Spatial Computation
— Summary of the Ph.D. Thesis —

Mihai Budiu
December 2003

1 Thesis Statement

Software compilation technology for targeting predicated architectures can be naturally adapted for per-
forming the automatic synthesis of application-specific, custom hardware dataflow machines. This com-
pilation methodology translates media processing kernels into hardware with a high degree of instruction-
level and pipeline parallelism. However, the resulting distributed computation structures are not as easily
amenable as traditional monolithic superscalar processors at using acceleration mechanisms such as (cor-
related) prediction, speculation and register renaming. The lack of these mechanisms is a severe handicap
when executing control-intensive code.

2 Motivation

For most computer users the speed and capabilities of today’s computer systems were undreamed of as
little as a decade ago. The relentless advance of technology at an exponential pace for more than 40 years
has produced amazingly complex and powerful machines: in September 2003 Intel released the Itanium 2
processor for servers, built out of 410 million transistors on a single 374chip and consuming 130W.

A desktop microprocessor with more than 1 billion transistors is expected before 2007. The exponential
increase in computing resources is expected to last at least another decade, and perhaps even more if the
promises of nhanotechnology come true.

However, all this progress has not been for free. The very success of miniaturization creates new
unexpected obstacles. FiguUie 1 is a slide from a presentation given by Michael Flynn at the Federated
Computer Research Conference 2003 [7], illustrating one such difficulty: the complexity of the hardware
designs increases with the number transistors, at an exponential pace. For instance, the complexity of a
hardware design depends on the numbesxaieptionghat cannot be automatically handled by Computer-
Aided Design (CAD) tools; the number of these exceptions grows with the number of transistors. Although
the productivity of hardware designers increases too, due to improvements in CAD tools, it does so at
a slower pace. The end result is a growimgductivity gapbetween what we have and what we can
economically use. Fewer and fewer companies can close this gap, and when they do, they employ larger
and larger design, test, verification and manufacturing teams.

The problems of hardware design productivity are nowhere near of being solved; in fact more ominous
obstacles are surfacing. FigUie 2 is another slide taken from the same presentation, comparing the signal
propagation delay through logic gates and “average-sized” wires. Since many structures of a modern pro-
cessor, such as the forwarding paths on the pipeline, the multi-ported register files, the instruction wake-up



Design Time:
CAD productivity favors FPL
10,000,000 100,000,000
-~ Logic transistors/chip "
@ .10m 00,000 ki _#7///410,000,000
" 7
g 100,000 onry - . 1,000,000 >
s ear > =
S 351 10,000 74100000 >
= \9,/ 7 S
< 1000 — 10,000 3
e % Q
= 100 > = < 1000 o
@ =
2,5 10 | % 100
-5 B 21%/Year
L e L L L T S AL
58883232328 8¢8¢8¢%8
Source: S. Malik, orig Sematech

Figure 1:Complexity and productivity versus technology generation.

<>\Gazte delay
300
. \

100

400

ps)

Delay (|

O T T T
0.7 0.5 035 025 018 0.13
Process generation

Figure 2: Wires and not gates dominate the delay in advanced technologies.

logic, etc., require global signals (i.e., spanning multiple modules), there simply is not enough time for the
signals to propagate along these wires at very high clock speeds. In fact, at 10Ghz a signal can cover less
than 1% of the surface of a chip in one clock cydle [1], making any architecture relying on global signals
infeasible.

The research presented in this document is aimed directly at these problems. We @xploneew
computational model, which requires no global synchronization,(Bhd new CAD methodology, aimed
at bridging both software compilation and microarchitecture. Our model is named Spatial Computation.
In Spatial Computation applications written in high-level languages are compiled directly into hardware
circuits. The synthesized circuits feature only localized communication, require no broadcast, no global
control, and are timing-insensitive, and thus correct even when the communication latency is not statically
predictable. The compiler we have developed requires no designer intervention (i.e., it is fully automatic),
is fast, and exploits both instruction-level parallelism and pipelining. This thesis is an investigation of the
compilation methodology and of the properties of the synthesized circuits.

3 Application-Specific Hardware and Spatial Computation
From an architectural point of view Spatial Computation exhibits some desirable attributes:

e it is program-specificand thus it has no interpretation overhead,

2



e it can exploit virtually unlimited instruction-level parallelism (ILP),

e it features mostly short and fast point-to-point wires driven by a single writer each (i.e., wires that
require no arbitration),

e it is asynchronous, and thus latency tolerant; this makes it correct by design, even when it employs
global structures, such as the memory access network,

e as in superscalar processors and dataflow machines, its computation is dynamically scheduled, based
on the availability of data,

e it requires no centralized control structures,
e it has a modular structure;

e it is composed ofeanhardware; in particular, both datapath and control-path contain no broadcast
structures, no arbitration, no multi-ported memory or register files, no content-addressable structures,
and would thus be able to run at a very high sfiieed

e itis easy to reason about; we believe it is thus easily amenable to formal verification.

