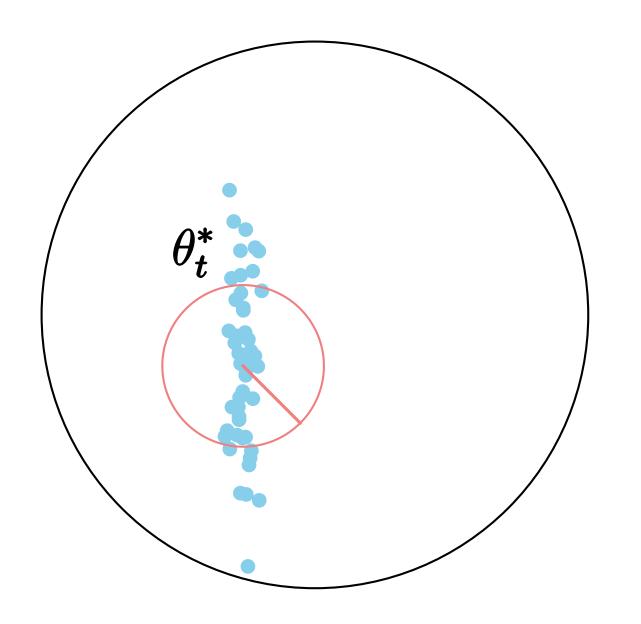
$$B_{t,j} = \frac{1}{2} \sum_{s < t} (\theta_{s,j}^* - \phi_{s,j})$$

sum of squared distances from initialization

$$G_{t,j} = \sum_{s < t} \sum_{i=1}^{m} \nabla_{s,i,j}^2$$

learned learning rate

$$\eta_{t,j} = \sqrt{\frac{B_{t,j} + \varepsilon_t}{G_{t,j} + \zeta_t}}$$



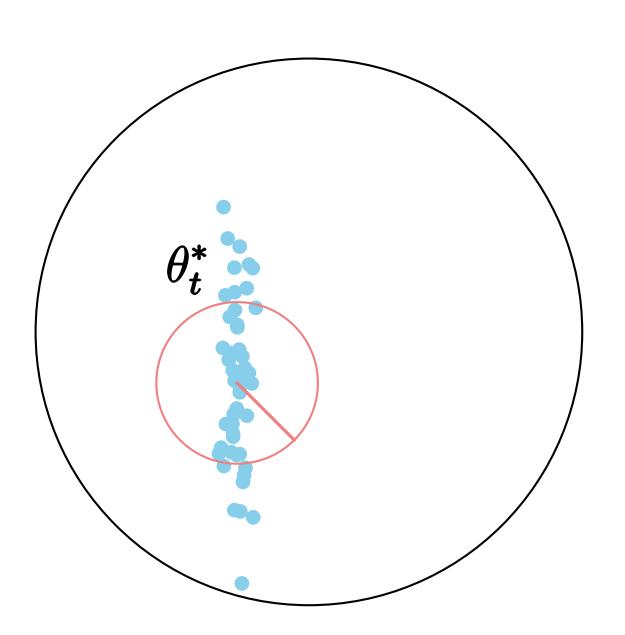
$$B_{t,j} = \frac{1}{2} \sum_{s < t} (\hat{\theta}_{s,j} - \phi_{s,j})$$

to obtain a practical algorithm, use last-iterate sum of squared distances from initialization

$$G_{t,j} = \sum_{s < t} \sum_{i=1}^{m} \nabla_{s,i,j}^2$$

learned learning rate

$$\eta_{t,j} = \sqrt{\frac{B_{t,j} + \varepsilon_t}{G_{t,j} + \zeta_t}}$$

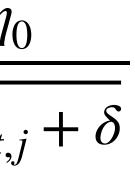


compare to AdaGrad [Duchi-Hazan-Singer]

$$\eta_{t,j} = \frac{\eta}{\sqrt{G_{t,j}}}$$

$$B_{t,j} = \frac{1}{2} \sum_{s < t} (\hat{\theta}_{s,j} - \phi_{s,j})$$

sum of squared distances from initialization



$$G_{t,j} = \sum_{s < t} \sum_{i=1}^{m} \nabla_{s,i,j}^2$$

Mini-ImageNet dataset [Ravi-Larochelle]:

generate n-shot 5-way classification tasks by sampling n images from each of 5 classes

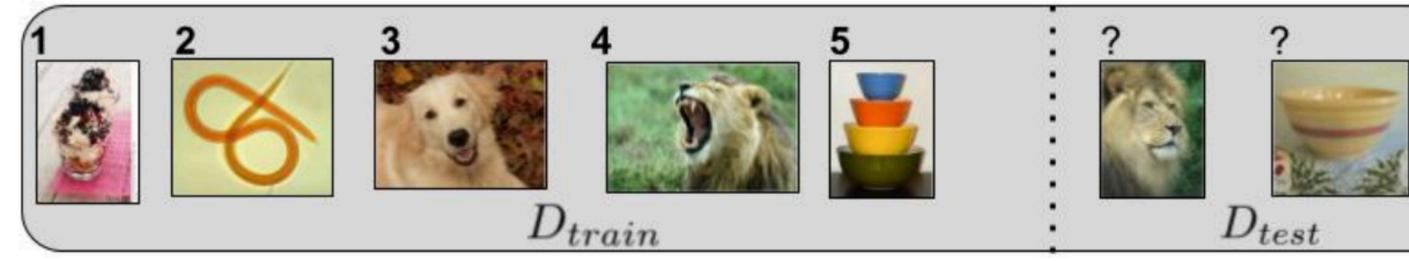
Mini-ImageNet dataset [Ravi-Larochelle]:

generate n-shot 5-way classification tasks by sampling n images from each of 5 classes

