ARUBA: Efficient and Adaptive Meta-Learning with Provable Guarantees

Misha Khodak
June 15, 2019

Based on joint work with:
• Nina Balcan, Ameet Talwalkar
• Jeff Li, Sebastian Caldas, Ameet Talwalkar
Success of Gradient-Based Meta-Learning (GBML)

Meta Reinforcement Learning

Few-Shot Learning

Federated Learning with Personalization

Training Data

Input

Ant (meta-trained) vs. Bug (non-meta)
GBML is simple & flexible

Input: T few-shot training tasks $\{\mathcal{D}\}_1^T$

Algorithm: General; only assumes gradient updates

Output: Initialization ϕ_{GBML} for few-shot test task
GBML is simple & flexible…What is it doing?

Input: T few-shot training tasks $\{\mathcal{D}\}_1^T$

Algorithm: General; only assumes gradient updates

Output: Initialization ϕ_{GBML} for few-shot test task

Why/when do GBML methods work?
GBML is simple & flexible...What is it doing?

Input: T few-shot training tasks $\{\mathcal{D}\}_1^T$

Algorithm: General; only assumes gradient updates

Output: Initialization ϕ_{GBML} for few-shot test task

Why/when do GBML methods work?

- Can we develop **improved training algorithms**?
- Can we **personalize models** while preserving **privacy**?
Many GBML methods are **Online Gradient Descent, twice**

Input: T few-shot training tasks $\{\mathcal{D}\}_1^T$

Algorithm: General; only assumes gradient updates

Output: Initialization ϕ_{GBML} for few-shot test task
Many GBML methods are **Online Gradient Descent**, twice

Input: T few-shot training tasks $\{\mathcal{D}\}_1^T$

Algorithm: General; only assumes gradient updates

Output: Initialization ϕ_{Reptile} for few-shot test task

e.g. **Reptile** [Nichol-Achiam-Schulman]

for task $t = 1, \ldots, T$:

\[
\hat{\theta}_t = \text{Within-task-OGD}(\mathcal{D}_t, \phi_t)
\]

update ϕ_{t+1} using $\hat{\theta}_t$
Many GBML methods are **Online Gradient Descent**, twice

Input: T few-shot training tasks $\{\mathcal{D}\}_1^T$

Algorithm: General; only assumes gradient updates

Output: Initialization ϕ_{Reptile} for few-shot test task

\[
\phi_{\text{Reptile}} = \text{Across-task-OGD}(\{\mathcal{D}\}_1^T)
\]

e.g. **Reptile** [Nichol-Achiam-Schulman]

\[
\text{for task } t = 1, \ldots, T : \\
\hat{\theta}_t = \text{Within-task-OGD}(\mathcal{D}_t, \phi_t) \\
\text{update } \phi_{t+1} \text{ using } \hat{\theta}_t
\]
Many GBML methods are **Online Gradient Descent, twice**

Input: T few-shot training tasks $\{\mathcal{D}\}^T_1$

Algorithm: General; only assumes gradient updates

Output: Initialization ϕ_{MAML} for few-shot test task

MAML [Finn-Abbeel-Levine]
- Replace by OGD by GD
- Update involves holdout data

for task $t = 1, \ldots, T$:

$\hat{\theta}_t = \text{Within-task-OGD}(\mathcal{D}_t, \phi_t)$

update ϕ_{t+1} using $\hat{\theta}_t$
Many GBML methods are **Online Gradient Descent**, twice

Input:
- T few-shot training tasks $\{\mathcal{D}\}_1^T$

Algorithm:
- General; only assumes gradient updates

Output:
- Initialization ϕ_{FedAvg} for few-shot test task

FedAvg [McMahan et al.]
- Process k tasks in parallel
- Update aggregates over k tasks

for task $t = 1, \ldots, T$:

$$\hat{\theta}_t = \text{Within-task-OGD}(\mathcal{D}_t, \phi_t)$$

update ϕ_{t+1} **using** $\hat{\theta}_t$
GBML through the Lens of Online Learning