In this thesis we investigate in detail a particular instance of Spatial Computation, with the following
features:

e Each source-level procedure is translated into a distinct hardware structure;

e Each source-level operation is synthesized as a different hardware arithmetic unit; our circuits thus
exhibitno computational resource sharing

e All program data is stored in a single monolithic memory, accessible through a conventional memory
hierarchy, including a load-store queue and caches;

e The synthesized hardware is an application-spestfitic dataflow machine This means that (1)
operations are executed based on the availability of data and (2) at any point in time there can exist in
the circuit at most one result for each operdafion

We define Application-Specific Hardware, abbreviated ASH, as the hardware structure implementing a
particular program, synthesized under compiler control from the application source code; the translation is
illustrated in Figurd]3.

3.1 ASH and Computer Architecture

The features of Spatial Computation suggest that it may provide very good performance on data-intensive
programs, which have high amounts of instruction-level parallelism. Indeed, as we show in this thesis, ASH
can surpass by a comfortable margin a 4-wide out-of-order superscalar on media processing kernels.
However, as our analysis shows, some of the strengths of ASH are also its weaknesses when we consider
control-intensive programs. The lack of branch prediction in ASH is a severe handicap for benchmarks

The memory access network however requires some complex structures.
2In contrast, in dynamic dataflowi [3], at some point in time there can be an arbitrary number of results “live” for each operation.



C Program

&

Circuits— |

s
Partitioned memory/ ASH

Interconnection net

Figure 3: Application-Specific Hardware is generated by the automatic synthesis of computational struc-
tures, memories and an interconnection network from C programs.

where the ILP is low and the computation of the branch conditions is on the critical path. The distributed
nature of ASH makes reaching memory expensive, and squashing speculation difficult.

These behaviors suggest that a versatile computer system should combine the strengths of both out-
of-order processors, for control-intensive code, and Spatial Computation, for data-intensive kernels. This
research opens the exploration for the detailed architecture of such a system, and mostly of a low-overhead
hardware substrate suitable for Spatial Computation (when compared to contemporary FPGA devices).

4 Contributions
To our knowledge the following are original research contributions of this work:

Predicated SSA dataflow internal representation: we are the first to report on the wide scale usage of a
compiler internal program representation that brings together static single-assignment, predication,
forward speculation and a functional representation of side-effects. Several features of this represen-
tation make compiler development particularly efficient: (1) it has a precise semantics, (2) enables a
succinct expression of most common program optimizations (3) it enables efficient reasoning about
memory state and thus enables powerful memory optimizations, (4) it makes dataflow analyses simple
and efficient.

SIDE as a new framework for dataflow analysis: our new hybrid dataflow analysis framework, Static In-
stantiation — Dynamic Evaluation uses code to dynamically evaluate dataflow information when a
static evaluation is too conservative.

New compiler algorithms. We describe new optimization algorithms for redundancy elimination in mem-
ory accesses: register promotion and partial redundancy elimination for memory. We also describe
algorithms for enhancing the pipelining of loops, such as a scheme for pipeline balancing, memory
access pipelining in loops through fine-grained synchronization and loop decoupling.

Language extension:we have studied the efficiency of user annotations in C programs (through the use of
#pragma statements) to convey pointer non-aliasing information to the compiler.



Dataflow model extensions:we have realized the first translation of the complete C language to a dataflow
machine. This effort has crystallized a methodology for implementing imperative languages, includ-
ing unstructured flow-of-control, recursion, side-effects and modifiable storage. We have incorpo-
rated predication and speculation in the dataflow model of execution, and we have suggested a way to
perform the equivalent of branch prediction in dataflow machines. Other contributions to the dataflow
model of execution are the use of lenient operations and an enhanced form of pipeline balancing.

Hardware synthesis: we have built the first complete system able to translate arbitrary C programs into
hardware. This tool differs from most prior approaches in its change of perspective: C is not re-
garded as a hardware-description language, destined to describe an independently-executing piece of
hardware; instead, the goal of the synthesis system is to directly implement a given application as a
hardware circuit.

Asynchronous circuit design: we have provided the first tool that can be used to translate C programs
into asynchronous circuits. The translation methodology is general enough to be applicable to any
imperative language.