Meta-Training Data

Mini-ImageNet dataset [Ravi-Larochelle]:

generate n-shot 5-way classification tasks by sampling n images from each of 5 classes



Meta-Training Data

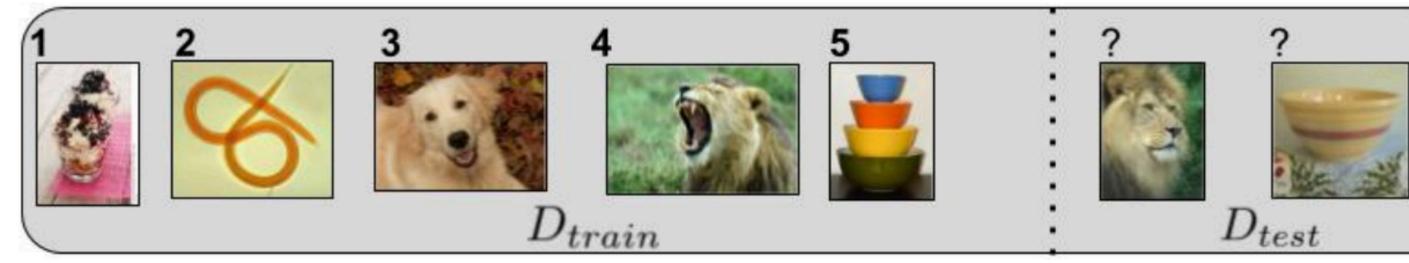
Meta-Testing Data

Mini-ImageNet dataset [Ravi-Larochelle]:

generate n-shot 5-way classification tasks by sampling n images from each of 5 classes

Goal:

learn to initialize (ϕ) and adapt ($\hat{\eta}$) a fourlayer convolutional neural network

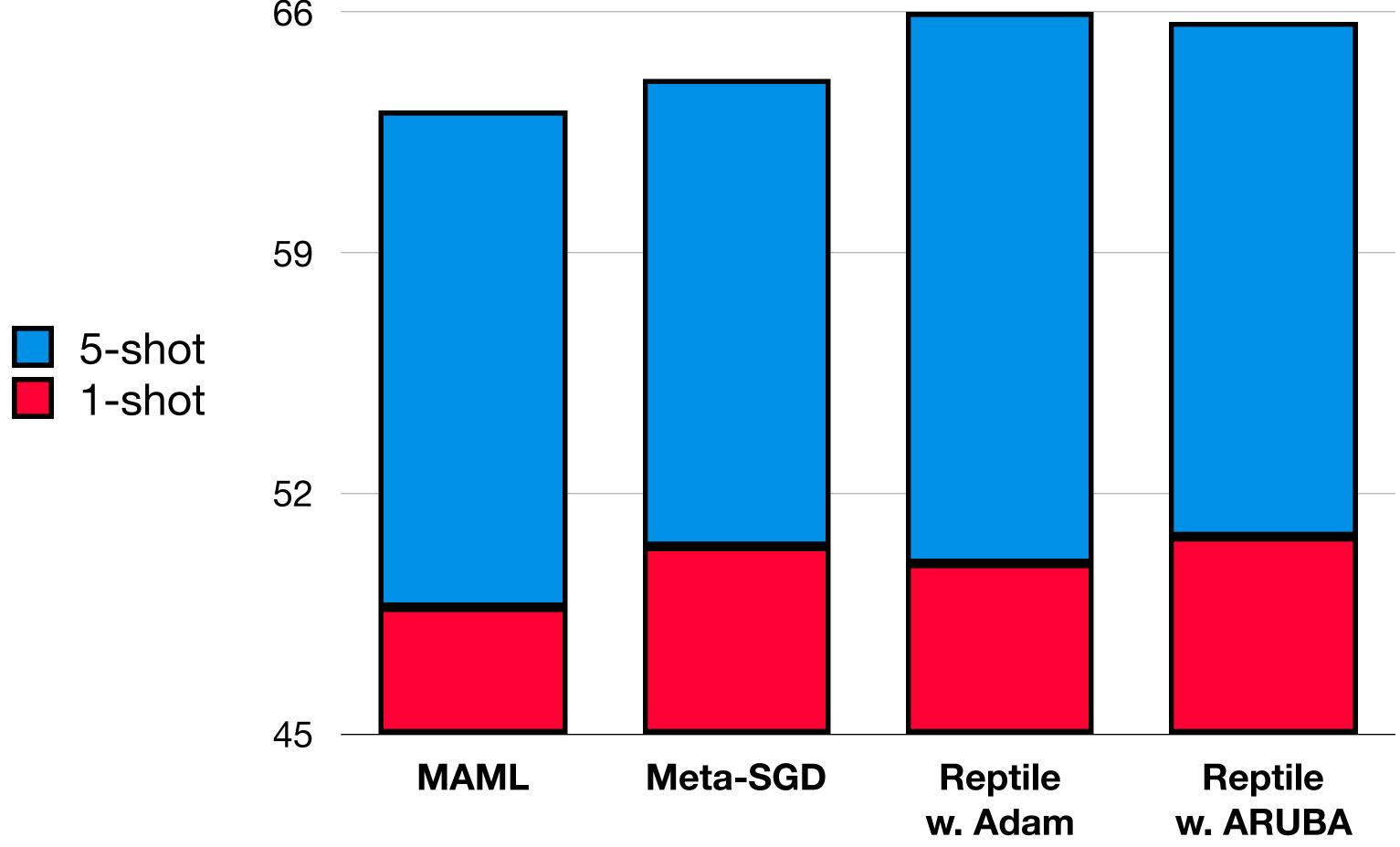


Meta-Training Data

Meta-Testing Data

Mini-ImageNet dataset [Ravi-Larochelle]:

generate n-shot 5-way classification tasks by sampling n images from each of 5 classes

