
Programmer Specified Pointer Independence

David Koes
CS Department

Carnegie Mellon University
Pittsburgh, PA 15213

dkoes@cs.cmu.edu

Mihai Budiu
CS Department

Carnegie Mellon University
Pittsburgh, PA 15213

mihaib@cs.cmu.edu

Girish Venkataramani
ECE Department

Carnegie Mellon University
Pittsburgh, PA 15213

girish@cs.cmu.edu

ABSTRACT
Good alias analysis is essential in order to achieve high perfor-
mance on modern processors, yet precise interprocedural analysis
does not scale well. We present a source code annotation, #pragma
independent, which provides precise pointer aliasing informa-
tion to the compiler, and describe a tool which highlights the most
important and most likely correct locations at which a programmer
should insert these annotations. Using this tool we perform a limit
study on the effectiveness of pointer independence in improving
program performance through improved compilation.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures; D.3.4 [Programming Languages]: Processors—Compilers;
D.3.4 [Programming Languages]: Processors—Optimization

General Terms
Performance

Keywords
Memory Performance, Alias Analysis, Pointer Independence

1. INTRODUCTION
Alias analysis, the identification of pointers which point to the

same memory space, is an important part of any optimizing com-
piler. While numerous static alias analysis techniques exist (see
[12] for a review), any static, intra-procedural analysis will be lim-
ited by its lack of knowledge of whole program behavior. How-
ever, it is possible for the programmer to provide this whole pro-
gram knowledge by annotating the program suitably. An exam-
ple of such an annotation is the restrict type qualifier that was
introduced in the ANSI C99 standard [2]. In this paper, we in-
vestigate an alternative annotation that more closely relates pointer
aliasing information to its use by optimization passes within a com-
piler. Section 3 describes the semantics of and motivation for our
new #pragma independent annotation. The implementation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSP’04, June 8, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-941-1/04/06 ...$5.00.

details for including the pragma in the compiler are described in
Section 4.

In Section 5 we present an automated system for assisting pro-
grammers in appropriately annotating source code. The system
uses static information (derived from code structure) and dynamic
information (derived from profiling) to suggest to the programmer
independent pointer pairs with a high payoff for improving program
performance.

To estimate the efficacy of the pragma and our tool, we present
performance numbers in Section 6. We evaluate the impact of the
pragmas using gcc for both a simulated in-order single issue pro-
cessor and the EPIC Intel Itanium processor. We perform a second
evaluation using the CASH experimental compiler [3], targeting a
reconfigurable architecture. In addition, we evaluate the ability of
the tool to identify important pragmas for performance improve-
ment and the amount of effort involved in validating the automati-
cally discovered pragmas.

In Section 7 we conclude that programmer specified pointer in-
dependence is a reasonable and effective scheme for improving
program performance, but both the compiler and the targeted hard-
ware must have the means of taking advantage of the improved
aliasing information.

2. RELATED WORK
Pointer analysis is an important part in any optimizing or paral-

lelizing compiler as potentially aliasing memory references can in-
troduce false dependencies which inhibit optimizations and reduce
parrallelism. While much work has been done to improve the pre-
cision and efficiency of pointer analysis [12], an intra-procedural
static pointer analysis can not take advantage of whole-program
dynamic information. Inter-procedural pointer analysis performs a
whole program analysis, but does not scale with program size with-
out losing precision [13, 26] and is complicated by separate com-
pilation and the use of library functions. Using our methodology,
the programmer provides pointer independence information which
the compiler uses directly, just as it would use the results of a com-
plex and expensive alias analysis. The overhead in the compiler of
supporting our method is therefore negligible.