Online Learning

\[
\text{for } \quad i = 1, \ldots, m
\]

pick action \(\theta_i \in \Theta \)

suffer loss \(\ell_i(\theta_i) \)
GBML through the Lens of Online Learning

Measure per-task performance via Regret

\[R = \sum_{i=1}^{m} \ell_i(\theta_i) - \ell_i(\theta^*) \]

Online Learning

for \(i = 1, \ldots, m \)

pick action \(\theta_i \in \Theta \)

suffer loss \(\ell_i(\theta_i) \)

best fixed action in hindsight
GBML through the Lens of Online Learning

Non-IID Data / Tasks: Models realistic settings (e.g. mobile, RL data; lifelong learning)

Measure per-task performance via **Regret**

$$R = \sum_{i=1}^{m} \ell_i(\theta_i) - \ell_i(\theta^*)$$

Online Learning

For $i = 1, \ldots, m$

- pick action $\theta_i \in \Theta$
- suffer loss $\ell_i(\theta_i)$

best fixed action in hindsight
GBML through the Lens of Online Learning

Measure per-task performance via **Regret**

$$R = \sum_{i=1}^{m} \ell_i(\theta_i) - \ell_i(\theta^*)$$

Online Learning

for $i = 1, \ldots, m$

pick action $\theta_i \in \Theta$

suffer loss $\ell_i(\theta_i)$

Non-IID Data / Tasks: Models realistic settings (e.g. mobile, RL data; lifelong learning)

IID Implications: Online-to-batch conversion results
GBML through the Lens of Online Learning

Non-IID Data / Tasks: Models realistic settings (e.g. mobile, RL data; lifelong learning)

IID Implications: Online-to-batch conversion results

Generality: Can adapt / generalize numerous online learning results to GBML setup

Measure per-task performance via **Regret**

\[
R = \sum_{i=1}^{m} \ell_i(\theta_i) - \ell_i(\theta^*)
\]

Online Learning

for \(i = 1, \ldots, m \)

pick action \(\theta_i \in \Theta \)

suffer loss \(\ell_i(\theta_i) \)

best fixed action in hindsight
ARUBA: Novel theoretical Framework for GBML

Nina Balcan
Ameet Talwalkar
ARUBA: Novel theoretical Framework for GBML

Provides **regret bounds** for a sequence of online learning problems
ARUBA: Novel theoretical Framework for GBML

Provides **regret bounds** for a sequence of online learning problems

Theoretical focus on **online convex optimization**
Provides regret bounds for a sequence of online learning problems.

Theoretical focus on online convex optimization.

Practical implications in nonconvex settings.
ARUBA Framework

- Few Shot Learning and GBML
- An Illustrative Result

Applications
Single-Task Few-Shot Learning

<table>
<thead>
<tr>
<th>Training Data</th>
<th>Hypothesis Class</th>
<th>Loss Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>((x_1, y_1), \ldots, (x_m, y_m))</td>
<td>({f_\theta : \mathcal{X} \mapsto \mathcal{Y} : \theta \in \Theta \subset \mathbb{R}^d})</td>
<td>(\ell_i(\theta) = L(f_\theta(x_i), y_i))</td>
</tr>
</tbody>
</table>

\(L : \mathcal{Y} \times \mathcal{Y} \mapsto \mathbb{R}\)
Single-Task Few-Shot Learning

<table>
<thead>
<tr>
<th>Training Data</th>
<th>Hypothesis Class</th>
<th>Loss Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>((x_1, y_1), \ldots, (x_m, y_m))</td>
<td>({f_0 : \mathcal{X} \mapsto \mathcal{Y} : \theta \in \Theta \subset \mathbb{R}^d})</td>
<td>(\ell_i(\theta) = L(f_0(x_i), y_i))</td>
</tr>
</tbody>
</table>

Online Gradient Descent (OGD)

randomly initialize \(\theta_1 \in \Theta, \ \eta > 0\)

for \(i = 1, \ldots, m\)

\[
\theta_{i+1} \leftarrow \theta_i - \eta \nabla \ell_i(\theta_i)
\]
Online Gradient Descent (OGD)