Embedded systems constructionwe have built the CASH compiler, which can be used as a tool for very
fast prototyping of embedded systems hardware accelerators and has shown its effectiveness on a
wide range of media processing applications. Although not detailed in this document, we have sug-
gested a new way of performing hardware-software partitioning, which relies on separating the pol-
icy from the mechanism; this partitioning is easily amenable to automatization. CASH together with
the partitioning methodology constitute a very efficient method of exploring the design of complex
application-specific system-on-a-chip devices using only the application source code.

New perspective on superscalarswe have performed a new limit study on the subject of instruction-level
parallelism and the effectiveness of architectural features for exploiting it. Namely, by contrasting a
static dataflow model with unbounded resources (ASH) against a superscalar processor implemen-
tation we have highlighted the effectiveness of a monolithic architecture at performing memory ac-
cesses, prediction and speculation and emulating a full dynamic dataflow model of execution.

5 CASH: A Compiler for Application-Specific Hardware

In this section we provide and overview of CASH, the compiler translating C programs into Application-
Specific Hardware (ASH).
Figure[4 shows CASH within its environment. The inputs to the compiler are programs written in ANSI
C. CASH represents the input program using a dataflow internal representation called Pegasus. The output
of CASH is a custom hardware dataflow machine, which directly executes the input program. The result
can be implemented either as a custom hardware device, or on a reconfigurable hardware substrate.
CASH translates the input program into a flat computational structure, which contains no interpretation
engine. Roughly, to each operation in the source corresponds one arithmetic unit in the output circuit. This
kind of computation structure is called Spatial Computation. It exhibits maximum parallelism and minimal
resource sharing. The only resource sharing is at the procedure level, since different calls to the same
procedure re-use the same circuit.



C program

. !

Dataflow IR

CASH

datlog 3

Reconfigurable/custom hw

Figure 4:The CASH compiler translates C programs into hardware.

5.1 What CASH Does

With regard to the range of program transformations performed, CASH is much closer to a software com-
piler than to a CAD tool. We have implemented in CASH most textbook scalar optimizations; in addition,
CASH has proven to be a great vehicle for implementing some memory-related optimizations, such as
redundancy elimination and register promotion.

Most optimizations in CASH are applied at the level of hyperblocks, which tend to be relatively coarse
program regions. Optimizations are thus, as effectiveness goes, somewhere between purely local, basic-
block-based optimizations, and global, whole-procedure optimizations. An important point is that most
innermost loops are hyperblocks, and thus are treated as an optimization unit.

The front-end performs procedure inlining and loop unrolling. The CASH core performs global con-
stant propagation, constant folding, partial redundancy elimination for both scalars and memory, a wide
range of algebraic optimizations, loop-invariant code motion, scalar promotion based on powerful memory
disambiguation, strength reduction, unreachable- and dead code removal and Boolean simplifications.

The compiler also performs pipeline balancing for enhancing the throughput of the circuits which ex-
hibit dataflow software pipelining.

6 Pegasus: an Internal Representation

Pegasus is the internal representation of CASH. Probably the most important feature of Pegasomis its
pletenessthe representation is self-contained, enabling a complete synthesis of the circuits, without requir-
ing further information (internal representations with this property are caitedutablg

Three important computational paradigms are brought together in Pegasus: (1) executable intermediate
representations, (2) dataflow machines and (3) asynchronous hardware circuits. Indeed, the most natural
way to implement a custom dataflow machine (i.e., one executing a fixed program) is by using asynchronous
hardware. Both the dataflow machine operations and the asynchronous hardware computational units start
computing when they receive their input operands, and both use fine-grained synchronization between data
producers and consumers to indicate the availability and consumption of data. Pegasus is original because
it is used for compiling an imperative language into dataflow machines. The overwhelming majority of
the work in compilation for dataflow machine dealt with functional, single-assignment languages. On the
other hand, asynchronous circuits are customarily described in some form of Communicating Sequential
Processes. Both these classes of languages are very different in nature from C.

6



Certainly, the adequacy of dataflow intermediate forms for compiling imperative language has been
noted before; in fact, many of the Pegasus features are inspired by Dependence Flow Graphs [8], which
is a dataflow representation used to represent FORTRAN programs. The key technique allowing us to
bridge the semantic gap between imperative languages and asynchronous dataflow is Static Single Assign-
ment (SSA) [6]. SSA is an intermediate representation used for compiling imperative programs in which
each variable is assigned only once. As such it can be seen as a functional program [2]. Indeed, Pega-
sus represents the scalar part of the computation of C programs as a functional, static-single assignment
representation.