Previous systems have used programmer annotations to provide
memory aliasing information to the compiler or to analysis tools.
In these systems the annotation is a type qualifier and the purpose
is to aid in program understanding [1], program checking and ver-
ification [7, 8], or supporting type-safety [11]. In contrast, our an-
notation is not a type, but a precise statement of pointer indepen-
dence. The compiler has no obligation to ensure the correctness
of the annotations and the purpose of the annotations is simply to
increase optimization opportunities and application performance.
The ANSI C99 restrict type qualifier was designed to promote

optimization [2], but does not directly map to information imme-
diately usable by an optimizing compiler. Because restrict
describes a more general aliasing property than our annotation, it
is more difficult for both the programmer and compiler to reason
about. The SGI MipsPro compiler provided an ivdep pragma
which is used to break loop-carried dependencies between memory
references in an inner loop. We describe a much more general ap-
proach. ASAP [15] is a language for describing aliasing properties
within data structures. ASAP also relies upon the programmer to
ensure correctness.

Another solution to the problem of overly conservative alias in-
formation is performing dynamic disambiguation at run-time. This
can either be done completely in the compiler by generating in-
structions to check addresses [20] or by a combination of compiler
and hardware support [21, 18]. Hardware support allows the com-
piler to speculatively execute instructions under the assumption that
memory references do not alias. If the assumption proves false,
potentially expensive fix-up code is executed. A hardware based
solution has the added advantage over software only approaches
since it can successfully optimize cases where pointers alias, only
infrequently. On the other hand, our proposal requires no special
hardware and the final executable contains no extra instructions to
check for aliasing.

The use of optional annotations in source code seems to be a
very good trade-off between complex static analyses, expensive
run-time checks, and the introduction of full-fledged new language
mechanisms. For example, Linus Torvalds has advocated their
large-scale use in the Linux kernel, mostly for security reasons [?].

Previous work has evaluated the effect of improved alias analysis
on program performance [9, 14, 6, 10]. The aggressive register
promotion and memory redundancy elimination of CASH parallel
these studies.

A significant contribution of this work is the automated toolflow
for independent pointer discovery. This tool-flow uses both pro-
gram structure information and run-time execution statistics to pro-
pose “interesting” pointer pairs to be further investigated by the
programmer. We show that the tool is very focused and requires
little programmer intervention to obtain most of the benefits of the
precise aliasing information.

3. #PRAGMA INDEPENDENT
We propose a pragma which allows the programmer to provide

the compiler with precise and useful pointer independence infor-
mation. The pragma has the syntax:
#pragma independent ptr1 ptr2
This pragma can be inserted anywhere in the program where ptr1

and ptr2 are both in scope. The pragma directs the compiler to treat,
within the scopes of ptr1 and ptr2, any memory object accessed
using ptr1 as distinct from any memory object accessed using ptr2.

We also allow the use of the pragma with � arguments, where
����� ; this implies pairwise independence between all pointer
pairs from the argument list. Since the multiple-argument form
does not provide increased expressive power (it merely reduces the
number of annotations required), it will not be discussed further.

As an example, consider the C code in Figure 1. We assume that
pairwise independence exists between the pairs (a,b) and (a,c) but
nothing can be said about the relationship between b and c. The
Itanium assembly code generated from this example by a pragma-
aware gcc is shown in Figure 2. Using the programmer provided
pointer independence information, the compiler successfully re-
moves an unnecessary store to a.

The independence pragma is easy to use and reason about, since
the programmer only has to take into account the behavior of two

void example(int *a, int *b, int *c)
{
#pragma independent a b
#pragma independent a c

(*b)++;
*a = *b;
*a = *a + *c;

}

Figure 1: Pragma usage example. The programmer has informed the
compiler that the pairs (a,b) and (a,c) will never alias, but makes no
claims about the relationship between � and � .

pointers. Furthermore, this type of information is exactly what
an optimizing compiler needs when performing code motion op-
timizations such as partial redundancy elimination (PRE) and in-
struction scheduling.