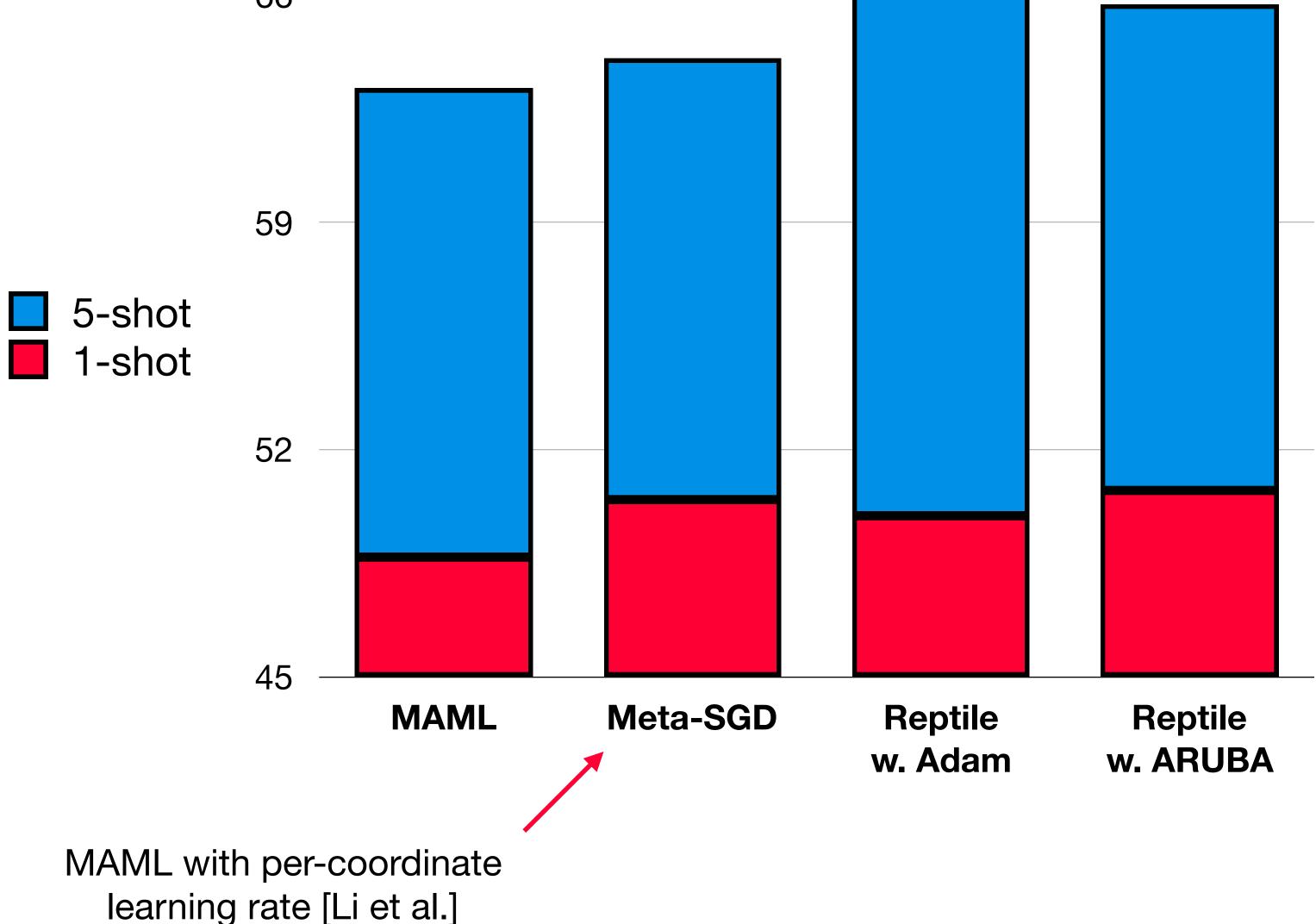


Goal:

learn to initialize (ϕ) and adapt ($\hat{\eta}$) a fourlayer convolutional neural network

Mini-ImageNet dataset [Ravi-Larochelle]:

generate n-shot 5-way classification tasks by sampling n images from each of 5 classes