The main contribution of this work in the domain of compiler intermediate representations is the
seamless extension of SSA to incorporate other modern features of compiler representations, such as a
representation of memory dependences, predication and (forward) speculation. While other intermediate
program representations have each previously unified some of these aspects, we believe we are the first to
bring all of them together in a coherent, semantically precise representation.

Pegasus integrates several important compiler technologies, drawing on their strengths:

Dependence representation:Pegasus is a form of program-dependence graph, summarizing data-flow,
data dependence and control-flow information. Pegasus makes eaplibié dependences between
operations (either scalar computations or memory operations).

Soundness:as any representation exposing parallelism, Pegasus is hon-deterministic (i.e., it does not en-
force a total execution order of the operations). However, it can be easily proved that Pegasus has
the Church-Rosser property (i.e., confluence): the final result of the computation is the same, for any
legal execution order of the operations.

Precision: Pegasus’ building blocks have a precise semantics; the semantics is compositional. Moreover, a
Pegasus representation is a complete executable form, which describes unambiguously the meaning
of a program, without the need for external annotations.

Single-Assignment: Pegasus is a sparse intermediate representation, based on a (slightly modified) form
of static-single assignment. As such, it shares with SSA the space and time asymptotic complexity,
enabling fast and efficient compiler manipulations. Pegasus uses classical SSA to represent value
flow within each hyperblock; the modification consists in the treatment of the inter-hyperblock flow:
we place a merge operataf fode) at each hyperblock entry point for each variable live at that point.
While this modification theoretically has worse asymptotic properties, in practice it is completely
acceptable.

Expressive: Pegasus enables very compact implementations for a large number of important program op-
timizations. In fact, most of the common scalar optimizations can be rephrased as simple term-
rewriting rules operating on Pegasus graphs; implementing some of these optimizations on CFGs
requires the computation of dataflow informafloriThis fact is important not because it saves the
compiler the time to perform the dataflow analysis itself (for most of the optimizations only simple
bit-vector, or other constant-depth lattice analyses are required); the importance is in saving the effort
to updatethe dataflow information when program transformations are applied. Although research
has shown how to perform incremental dataflow updates, maintaining several pieces of dataflow in-
formation while performing complex program transformations is a daunting compiler-engineering
task.

SUnfortunately the termtlataflowis overloaded:; in this document it is used to denote both dataflow machines and dataflow
analyses. We hope that the context is always clear enough to disambiguate its meaning.

7



Verifiable: Due to the compositionality of the semantics, the correctness of many optimization can be
easily argued (especially the ones performing term-rewriting): if a program fragment is replaced by
an equivalent one, the end-to-end program semantics does not change. An important piece of future
work is to apply formal verification techniques for proving that Pegasus transformations preserve
program semantics.

Compositionality also simplifies the presentation of the examples in this text: we can unambiguously
isolate contiguous subgraphs of a larger code fragment independent on their environment, since the
semantics of the subgraph is well-defined.

Predication and speculation: are core constructs in Pegasus. The former is used for translating control-
flow constructs into data-flow, and the latter for reducing the criticality of the control-dependences.
Both these transformations are borrowed in their form used in the compilation for EPIC architectures.
They are effective in boosting the exposed instruction-level parallelism. Both predication and specu-
lation are employed in Pegasus at the hyperblock level; speculation is thus only forward speculation,
which evaluates all outcomes of forward branches within a hyperblock.

7 Optimizations

The fourth chapter of the thesis discusses in detail the optimizations performed by CASH. We make several
research contributions to the subject of compiler optimizations:

e We present several new, more powerful versions of classical optimizations. Some of them are ap-
plicable in the context of traditional compilers as well, while other are more intimately tied to the
features of the Pegasus internal representation.

e We suggest a new class of optimizations, basedyramic dataflow analysisAs an example we
present a new, optimal algorithm for register promotion, which handles inter-iteration promotion in
the presence of control-flow. The idea of these optimizations is, instead of using static conservative
approximations to dataflow facts, tostantiate the dataflow computation at run-tiraed thus to
obtain dynamic optimality.

e We show that Pegasus can uniformly handle not only scalar optimizations, but also optimizations
involving memory. Other efficient program representations treat memory as a second-order object,
resorting to external annotations and analyses in order to handle efficiently side-effect analysis. For
example, while SSA is an IR that is widely recognized as enabling many efficient and powerful
optimizations it cannot be easily applied in the presence of pointers. (Several schemes have been
proposed, but we believe that none of them fits as naturally as Pegasus’ in the framework of single-
assignment.) We show how Pegasus enables efficient and powerful optimizations in the presence of
pointers.