4. USING #PRAGMA INDEPENDENT IN
THE COMPILER

We have added support for the independence pragma to both
gcc (version 3.3) and to the Compiler for Application Specific
Hardware (CASH) [3]. Within gcc, we have modified the front-
end to parse #pragma independent and, for each pointer vari-
able declaration, maintain a list of pointer variables which have
been declared to be independent of that pointer. Within the alias
analysis initialization phase of the gcc back-end, we then propa-
gate this information to compiler temporaries. Since independent
pointers must point to completely independent memory objects, we
also propagate the independence information through address cal-
culations. For example, p and p+3 are assumed to point within the
same “object”, and thus the independence information valid for p
is assumed to be valid for p+3 as well. Also, if p is assigned to
q, we propagate whatever independence information we have from
p to q as well. Finally, when gcc’s optimization passes query for
pairwise pointer independence, we use the independence informa-
tion if possible. Pointer independence information is used by gcc
in the CSE/PRE and instruction scheduling passes. Unfortunately,
gcc does not have a register promotion optimization pass, which
has been shown to benefit significantly from improved pointer in-
dependence information [19, 22]. Overall, relatively little code is
needed to add full support for the independence pragma to a con-
ventional compiler (less than 200 lines of code).

We also added support to the SUIF [25] front-end which is used
by CASH. The SUIF [25] front-end uses #pragma indepen-
dent statements to annotate the corresponding variable symbols.
A dataflow analysis pass propagates the independence informa-
tion through compiler temporaries and pointer expressions. The
CASH back-end contains a memory disambiguator which attempts
to prove that memory operations do not alias; the disambiguator
was modified to query independence pragma information. The
compiler can then take advantage of the increased parallelism in
the dependency graph. Because the reconfigurable target can exe-
cute an arbitrary number of operations at once, increasing the par-
allelism in the compile-time dependency graph directly results in
an increase in parrallelism at run-time.

5. AUTOMATED ANNOTATION
We have developed two systems for partially automating the an-

notation of source code with independence pragmas. Both systems
combine a compiler’s static analysis with runtime information to
provide a ranked list of pairs of pointers that are candidates for

Without pragma With pragma

ld4 r14 = [r33] // r14 = *b; ld4 r14 = [r33] // r14 = *b;
;; ;;
adds r14 = 1, r14 // r14++; adds r14 = 1, r14 // r14++;
;; ;;
st4 [r33] = r14 // *b = r14; st4 [r33] = r14 // *b = r14;
st4 [r32] = r14 // *a = r14;
ld4 r15 = [r34] // r15 = *c; ld4 r15 = [r34] // r15 = *c;
;; ;;
add r14 = r14, r15 // r14 += r15; add r14 = r14, r15 // r14 += r15;
;; ;;
st4 [r32] = r14 // *a = r14; st4 [r32] = r14 // *a = r14;
br.ret.sptk.many b0 br.ret.sptk.many b0

Figure 2: Itanium assembly code generated from the source in Figure 1. The double semicolons separate concurrent instruction groups. Using the
information from the independence pragma, the compiler can remove a store instruction. On the Itanium processor, this avoids a split issue in the
third instruction group, reducing the cycle time of the function.

void
array_sum(int *arr1, int *arr2, int n,

int *result)
{
#pragma independent arr1 result /* score: 15 */
#pragma independent arr2 result /* score: 12 */
#pragma independent arr1 arr2 /* score: 1100 */

int i, sum = 0;

for(i = 0; i < n; i++)
{

*arr1 += *arr2;
sum += *arr2;

}
*result = sum;

}

Figure 3: Sample code with pragma annotations and scores as pro-
duced by our tool-flow.

being marked as independent. Although the systems make an ef-
fort to eliminate aliasing pointer pairs from consideration, it is ulti-
mately the programmer’s responsibility to evaluate these candidates
for correctness.