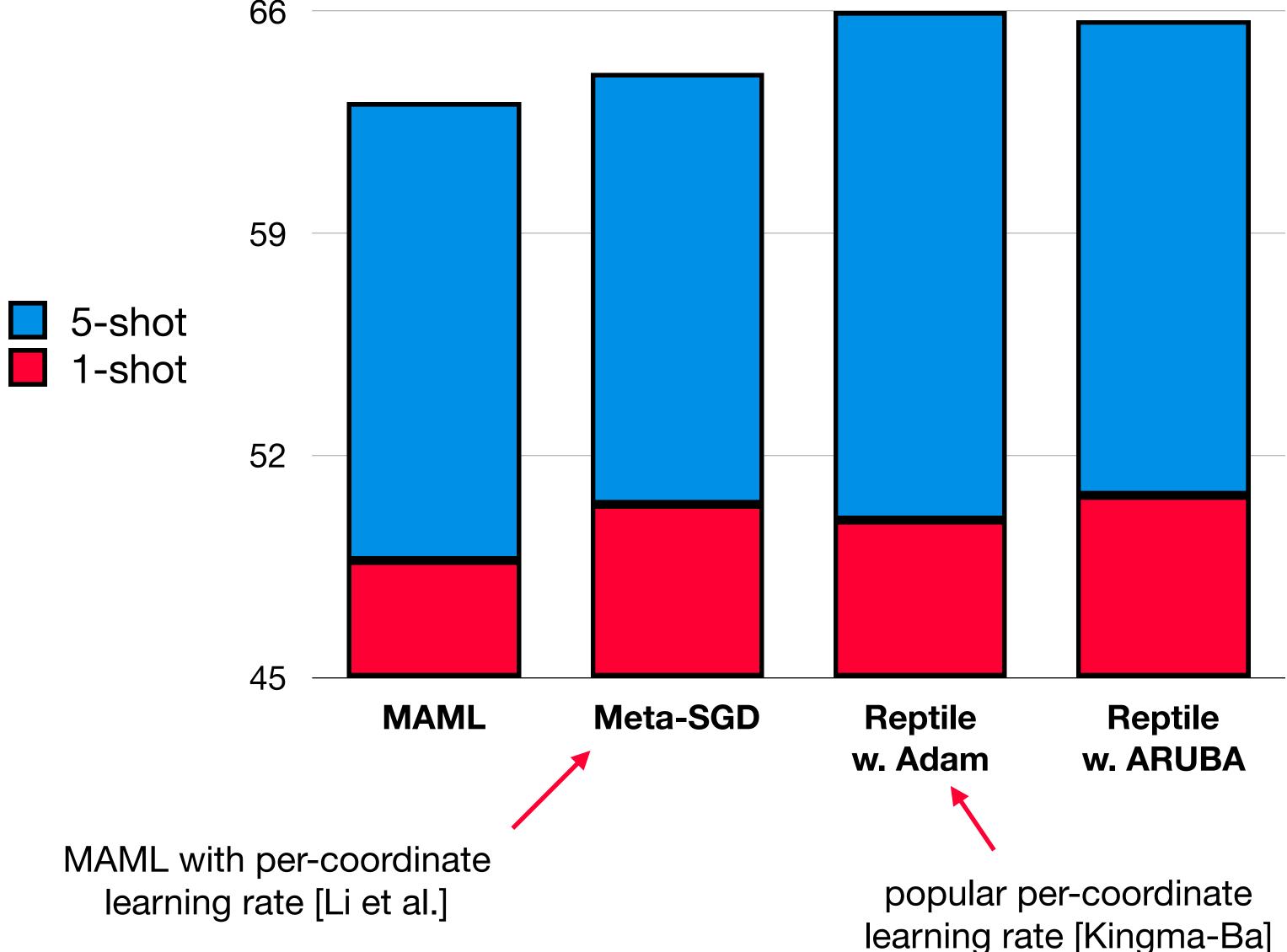
Goal:

learn to initialize (ϕ) and adapt ($\hat{\eta}$) a fourlayer convolutional neural network

66

Mini-ImageNet dataset [Ravi-Larochelle]:

generate n-shot 5-way classification tasks by sampling n images from each of 5 classes



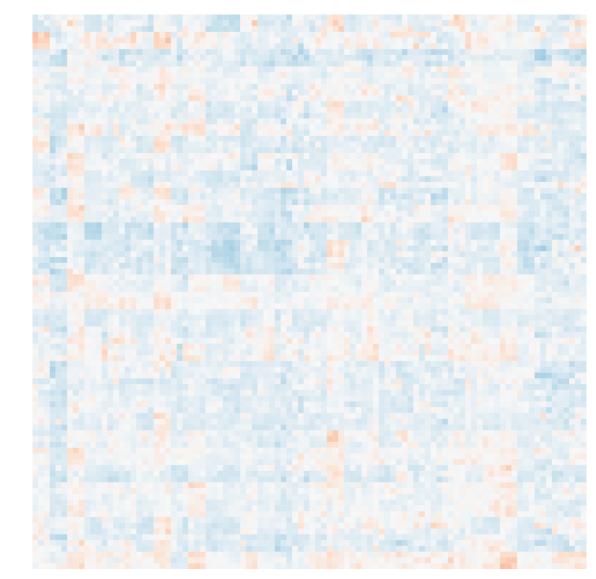
Goal:

learn to initialize (ϕ) and adapt ($\hat{\eta}$) a fourlayer convolutional neural network

Our adaptive learning rate after meta-training

convolutional layer (1)