e We show how Pegasus not only handles optimizations naturally in the presence of predication and
speculation (most classical optimizations and dataflow analyses break-down in the presence of predi-
cation), but even takes advantage of predicates in order to implement very elegant and natural program
transformations, without giving up any of the desirable features of SSA. We show how to use pred-
ication and SSA together for memory code hoisting (subsuming partial redundancy elimination and
global common-subexpression elimination for memory operation), removing redundant loads, loads
after stores, and dead stores.



e Unlike other intermediate representations, Pegasus represents essential information in a program
without the need for external annotations. Moreover, the fact that Pegasus directly connects definers
and users of values makes unnecessary many traditional dataflow analyses: they are summarized by
the edges. Thus, many optimizations are reduced to a local rewriting of the graph. This is important
not because of the elimination of the initial dataflow computation, but bectatalow information
is maintained automatically in the presence of program transformatidirere is thus no need for
cumbersome (incremental or complete) re-computations of dataflow facts after optimizations.

¢ As a byproduct of the sparsity of the representation and of the lack of need of dataflow analyses many
optimizations are linear time, either worst-case or in practice. This enabled us to use a very aggressive
optimization schedule, by iterating most optimizations until convergence. We believe that CASH is
unique in this respect; all compilers that we know of have a relatively fixed schedule of optimizations,
while in CASH some optimizations may be applied many times.

e The sparsity of Pegasus and its “def-use” nature makes the implementation of dataflow analyses
practically trivial. We illustrate this by describing a general dataflow framework and showing how
several analyses fitinto it in.

e We introduceloop decoupling a new loop parallelization algorithm for handling memory depen-
dences, which relies on creating a computation structuredgremically controls the slipetween
two parallel computations.

e We bring new insights into the implementation of software pipelining. Our approach, inspired by
the paradigm of dataflow software pipelining, was devised for implementation in Spatial Computa-
tion. Our approach is immediately applicable on multithreaded processors, and is much simpler than
traditional software pipelining, while being also tolerant of unpredictable latency events.

8 ASH at Run-time

8.1 Lenient Execution

Pegasus uses explicit multiplexors to represent the join of multiple definitions of a variable. Hyperblocks
are the basic unit of (speculative) execution: all operations within a hyperblock are executed to completion
every time the execution reaches that hyperblock.

In the literature about EPIC processors, a well-known problem of speculation is that the execution time
on the multiple control-flow paths may be differeft [4]. Fig{re 5 illustrates the problem of balancing: the
critical path of the entire construct is the longest (worst-case) of the critical paths of the combined condi-
tional paths. Traditional software solutions use either profiling, to ensure that the long path is overwhelm-
ingly often selected at run-time, or exclude certain hyperblock topologies from consideration, rejecting the
predication of paths which differ widely in length.

In Spatial Computation we can use a completely different method to solve this problem: we make
multiplexors and predicate computation operatitargent Leniency is a property of the execution of an
operation, related to strictness and laziness. An operation is strict if it requires all its inputs to compute the
output. An operation is non-strict if it can produce a result with just some of the inputs. Lenient operators
generate a result as soon as possible, while still expecting all inputs to eventually become available. For
example, a “logical and” operation can determine that the output is “false” as soon as one of its inputs is



if (x > 0)
y = X
else
y = b*x;

(A) (B)

Figure 5: (A) Sample program fragment and (B) the corresponding Pegasus circuit with the static critical
path highlighted.

“false”. In our implementation lenient operations however defer the sending of acknowledgments until all
of the inputs have been received.

Lenient evaluation should not be confused with short-circuit evaluation: a short-circuit evaluation of
an “and” always evaluates the left operand, and if this one is “false”, it also evaluates the right one. A
lenient evaluation of “and” however generates a “false” result as soeithesinput is known to be “false”.
Short-circuit evaluation is a static property, while lenient execution is a dynamic property.

Multiplexors have lenientimplementations as well: as soon as a selector is “true” and the corresponding
data is available, a mux generates the output. As a result of leniency, at least for this sampletioércuit,
dynamic critical path is the same as in a non-speculative implementdtmnif the multiplication output
is not used, it does not affect the critical path. The multiplication delay can still impact the dynamic critical
path if it is within a loop, but this can be managed by pipelining the implementation of the multiplier.

Besides Boolean operations and multiplexors, there are other operations which are only “partially”
lenient. For example, all predicated operations are lenient in their predicate input. For example, if a load
operation receives a “false” predicate input, it can immediately emit an arbitrary output (by raising the “data
ready” signal), since the actual output is irrelevant. Other operations could be made lenient in some weaker
sense still; for example, a multiplication receiving a 0 input could immediately output a O result.