Training Data\((x_1, y_1), \ldots, (x_m, y_m)\)

Hypothesis Class\(\{f_0 : \mathcal{X} \mapsto \mathcal{Y} : \theta \in \Theta \subset \mathbb{R}^d\}\)

Loss Function\(\ell_i(\theta) = L(f_0(x_i), y_i)\)

\(L : \mathcal{Y} \times \mathcal{Y} \mapsto \mathbb{R}\)

Cannot hope to do well when \(m\) is small

Randomly initialize \(\theta_1 \in \Theta, \eta > 0\)

For \(i = 1, \ldots, m\)

\[\theta_{i+1} \leftarrow \theta_i - \eta \nabla \ell_i(\theta_i)\]
Single-Task Regret

Training Data
\((x_1, y_1), \ldots, (x_m, y_m)\)

Hypothesis Class
\(\{f_0 : \mathcal{X} \mapsto \mathcal{Y} : \theta \in \Theta \subset \mathbb{R}^d\}\)

Loss Function
\(\ell_i(\theta) = L(f_0(x_i), y_i)\)

Measure performance via Regret
\[R = \sum_{i=1}^{m} \ell_i(\theta_i) - \ell_i(\theta^*) \]

best fixed action in hindsight

Online Gradient Descent (OGD)

randomly initialize \(\theta_1 \in \Theta, \quad \eta > 0\)

for \(i = 1, \ldots, m\)

\[\theta_{i+1} \leftarrow \theta_i - \eta \nabla \ell_i(\theta_i) \]

suffer \(\ell_i(\theta_i)\)
Single-Task Regret

Measure performance via Regret

\[R = \sum_{i=1}^{m} \ell_i(\theta_i) - \ell_i(\theta^*) \]

best fixed action in hindsight

Online Gradient Descent (OGD)

Size of Action Space: \(D = \text{diam}(\Theta) \)

OGD upper-bound: \(R = \tilde{O}(D\sqrt{m}) \)

[Abernethy-Bartlett-Rakhlin-Tewari]
Single-Task Regret

Measure performance via Regret

\[R = \sum_{i=1}^{m} \ell_i(\theta_i) - \ell_i(\theta^*) \]

Online Gradient Descent (OGD)

Size of Action Space: \(D = \text{diam}(\Theta) \)

OGD upper-bound: \(R = \mathcal{O}(D\sqrt{m}) \)

Matching lower-bound: \(R = \Omega \left(D\sqrt{m} \right) \)

[ABERTHENY-BARTLETT-RAKHLIN-TEWARI]

Training Data

\((x_1, y_1), \ldots, (x_m, y_m)\)

Hypothesis Class

\(\{f_0 : \mathcal{X} \mapsto \mathcal{Y} : \theta \in \Theta \subset \mathbb{R}^d\} \)

Loss Function

\(\ell_i(\theta) = L(f_0(x_i), y_i) \)
Single-Task Regret

Measure performance via Regret

\[R = \sum_{i=1}^{m} \ell_i(\theta_i) - \ell_i(\theta^*) \]

Key Question: can GBML do better?

Online Gradient Descent (OGD)

Size of Action Space: \(D = \text{diam}(\Theta) \)

OGD upper-bound: \(R = \mathcal{O}(D \sqrt{m}) \)

Matching lower-bound: \(R = \Omega\left(D \sqrt{m}\right) \)

[Abernethy-Bartlett-Rakhlin-Tewari]
GBML Meta-Testing, i.e., using ϕ_{GBML}

<table>
<thead>
<tr>
<th>Training Data</th>
<th>Hypothesis Class</th>
<th>Loss Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(x_1, y_1), \ldots, (x_m, y_m)$</td>
<td>${f_\theta : \mathcal{X} \mapsto \mathcal{Y} : \theta \in \Theta \subset \mathbb{R}^d}$</td>
<td>$\ell_i(\theta) = L(f_\theta(x_i), y_i)$</td>
</tr>
</tbody>
</table>

Learn an initialization sequentially from previous t tasks

Key Question: can GBML do better on-average across tasks?