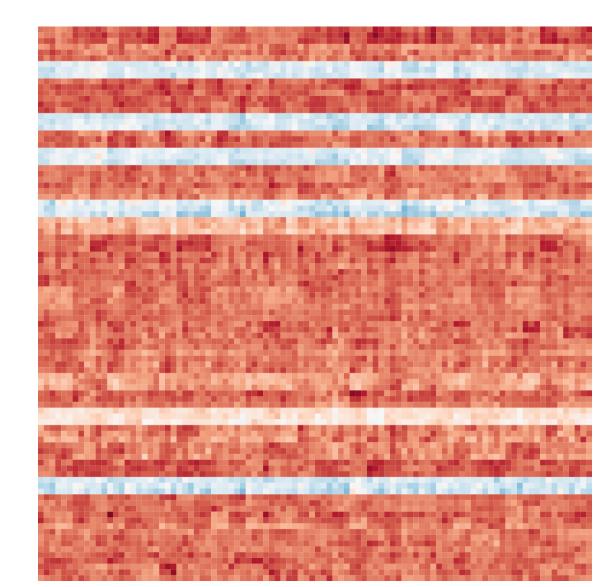


convolutional layer (2)

learning rate (log scale)

1e-4 1e-3

classification layer



convolutional layer (3)

convolutional layer (4)

Applications

ARUBA Framework

Adaptivity for improved few-shot learning Federated learning & private meta-learning

Personalized Federated Learning

- Massively distributed
- Small sample sizes
- Privacy concerns
- Non-IID data and tasks
- Underlying task similarity

FedAvg \approx Reptile [with a batch-averaged meta-update]

FedAvg \approx Reptile [with a batch-averaged meta-update]

Most popular algorithm in federated learning

Usually run without personalization - just use the meta-initialization within-task

Personalization in Federated Learning via Adaptive ARUBA

 Meta-training: run FedAvg with ARUBA optimizer
 within-task

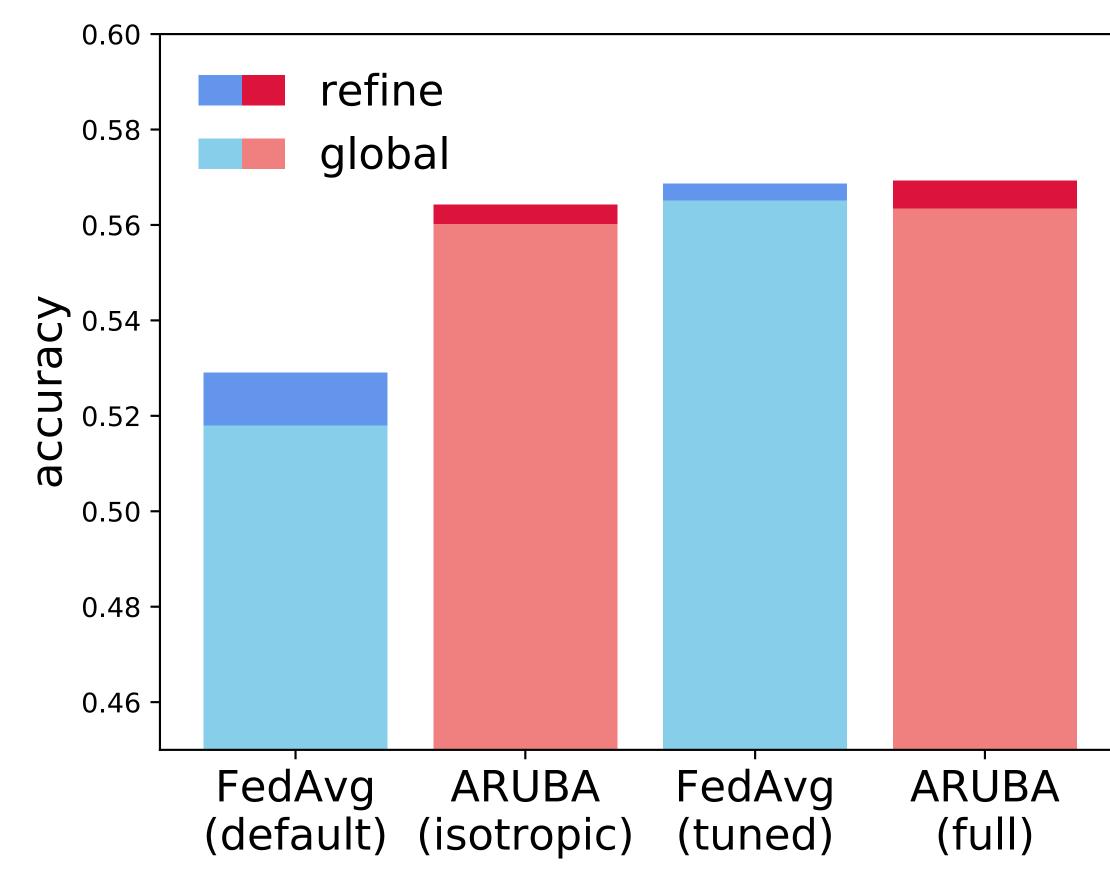
Personalization in Federated Learning via Adaptive ARUBA

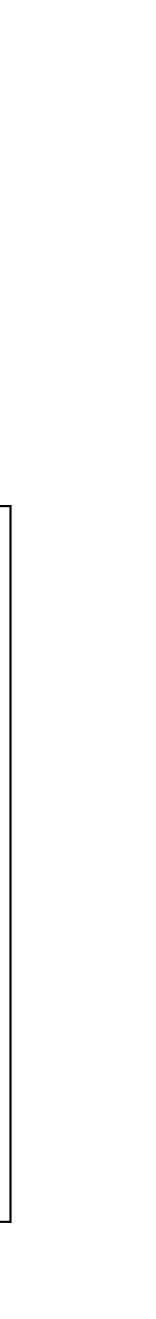
- Meta-training: run FedAvg with ARUBA optimizer
 within-task
- Meta-testing use
 (preconditioned) OGD to
 learn a personalized
 model for each user