8.2 Dataflow Software Pipelining

One of the most interesting properties of Spatial Computation is its automatic exploitation of pipeline par-
allelism. This phenomenon is a consequence of the dataflow nature of ASH, and has been well studied in
the dataflow literature. In the case of static dataflow machines (i.e., having at most one data item on each
edge) this phenomenon is called dataflow software pipeliriing [10]. The name suggests the close relation-
ship between this form of pipelining and the traditional software pipelining optimization, customarily used
in VLIW processors to speed-up scientific code.

We use the simple program in FigUfe 6 to illustrate this phenomenon. This prograrn asesbasic
induction variable to iterate from 1 to 10, aadm to accumulate the sum of the squares of

Let us further assume that the multiplier implementation is pipelined with 8 stages. In Higure 7 we show
the snapshots for a few consecutive “clock ticks” of this circuit.

10



int squares()

{

int i = 0,
sum = O;

for (i=0; i<10; i++)
sum += i*;
return sum;

}

ret

(A)

Figure 6:Program exhibiting dataflow software pipelining.

Notice that the original CFG loop has been decomposed into two independent dataflow loops, one
computing the value af and the other computing the valuesafim. The two loops are connected by the
multiplier, which gets its input from one loop and sends its output to the second loop. At run-time the
loop is, in the last snapshot in FigUie 7, more than one iteration ahead sifriniop.

A similar effect can be achieved in a statically scheduled computation by explicitly software pipelining
the loop, scheduling the computationiofo occur one iteration ahead sdim.

Let us notice however some important differences between the two types of software pipelining:

e Traditional software pipelining relies on precise scheduling of the operations for each clock cycle;
unpredictable events and unknown latency operations (such as cache misses) do not fit well within
the framework. In contrast, Spatial Computation requires no scheduling and automatically adjusts
when the schedule is disrupted, because the execution of all operations is completely decoupled.

o Effective software pipelining relies on accurate resource usage modeling by each instruction, some
of which are very hard to reason about, such as cache bank conflicts. In Spatial Computation as many
resources as necessary can be synthesized; unpredictable contention for the shared resources, such as
LSQ ports or cache banks has only local effects on the schedule.

e Sophisticated production-quality implementations of software pipelining require a huge amount of
code; a MIPS R8000 implementation described in the literature has 33,000 lines of code, which is
more than the complete CASH core.

11



~

)
=z .
~ — A

~

|

—
P
A
.
-
~—3S

D a an o
L il 1 I
1D Ay Ay mw
L b b L
1) an an D
| ) | |
[1 [ Q8 [
v\ I \ I }
(1 an g (n
/- [N [\ [\ /. \ 'I;\

m
2
3
AN
/
2
N
e
3
AN
Vs
e
\ 3
\
\

P ' . , . , P
Sosum 7 N\ sum Sosum 7 SNosum 7S osum 7 Sosum 7 || SN sum 7 N sum 7

(1) ret (2) ret 3) ret (4) ret () ret (6) ret

Figure 7:Snapshots of the execution of the circuit in Figure [, assuming that the multiplier implementation
is pipelined with 8 stages, and that the negation latency is 0. In the last snapshot two different values of i
are simultaneously present in the multiplier pipeline.

9 Implementing Media Kernels in ASH

In this section we evaluate the effectiveness of CASH on selected kernels from embedded-type benchmarks.
We use programs from the Mediabench [9] benchmark suite. For selecting the kernels we first run each
benchmark on a superscalar processor simulator and collect profiling information. Next we compile each
kernel using CASH and the rest of the benchmark using gcc, and we simulate the resulting “executable”
by measuring only the kernel execution. The baseline performance is measured using the SimpleScalar 3.0
simulator [5], configured as a 4-way out-of-order superscalar.

On the ASH system the load-store queue has more input ports, due to the high bandwidth requirements
from the memory access protocol. The L1 and L2 data caches, and the memory latency are all identical on
the compared systems.

Most of the operation latencies are assumed to be identical in ASH and a prototypical processor, which
will be the basis for our comparison. Some values are smaller for ASH, due to its specialized hardware
nature; for example, we assume that constant shifts or negation operations can be made in 0 cycles. The
assumption for negation is justified because it is always a 1-bit operation, and we assume that in a hardware
implementation, the source of the negation operation always computes not only the correct value but also
the complement. We assume that the timing of most arithmetic operations is the same on both systems,
although this probably is unfair to the processor, since its arithmetic units are highly optimized, trading-off
area for performance.