Online Gradient Descent (OGD)

<table>
<thead>
<tr>
<th>meta initialize $\phi_t \in \Theta$, $\eta > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>for $i = 1, \ldots, m$</td>
</tr>
<tr>
<td>$\theta_{i+1} \leftarrow \theta_i - \eta \nabla \ell_i(\theta_i)$</td>
</tr>
</tbody>
</table>
Average Regret and Task Similarity

<table>
<thead>
<tr>
<th>Training Data</th>
<th>Hypothesis Class</th>
<th>Loss Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>((x_{t,1}, y_{t,1}), \ldots, (x_{T,m}, y_{T,m}))</td>
<td>({f_\theta : \mathcal{X} \mapsto \mathcal{Y} : \theta \in \Theta \subseteq \mathbb{R}^d})</td>
<td>(\mathcal{L}{t,i}(\theta) = L(f\theta(x_{t,i}), y_{t,i}))</td>
</tr>
</tbody>
</table>
Average Regret and Task Similarity

<table>
<thead>
<tr>
<th>Training Data</th>
<th>Hypothesis Class</th>
<th>Loss Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>((x_{t,1}, y_{t,1}), \ldots, (x_{T,m}, y_{T,m}))</td>
<td>({ f_0 : \mathcal{X} \mapsto \mathcal{Y} : \theta \in \Theta \subset \mathbb{R}^d })</td>
<td>(\ell_{t,i}(\theta) = L(f_0(x_{t,i}), y_{t,i}))</td>
</tr>
</tbody>
</table>

Average Regret:
\[
\tilde{R} = \frac{1}{T} \sum_{t=1}^{T} R_t = \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{m} \ell_{t,i}(\theta_{t,i}) - \ell_{t,i}(\theta_t^*)
\]
Average Regret and Task Similarity

<table>
<thead>
<tr>
<th>Training Data</th>
<th>Hypothesis Class</th>
<th>Loss Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(x_{t,1}, y_{t,1}), \ldots, (x_{T,m}, y_{T,m})$</td>
<td>${f_0 : \mathcal{X} \mapsto \mathcal{Y} : \theta \in \Theta \subset \mathbb{R}^d}$</td>
<td>$\ell_{t,i}(\theta) = L(f_0(x_{t,i}), y_{t,i})$</td>
</tr>
</tbody>
</table>

Average Regret:
\[
\bar{R} = \frac{1}{T} \sum_{t=1}^{T} R_t = \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{m} \ell_{t,i}(\theta_{t,i}) - \ell_{t,i}(\theta^*_t)
\]

Task Similarity:
\[
V^2 = \min_{\phi \in \Theta} \frac{1}{T} \sum_{t=1}^{T} \|\theta^*_t - \phi\|_2^2
\]

V is small when optimal parameters are close together.
Our Guarantee: $\overline{R} = O \left(V + \frac{\log T}{VT} \right) \sqrt{m}$

Single-Task Lower Bound: $R_t = \Omega \left(D \sqrt{m} \right)$

Multi-Task Lower Bound: $\overline{R} = \Omega \left(V \sqrt{m} \right)$

ARUBA: An Illustrative Result

When **optimal task parameters are close together**, GBML leads to much **better average performance**
Recall: Reptile Algorithm

\[\phi_{\text{Reptile}} = \text{Across-task-OGD}(\{\mathcal{D}\}_1^T) \]

for task \(t = 1, \ldots, T \):

\[\hat{\theta}_t = \text{Within-task-OGD}(\mathcal{D}_t, \phi_t) \]

update \(\phi_{t+1} \) using \(\hat{\theta}_t \)
Recall: Reptile Algorithm

\[\phi_{\text{Reptile}} = \text{Across-task-OGD}(\{\mathcal{D}\}_1^T) \]

for task \(t = 1, \ldots, T : \)

\[\hat{\theta}_t = \text{Within-task-OGD}(\mathcal{D}_t, \phi_t) \]

update \(\phi_{t+1} \) using \(\theta_t^* \)

assume oracle access to optimum in hindsight

can be relaxed under nondegeneracy assumption
Main Observation

Single-task regret guarantees are often nice, data-dependent functions of the algorithm parameters.
Main Observation