- Meta-training: run FedAvg with ARUBA optimizer within-task
- Meta-testing use (preconditioned) OGD to learn a personalized model for each user

Personalization in Federated Learning via Adaptive ARUBA

Results on Shakespeare nextcharacter prediction task





Jeff Li

Sebastian Caldas

Ameet Talwalkar

Motivation:

- protect user data from untrusted central server - the meta-learner
- avoid utility loss associated with local differential privacy

for task t = 1, ..., T

sample task \mathcal{D}_t

$\hat{\theta}_t \leftarrow \text{within-task SGD}(\mathcal{D}_t, \phi_t)$

$$\phi_{t+1} \leftarrow (1 - \alpha)\phi_t + \alpha\hat{\theta}_t$$

return $\hat{\phi} = \phi_{T+1}$

Motivation:

- protect user data from untrusted central server - the meta-learner
- avoid utility loss associated with local differential privacy

for task t = 1, ..., T

sample task \mathcal{D}_t

$\hat{\theta}_t \leftarrow \text{within-task SGD}(\mathcal{D}_t, \phi_t)$

$$\phi_{t+1} \leftarrow (1 - \alpha)\phi_t + \alpha\hat{\theta}_t \quad \blacktriangleleft$$

return $\hat{\phi} = \phi_{T+1}$

Motivation:

- protect user data from untrusted central server - the meta-learner
- avoid utility loss associated with local differential privacy

not private to central server

for task t = 1, ..., T

sample task \mathcal{D}_{t}

$\hat{\theta}_t \leftarrow \text{within-task noisy SGD}(\mathcal{D}_t, \phi_t)$

$$\phi_{t+1} \leftarrow (1 - \alpha)\phi_t + \alpha\hat{\theta}_t$$

return $\hat{\phi} = \phi_{T+1}$

Motivation:

- protect user data from untrusted central server - the meta-learner
- avoid utility loss associated with local differential privacy

for task t = 1, ..., T

sample task \mathcal{D}_t

$\hat{\theta}_t \leftarrow \text{within-task noisy SGD}(\mathcal{D}_t, \phi_t)$

$$\phi_{t+1} \leftarrow (1 - \alpha)\phi_t + \alpha\hat{\theta}_t$$

return $\hat{\phi} = \phi_{T+1}$

Motivation:

- protect user data from untrusted central server - the meta-learner
- avoid utility loss associated with local differential privacy

Our results:

 immediate user-record-level privacy guarantee for any model

for task t = 1, ..., T

sample task \mathcal{D}_t

$\hat{\theta}_t \leftarrow \text{within-task noisy SGD}(\mathcal{D}_t, \phi_t)$

$$\phi_{t+1} \leftarrow (1 - \alpha)\phi_t + \alpha\hat{\theta}_t$$

return $\hat{\phi} = \phi_{T+1}$

Motivation:

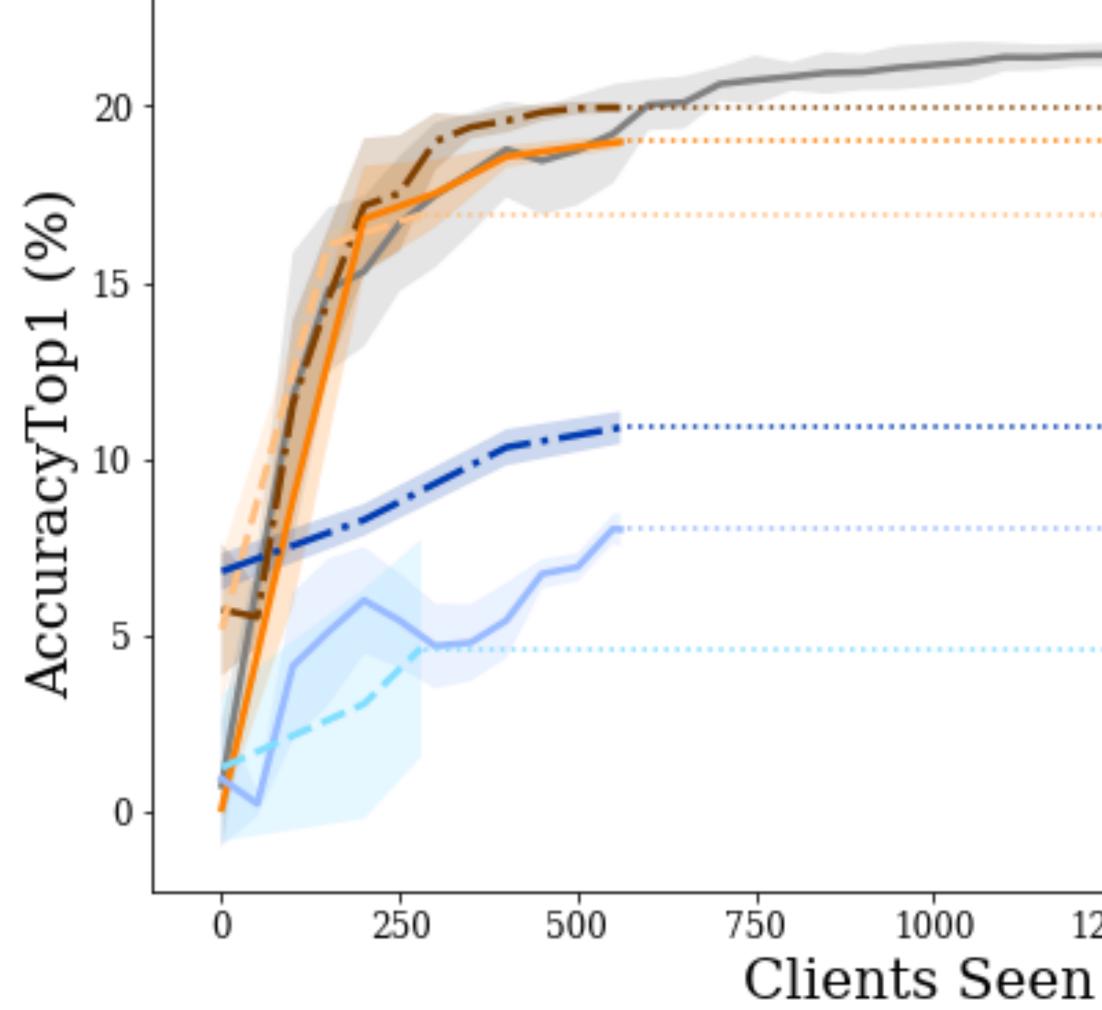
- protect user data from untrusted central server - the meta-learner
- avoid utility loss associated with local differential privacy