Figure 3 shows a code snippet which has been automatically an-
notated with candidate independence pointer pairs. The scores esti-
mate the effect of making the pair independent on program perfor-
mance. These scores, as described below, summarize both infor-
mation about the static code structure and execution frequencies.
The pair (arr1,arr2) has a much higher score than the other two
pairs since these pointers are both accessed within the loop body.
Knowing that they are independent allows the compiler to load the
values of *arr1 and *arr2 into registers for the whole loop ex-
ecution (perform register promotion). The pair (arr1,result)
has a higher score than the pair (arr2,result), reflecting the
fact that there is an opportunity to schedule the stores to arr1 and
result in parallel after register promotion.

The code fragment in Figure 3 was automatically annotated by
using the tool-flow depicted in Figure 4. Of course, nothing pre-
vents the function array sum from being called with pointers that
point to overlapping memory regions as the arguments arg1 and
arg2. Although the tool-flow checks whether this ever occurs for
the profiling input sets, this is no guarantee of code correctness.
It is the responsibility of the programmer to verify the correctness
of the annotations by inspecting all the call sites of array sum.
The annotation scores serve as a guide to the programmer, focusing
attention on the pairs which are most likely to bring performance
benefits. As we show in Section 6, the scores closely track the 90-

10 rule of program hot-spots (there are very few hot annotations)
and verifying an annotation is not a time consuming task. Program-
mer effort for checking annotations is thus focused on the important
pairs.

Within CASH, memory dependencies are first-class objects rep-
resented by token edges [4]. As shown in Figure 5, if two mem-
ory accesses may interfere, a token edge is inserted between them
in the internal dataflow representation of CASH. A memory opera-
tion must wait for all incoming tokens before it can access memory.
Once the memory operation has been performed a token is gener-
ated, permitting other memory operations to take place. In this way
memory dependencies are turned into dataflow.

A memory disambiguation pass examines every token edge and,
using traditional intra-procedural pointer analysis, eliminates edges
between memory references that can be proven not to alias. The
base pointers of memory references that the analysis determines
might alias are marked as candidates for annotation. Every pair of
pointers is associated with a static score which estimates, for that
pair, the benefit of declaring that pair as independent. For exam-
ple, a pair which prevents an important optimization from taking
place would receive a high score. There are many possible ways to
compute a relevant score using only static information. Our current
implementation uses a simple heuristic: the score of a pointer pair
(a,b) is the number of token edges between memory accesses to a
and to b.
gcc statically scores each pointer pair with the number of times

gcc’s optimization passes query for independence information be-
tween the two pointers.

Although in many cases the two compilers find the same can-
didate pointer pairs, in some cases each compiler will find a pair
the other does not. The CASH compiler is better at finding pointer
pairs that are inhibiting optimizations, especially when the point-
ers are separated by complicated control flow. The gcc compiler
will sometimes find pointers which CASH, with its more sophis-
ticated alias analysis, can identify as not aliasing or not impacting
optimization (if both pointers are used only in loads, for example).

Since pairs are aggressively generated without using inter-pro-
cedural analysis, some pairs will alias at run-time and therefore
should not be annotated as independent. Thus, both CASH and
gcc also instrument the program to collect run-time information:
for each pointer pair, a special check operation is inserted. This
check operation acts as both an aliasing check and a frequency
counter. When the program is run, the check records any pointer
pairs that alias, and thus are not independent. The frequency counter
is used to identify frequently-executed code. With CASH, the check
operation is an instruction implemented directly within the simu-

executable
fastpragma−aware

C compiler

Sources

sources
+

suggested pragma annotations

script

+
score for each pragma

Programmer

sources
+

pragma annotations

candidate pointer pairs
+

static scores

executable
+

run−time checks

invalid pointer pairs
+

execution frequencies

profiling inputsCASH/gcc simulator/CPU

Figure 4: Tool-flow for independence pragma source annotation. Notice that the programmer is part of the tool-flow, certifying the
correctness of the suggested annotations.

lator whereas with gcc it is a function call to a library function
performing a dynamic check.