Single-task regret guarantees are often nice, data-dependent functions of the algorithm parameters.

e.g. OGD from ϕ

\[
R_t = \sum_{i=1}^{m} \ell_{t,i}(\theta) - \ell_{t,i}(\theta^*_t) \leq \hat{R}_t(\phi) = \frac{\|\theta^*_t - \phi\|_2^2}{\eta} + \eta m
\]
Main Observation

Single-task regret guarantees are often nice, data-dependent functions of the algorithm parameters.

e.g. **OGD from** ϕ

\[R_t = \sum_{i=1}^{m} \ell_{t,i}(\theta) - \ell_{t,i}(\theta^*_t) \leq \hat{R}_t(\phi) = \frac{||\theta^*_t - \phi||^2_2}{\eta} + \eta m \]

Reduces GBML to OCO over a sequence of **regret-upper-bounds**
3 Key Steps of ARUBA Framework

1. **Within-task OGD**: RUB controls performance as data-dependent (θ^*) function of ϕ

Step 1: Substitute RUB

$$
\frac{1}{T} \sum_{t=1}^{T} R_t \leq \frac{1}{T} \sum_{t=1}^{T} \hat{R}_t(\phi_t)
$$
1. **Within-task OGD**: RUB controls performance as data-dependent (θ^*) function of ϕ

Step 1: Substitute RUB

$$
\frac{1}{T} \sum_{t=1}^{T} R_t \leq \frac{1}{T} \sum_{t=1}^{T} \hat{R}_t(\phi_t) = \frac{1}{T} \left(\sum_{t=1}^{T} \hat{R}_t(\phi_t) - \min_{\phi \in \Theta} \sum_{t=1}^{T} \hat{R}_t(\phi) \right) + \min_{\phi \in \Theta} \frac{1}{T} \sum_{t=1}^{T} \hat{R}_t(\phi)
$$

Addition/Subtraction
1. **Within-task OGD**: RUB controls performance as data-dependent (θ^*) function of ϕ

OGD Regret-Upper-Bound (RUB)

$$\hat{R}(\phi) = \frac{||\theta^* - \phi||_2^2}{2\eta} + \eta m$$

Step 1: Substitute RUB

$$\frac{1}{T} \sum_{t=1}^{T} R_t \leq \frac{1}{T} \sum_{t=1}^{T} \hat{R}_t(\phi_t) = \frac{1}{T} \left(\sum_{t=1}^{T} \hat{R}_t(\phi_t) - \min_{\phi \in \Theta} \sum_{t=1}^{T} \hat{R}_t(\phi) \right) + \min_{\phi \in \Theta} \frac{1}{T} \sum_{t=1}^{T} \hat{R}_t(\phi)$$

Addition/Subtraction
3 Key Steps of ARUBA Framework

1. **Within-task OGD**: RUB controls performance as data-dependent (\(\theta^*\)) function of \(\phi\).

2. **Across-task OGD**: Choose initializations \(\phi_t\) such that RUB is small on Average.

Step 1: Substitute RUB

\[
\frac{1}{T} \sum_{t=1}^{T} R_t \leq \frac{1}{T} \sum_{t=1}^{T} \hat{R}_t(\phi_t) = \frac{1}{T} \left(\sum_{t=1}^{T} \hat{R}_t(\phi_t) - \min_{\phi \in \Theta} \sum_{t=1}^{T} \hat{R}_t(\phi) \right) + \min_{\phi \in \Theta} \frac{1}{T} \sum_{t=1}^{T} \hat{R}_t(\phi)
\]

Addition/Subtraction

Step 2: Across-task OGD

\[
= \frac{1}{T} \left(\sum_{t=1}^{T} \frac{\|\theta_t^* - \phi_t\|_2^2}{2\eta} - \min_{\phi \in \Theta} \frac{\|\theta_t^* - \phi\|_2^2}{2\eta} \right)
\]
1. **Within-task OGD**: RUB controls performance as a data-dependent (\(\theta^*\)) function of \(\phi\).