Our results:

- immediate user-record-level privacy guarantee for any model
- in the convex case: bound on excess transfer risk that improves with task-similarity

Differentially Private Next-Character Prediction

Shakespeare-800 Accuracy (Reptile)

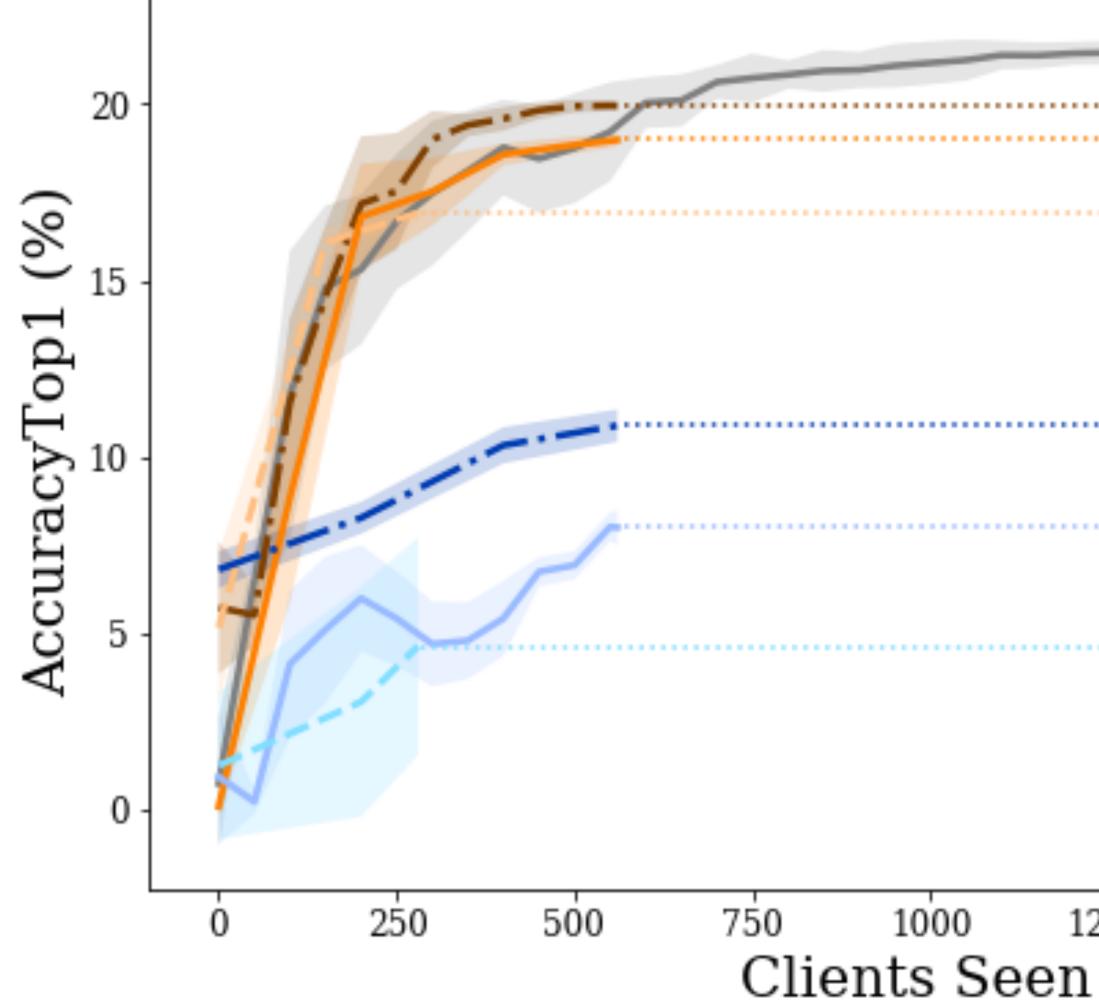


			-
		•••••	
	•••••		•••
250	1500	1750	,
250	1500	1750	2

local differential privacy (for three different privacy budgets)