12



w
o
®
o1
[e 2]
N

2.5

N

Times faster
3

—_

0.5 4

|

T T T T T T T T T T T T T T
°  © o o T 0 ° o o o ¢ ° o T o T O ©
IS £ Qo 9o 9 - = = o o Q ) [N == a o &
o o a o o N @ @ [0} [0} e [«)) o)) H 2 D D =
e & o o N5 o o & 2 g ¢ > » a a

T O (2B Q 9 o o]

S © £ E o o

Figure 8:Speed-up of ASH versus a 4-way out-of-order superscalar processor. The only kernel exhibiting
a slowdown is epic _e.

In CASH we use very aggressive loop unrolling, and we disable inlining, unless otherwise specified.
We use the full complement of the optimizations of the compilers for both systems.

Note that since ASH has no instruction issue/decode/dispatch logic, it cannot be limited by instruction
processing. We use rather optimistic values for the instruction cache for the processor in order not to have
an artificial disadvantage.

9.1 Performance Results

We express performance in machine cycles for executing the kernel alone. We time the kernel on the
processor and on ASH. We implicitly assume the same “clock” for both implementations.

Figure[8 shows how much faster ASH is compared to the superscalar core. Except one pepgrarm,
which slows down, and one prograadpcm_e, which breaks-even (with a speed-up of only 2%), all kernels
exhibit significant speed-ups, ranging from 50% up to 1200%sta

Figure[® shows the indisputable advantage of Spatial Computation: unlimited parallelism, exploited
post-hoc. It shows the sustained IPC for both the processor and ASH for the selected kernels. On all kernels
ASH sustains a higher IPC, and, excagpcm_e, an IPC higher than the maximum theoretically available
from the processor. In fact, excepting three benchmaaklpdm_e and bothg721) the IPC of ASH is
more than twice that of the processor.

13



25

@ Base IPC
WASH IPC

© o T © T © T © T O @& T © T O T O «
IS e 9 O = e e o o 0 o o r = a a §
S S o o N N @ @ [0 [o) = [o)) [} = = (o)) o)) R
e & o o 5 &N o o 2 2 g 9 © » a a

k] kel 2 o Q. Q. @ b}

& ®© € £ a a

Figure 9: Average IPC (Instructions Per Cycle) for superscalar and ASH. The upper limit (4) for the pro-
cessor is indicated.

10 ASH Versus SuperScalar

In this section we compile whole programs using CASH and evaluate their potential performance. We
compare to a superscalar processor baseline. We assume the same operation latencies as in the comparison
of media kernels.

Some of these assumptions are clearly optimistic for ASH when dealing with whole programs. In
particular, the complexity of the memory access network and of the interconnection medium for procedure
calls and returns cannot be assumed constant any more. In the best case the latency of these networks should
grow as,/n, wheren is the size of the compiled program, assuming a two-dimensional layout. One should
thus interpret the data in this section more as a limit study than as absolute magnitudes.

10.1 Performance Measurements

Figure[ID shows the speed-up of complete applications from SpecInt95 executed under ASH when com-
pared to a superscalar processor. Unfortunately most of the numbers indicate a slowdow®@Xundy ,

which is very array-intensive, ariB2.ijpeg , which is very similar to the Mediabengpeg programs,

show some performance improvements. Results for SpecInt2K show similar trends, and are not presented
due to excessive simulation time requirements.

10.2 Analysis of Performance Results

The thesis presents a detailed analysis of the influence of architectural features on the performance results.
The following (lack) of features penalizes ASH:

14



30

20 A

-20 1

Percent slower / faster
8 o
099.go
124.m@
129.compress
130.1i
132.ijpeg
134.perl

-30

-40

-50

Figure 10:Speed-up of SpecInt95 benchmarks executed on ASH. The baseline is a superscalar 4-way out-
of-order processor. Negative values indicate a slow-down.

The lack of branch prediction, which may introduce control dependences on the critical path;

The strictness (non-leniency) of “call” and “return” operations;

Insufficient optimization of Boolean computations;

Excessive register save/restore overhead for implementing recursive calls;

The fact that “joins” in the control-flow graph are translated into non-free operations (multiplexors
and merges);

The lack of register renaming in ASH creates additional output-dependences;

Accesses to memory are “remote” and thus require longer latencies.

11 Conclusions

Traditional computer architectures are clearly segmented by the Instruction Set Architecture (ISA), which
the hardware-software interface definition: compilers and interpreters sit “above”, while the processor hard-
ware is “below”, functioning as an interpreter of the instruction set. In this thesis we have investigated a
computational structure which foregoes the existence of an ISA altogether. In this setup the cisrtigler
architecture.