2. **Across-task OGD**: Choose initializations \(\phi_t\) such that RUB is small on average.

Step 1: Substitute RUB

\[
\frac{1}{T} \sum_{t=1}^{T} R_t \leq \frac{1}{T} \sum_{t=1}^{T} \hat{R}_t(\phi_t) = \frac{1}{T} \left(\sum_{t=1}^{T} \hat{R}_t(\phi_t) - \min_{\phi \in \Theta} \sum_{t=1}^{T} \hat{R}_t(\phi) \right) + \min_{\phi \in \Theta} \frac{1}{T} \sum_{t=1}^{T} \hat{R}_t(\phi)
\]

Addition/Subtraction

Step 2: Across-task OGD

\[
= \frac{1}{T} \left(\sum_{t=1}^{T} \frac{\|\theta^*_t - \phi_t\|^2}{2\eta} - \min_{\phi \in \Theta} \frac{\|\theta^*_t - \phi\|^2}{2\eta} \right)
\]

\[
= \mathcal{O} \left(\frac{\log T}{VT} \right) \sqrt{m}
\]
3 Key Steps of ARUBA Framework

1. **Within-task OGD**: RUB controls performance as data-dependent (θ^*) function of ϕ

2. **Across-task OGD**: Choose initializations ϕ_t such that RUB is small on Average

3. **Task-Relatedness**: Analyze its impact on resulting bound

Step 1: Substitute RUB

$$\frac{1}{T} \sum_{t=1}^{T} R_t \leq \frac{1}{T} \sum_{t=1}^{T} \hat{R}_t(\phi_t) = \frac{1}{T} \left(\sum_{t=1}^{T} \hat{R}_t(\phi_t) - \min_{\phi \in \Theta} \sum_{t=1}^{T} \hat{R}_t(\phi) \right) + \min_{\phi \in \Theta} \frac{1}{T} \sum_{t=1}^{T} \hat{R}_t(\phi)$$

Step 2: Across-task OGD

$$= \frac{1}{T} \left(\sum_{t=1}^{T} \frac{\|\theta^*_t - \phi_t\|^2}{2\eta} - \min_{\phi \in \Theta} \frac{\|\theta^*_t - \phi\|^2}{2\eta} \right) + \min_{\phi \in \Theta} \frac{1}{T} \sum_{t=1}^{T} \frac{\|\theta^*_t - \phi\|^2}{2\eta} + \eta m$$

$$= \mathcal{O} \left(\frac{\log T}{VT} \right) \sqrt{m}$$

Step 3: Impact of Task Relatedness

Addition/Subtraction
3 Key Steps of ARUBA Framework

1. **Within-task OGD**: RUB controls performance as data-dependent (θ^*) function of ϕ

2. **Across-task OGD**: Choose initializations ϕ_t such that RUB is small on Average

3. **Task-Relatedness**: Analyze its impact on resulting bound

Step 1: Substitute RUB

$$
\frac{1}{T} \sum_{t=1}^{T} R_t \leq \frac{1}{T} \sum_{t=1}^{T} \hat{R}_t(\phi_t) = \frac{1}{T} \left(\sum_{t=1}^{T} \hat{R}_t(\phi_t) - \min_{\phi \in \Theta} \sum_{t=1}^{T} \hat{R}_t(\phi) \right) + \min_{\phi \in \Theta} \frac{1}{T} \sum_{t=1}^{T} \hat{R}_t(\phi)
$$