Differentially Private Next-Character Prediction

Shakespeare-800 Accuracy (Reptile)



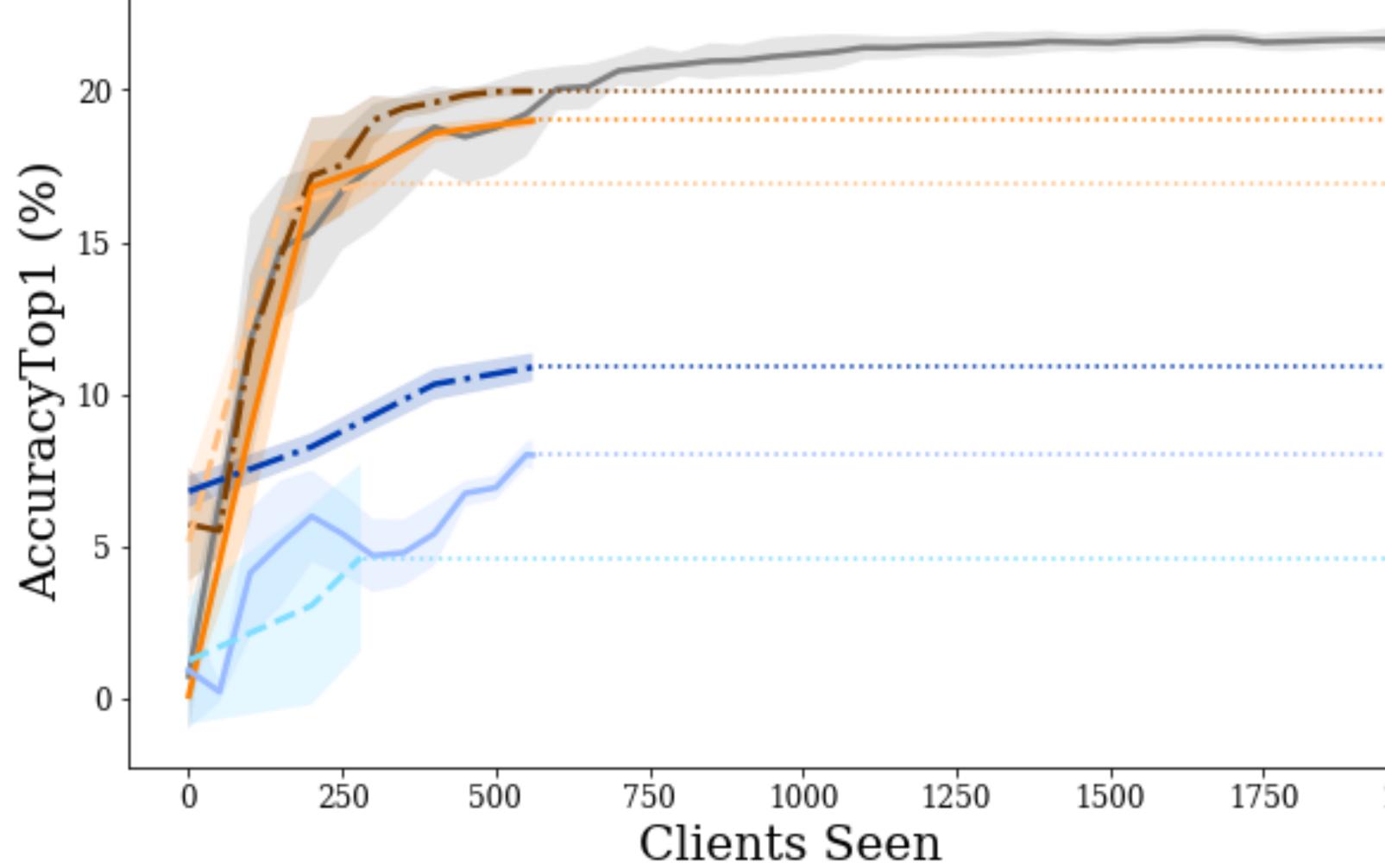
			I
			•
			.
			I
			I
			I
			I
			I
			I
			I
			I
			I
			I
			•
			I
			I
			.
			I
			I
			I
			I
• • • • • • • • • • • • • • • • • • • •	•••••		-
			I
			I
			I
			I
			I
			I
			I
250	1500	1750	2000
	1000	1.00	2000

our approach (for three different privacy budgets)

local differential privacy (for three different privacy budgets)

Differentially Private N

Shakespeare-800 Accura



lext-Characte	er Prediction
acy (Reptile)	non-private learning
	our annroach

our approach (for three different privacy budgets)

local differential privacy (for three different privacy budgets)

1750 1250 1500 2000

Takeaways

algorithms via reduction to online learning:

- First guarantees for initialization-based meta-learning methods showing provable improvement over single-task learning
- New principled algorithm for meta-learning the learning rate in addition to the initialization
- Novel practical algorithm for differentially private meta-learning

ARUBA: a theoretical framework for analyzing and designing meta-learning

Next steps

Future directions:

- Beyond adversarial analysis within-task can the base-learners be statistical or reinforcement learning algorithms?
- Better multi-task optimizers for regimes beyond few-shot learning.
- Non-convex losses and non-linear representations

Thank You!

ARUBA: https://arxiv.org/abs/1906.02717

More Info: http://www.cs.cmu.edu/~mkhodak/

Blog: https://blog.ml.cmu.edu/2019/11/22/aruba