We have investigated one particular instance of an ISA-less architecture, which we dubbed “Spatial
Computation”. In Spatial Computation the program is translated directly into an executable hardware form,
without using an interpretation layer. The synthesized hardware closely reflects the program structure:
the definer-user relationships between program operations are translated directly into point-to-point com-
munication links connecting arithmetic units. The resulting computation engine is completely distributed,
featuring no global communication or broadcast, no global register files, no associative structures, and using

15



resource arbitration only for accessing the global monolithic memory. While the use of a monolithic mem-
ory does not take advantage of the freedom provided by such an architecture, it substantially simplifies the
completely automatic implementation of C language programs. We have chosen to synthesize dynamically
self-scheduled circuits, i.e., where computations are carried based on availability of data and not accord-
ing to a fixed schedule. A natural vehicle for implementing self-scheduled computations is provided by
asynchronous hardware.

This thesis has explored both the compile-time and run-time properties of such an architecture. The
main contribution of this work with respect to the compilation methodology has been the introduction of a
dataflow intermediate representatiorhich seamlessly embeds several modern compilation technologies,
such as predication, speculation, static-single assignment, an explicit representation of memory depen-
dences, and a precise semantics. We have shown how many classical and several novel optimizations can
be efficiently implemented using this representation.

Our investigation in the run-time aspects of Spatial Computation has shown that it indeed can offer
superior performance when used to implement programs with resource requirements substantially exceeding
the ones available in a traditional CPU. In particular, the execution of multimedia program kernels can
achieve very high performance in Spatial Computation, at the expense of very little power. A detailed
investigation of the run-time behavior of the spatial structures has also shown that their distributed nature
forces them to incur small, but non-negligible overheads when handling control-intensive programs. We
have shown that the use of global structures (such as branch prediction, control speculation and register
renaming) in traditional superscalar processors can thus more efficiently execute control-intensive code.

Since Spatial Computation complements the capabilities of traditional monolithic processors, a promis-
ing avenue of research is the investigation of hybrid computation models, coupling a monolithic and dis-
tributed engine.

References

[1] V. Agarwal, H.S. Murukkathampoondi, S.W. Keckler, and D.C. Burger. Clock rate versus IPC: The end
of the road for conventional microarchitectures.Pimceedings of the 27th International Symposium
on Computer ArchitectureJune 2000.

[2] Andrew W. Appel. SSA is functional programming. ACM SIGPLAN Notices v. 33, no. 4, April 1998.

[3] Arvind and R.S. Nikhil. Executing a program on the MIT tagged-token dataflow architedtie
Transactions on Computer89(3), 1990. Also as MIT Computations Structures Group Technical
Memo Memo-271, 1987.

[4] David I. August, Wen mei W. Hwu, and Scott A. Mahlke. A framework for balancing control flow
and predication. IfProceedings of the 30th International Symposium on MicroarchiteclReeember
1997.

[5] Doug Burger and Todd M. Austin. The SimpleScalar tool set, version 2.@omputer Architecture
News volume 25 (3), pages 13—-25. ACM SIGARCH, June 1997.

[6] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently computing static single
assignment form and the control dependence gr&@M Transactions on Programming Languages
and Systemd.3(4):451-490, 1991.

16



[7] Michael Flynn. Computer architecture and technology: some thoughts on the road ahead.
http://mwww.acm.org/sigs/conferences/fcrc/PlenaryTalks/Flynn.pdf, June 2003. Presentation at the
FCRC plenary talks.

[8] R. Johnson and K. Pingali. Dependence-based program analysiodeedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementation (Ridgjgs 78—89, Al-
buquerque, New Mexico, June 1993.

[9] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith. MediaBench: atool for evaluating
and synthesizing multimedia and communications systemsMi¢no-30, 30th annual ACM/IEEE
international symposium on Microarchitectymages 330-335, 1997.

[10] Gao Guang Rong. An implementation scheme for array operations in static data flow computers.
Technical Report MIT-LCS-TR-280, MIT LCS, May 1982.

17



	Thesis Statement
	Motivation
	Application-Specific Hardware and Spatial Computation
	ASH and Computer Architecture

	Contributions
	CASH: A Compiler for Application-Specific Hardware
	What CASH Does

	Pegasus: an Internal Representation
	Optimizations
	ASH at Run-time
	Lenient Execution
	Dataflow Software Pipelining

	Implementing Media Kernels in ASH
	Performance Results

	ASH Versus SuperScalar
	Performance Measurements
	Analysis of Performance Results

	Conclusions