Step 2: Across-task OGD

$$
= \frac{1}{T} \left(\sum_{t=1}^{T} \frac{\|\theta_t^* - \phi_t\|_2^2}{2\eta} - \min_{\phi \in \Theta} \frac{\|\theta_t^* - \phi\|_2^2}{2\eta} \right) + \min_{\phi \in \Theta} \frac{1}{T} \sum_{t=1}^{T} \frac{\|\theta_t^* - \phi\|_2^2}{2\eta} + \eta m
$$

$$
= \mathcal{O} \left(\frac{\log T}{VT} \right) \sqrt{m} + \frac{3}{2} V \sqrt{m}
$$

Step 3: Impact of Task Relatedness

Addition/Subtraction

- Substitute $\eta = V/\sqrt{m}$

Recap: What have we achieved?

Our Guarantee: \(\tilde{R} = \mathcal{O}\left(V + \frac{\log T}{VT} \right) \sqrt{m} \)

Single-Task Lower Bound: \(R_t = \Omega\left(D\sqrt{m} \right) \)

Multi-Task Lower Bound: \(\tilde{R} = \Omega\left(V\sqrt{m} \right) \)

When optimal task parameters are close together, GBML leads to much better average performance.
What can we get by applying ARUBA?

Adaptivity

- Learn any base-learner parameter from data
- e.g., *improved training algorithms* by learning ϕ and η simultaneously
What can we get by applying ARUBA?

Adaptivity
- Learn any base-learner parameter from data
- e.g., improved training algorithms by learning ϕ and η simultaneously

Generality
- Low-dynamic-regret algorithms for changing task-environments
- Stronger online-to-batch conversions for faster statistical rates
- Specialized within-task algorithms, e.g., satisfying privacy guarantees
ARUBA in Context of Three ICML’19 Papers

Excess transfer risk bounds on regularized SGD via online-to-batch conversion [Denevi-Ciliberto-Grazzi-Pontil]

Online learnability of MAML via Follow-the-Leader [Finn-Rajeswaran-Kakade-Levine]

Average regret bounds for Online Mirror Descent meta-algo under max-deviation assumption on task-parameters [K-Balcan-Talwalkar]
ARUBA Framework

Applications

- Adaptivity for Improved Training
- Federated Learning & Privacy-Preserving GBML
Is learning an initialization good enough?

\[\theta_{t,i+1} = \theta_{t,i} - \eta_{t,i} \odot \nabla_{t,i} \]

- per-coordinate learning rate
- gradient on sample i from task t
Is learning an initialization good enough?

Adaptively preconditioned gradient descent is popular in GBML

- Reptile uses Adam with accumulated gradient information
- Meta-SGD learns a per-coordinate learning rate for MAML [Li et al.]

\[\theta_{t,i+1} = \theta_{t,i} - \eta_{t,i} \odot \nabla_{t,i} \]
Is learning an initialization good enough?

\[\theta_{t,i+1} = \theta_{t,i} - \eta_{t,i} \odot \nabla_{t,i} \]

Adaptively preconditioned gradient descent is popular in GBML

- Reptile uses Adam with accumulated gradient information
- Meta-SGD learns a per-coordinate learning rate for MAML [Li et al.]

Can we do this rigorously?
Applying ARUBA: the regret-upper-bound

Single-task regret guarantees are often nice, data-dependent functions of the algorithm parameters.

\[\hat{R}_t(\phi, \eta) = \| \theta_t^* - \phi \|_2^2 / 2\eta + \sum_{i=1}^{m} \| \nabla_{t,i} \|_\eta^2 \]

\(\eta \)-preconditioned OGD from \(\phi \)

Mahalanobis norm
Adaptive ARUBA

Setting the learning rate

\[
B_{t,j} = \frac{1}{2} \sum_{s<t} (\phi_{s,j} - \theta_{s,j}^*)^2
\]
sum of sq. distances from initialization

\[
G_{t,j} = \sum_{s<t} \sum_{i=1}^{m} \nabla^2_{t,i,j}
\]
sum of sq. gradients

Learning rate \(\eta_{t,j} \) at task \(t \)

\[
\eta_{t,j} = \sqrt{\frac{B_{t,j} + \varepsilon_t}{G_{t,j} + \zeta_t}}
\]

\[
\varepsilon_t = o(t), \quad \zeta_t = o(t)\sqrt{m}
\]
smoothing terms
Adaptive ARUBA

Setting the learning rate

\[B_{t,j} = \frac{1}{2} \sum_{s < t} (\phi_{s,j} - \theta_{s,j}^*)^2 \]

\[G_{t,j} = \sum_{s < t} \sum_{i=1}^{m} \nabla^2_{t,i,j} \]

learning rate
coordinate \(j \) at task \(t \)

\[\eta_{t,j} = \sqrt{\frac{B_{t,j} + \varepsilon_t}{G_{t,j} + \zeta_t}} \]

\[\varepsilon_t = o(t), \quad \zeta_t = o(t)\sqrt{m} \]

Guarantee: \(\tilde{O}\left(1/T^{2/5}\right) \) - convergence of average regret to that of always using the optimal init and diagonal preconditioner
Applying result to practical GBML with OGD base learners:

\[\eta_{t,j} = \sqrt{\frac{B_{t,j} + \epsilon_t}{G_{t,j} + \zeta_t}} \]

- \(B_{t,j} \): sum of squared distances traveled on each task
- \(G_{t,j} \): sum of all squared gradients across tasks
- \(\epsilon_t \): smoothing term
- \(\zeta_t \): smoothing term

Compare to AdaGrad:

\[\eta_{t,j} = \sqrt{\frac{1}{G_{t,j} + \delta}} \]

- \(\delta = O(1) \): smoothing term
Improved Training via Adaptive ARUBA

Reptile: preconditioning with ARUBA instead of Adam

Reptile: Meta-Test Accuracy

Results on Omniglot character classification task, averaged over three runs
Improved Training via Adaptive ARUBA

Reptile: preconditioning with ARUBA instead of Adam

Results on Omniglot character classification task, averaged over three runs
ARUBA Framework

Applications

- Adaptivity for Improved Training
- Federated Learning & Privacy-Preserving GBML
Personalized Federated Learning

- Massively distributed
- Small sample sizes
- Privacy concerns
- Non-IID data and tasks
- Underlying task similarity
FedAvg \approx Reptile [with a batch-averaged meta-update]
FedAvg ≈ Reptile [with a batch-averaged meta-update]

- Most popular algorithm in federated learning
- Usually run without personalization - just use the meta-initialization within-task
Personalization in Federated Learning via Adaptive ARUBA

- Meta-training: run FedAvg with ARUBA optimizer within-task

Results on Shakespeare next-character prediction task
Personalization in Federated Learning via Adaptive ARUBA

- Meta-training: run FedAvg with ARUBA optimizer within-task
- Meta-testing - use (preconditioned) OGD to learn a personalized model for each user

Results on Shakespeare next-character prediction task
Private and Low-Risk Federated Learning via ARUBA

Jeff Li
Sebastian Caldas
Ameet Talwalkar
Private and Low-Risk Federated Learning via ARUBA

- Approach:
 - ARUBA handles approximate meta-updates, e.g. due to noise from differential privacy
 - use private OCO algorithms within-task to get per-sample privacy
Private and Low-Risk Federated Learning via ARUBA

- Approach:
 - ARUBA handles approximate meta-updates, e.g. due to noise from differential privacy
 - use private OCO algorithms within-task to get per-sample privacy

- analysis of their regret-upper-bounds yields a GBML method that’s private even to the central aggregator and has risk bounds improving with task-similarity.
Summary

ARUBA: a framework to obtain GBML algorithms with provable and mathematically interpretable guarantees via reduction to OCO.

New methods for meta-training, federated learning, private GBML.

Future directions:

• Beyond adversarial analysis within-task — can the base-learners be statistical or RL algos?

• Better multi-task optimizers, e.g. for regimes beyond few-shot learning
Thank You!

ARUBA: https://arxiv.org/abs/1906.02717

More Info: http://www.cs.cmu.edu/~mkhodak/