The compile-time and run-time information are combined by the
tool. This weeds out the pairs which were discovered to alias and
computes an overall score using both the static score and the fre-
quency counts for each pair (currently by multiplying them). The
script sorts the annotations by the overall score, and can optionally
annotate the original source code with the annotations whose scores
are above a certain programmer-selected threshold; this is how the
code in Figure 3 was produced. The programmer can then focus
only on analyzing the source code having pairs with high overall
scores.

6. RESULTS

6.1 Evaluation
We have evaluated the effectiveness of our automated annota-

tion system and the ability of the modified compilers to take ad-
vantage of the independence information on three very different
machine models: (1) We used our modified version of gcc to com-
pile to the MIPS-like SimpleScalar [5] architecture which we then
simulated running on an in-order, single issue processor. (2) We
used the same gcc version to compile for a 733Mhz EPIC Intel
Itanium processor [16]. Programs were compiled using the opti-
mization flags -O2 -funroll-loops. (3) Finally, we used our
CASH compiler to target a reconfigurable fabric. Our results are
obtained from the programs in Mediabench [17], Spec95 [23], and
Spec2000 [24]. When possible we ran the annotation tool on the
training sets and collected performance results from the reference
sets. Both the CASH and gcc generated annotations were used for
the reconfigurable target while only the gcc generated ones were
used for the SimpleScalar and Itanium targets.

Our two simulators provide cycle-accurate measurements, but
are about three orders of magnitude slower than native execution.
The measurements on the real Itanium system are plagued by vari-
ability from low-resolution timers and system activity. We have
thus used different input sets for the simulated and real system
(short ones on simulators, large ones on the real system). In ad-
dition, we do not produce results for large benchmarks with the
simulators nor results from smaller benchmarks on the Itanium.

The source code of all benchmarks has been annotated with in-
dependence pragmas using the automated system. Although we
have inspected and verified some benchmarks, we have not man-
ually inspected every individual pragma that the system produces.
All benchmarks produce the correct output when run with the an-
notations.

6.2 Speed-ups
The execution speed-up for annotated code on the in-order, sin-

gle issue simulated processor is mostly negligible with only one
benchmark (124.m88ksim) receiving a meaningful speed-up (13%).
This architecture is incapable of taking advantage of additional
memory parallelism. Furthermore, the gcc SimpleScalar PISA
back-end is somewhat rudimentary. Few target specific optimiza-
tions are performed and the underlying machine model does not
accurately or precisely describe the actual machine model.

The execution speed-up for annotated code on the Itanium is
shown in Figure 6. As expected, the highly parallel Itanium proces-
sor does better than the in-order SimpleScalar processor.
124.m88ksim shows a speed-up of 1.28, 177.mesa a speed-
up of 1.09, and 132.ijpeg a speed-up of 1.02. The remaining
benchmarks either did not show a significant speed-up, or had too
short a running time to be measured precisely. The observed im-
provements appear to be exclusively a result of improved instruc-
tion scheduling suggesting a more sophisticated Itanium compiler

Figure 5: CASH internal representation of Figure 1. On the left is the code with no pragmas while on the right is the code with
pragmas. Operations are represented rectangles and inputs by ellipses. An operation does not execute until all of its input are
available, including token inputs. Load operations are shown as =[]; each has 3 inputs: address, predicate, and token and two
outputs: data and token. Store operations are shown as []=; each has 4 inputs: address, data, token, and predicate, and one token
output. Dashed lines represent tokens (memory dependences); “@*” is the “input token”. The V node “joins” tokens. Dotted lines
represent predicates. Note that the graph on the right has one fewer store.

Figure 6: Speed-up using #pragma independent annotated
code compiled with gcc for an Intel Itanium processor.

would demonstrate more benefit (as in [10]). Furthermore, there
are only a few critical pragmas in each benchmark. For example, in
124.m88ksim there is just one pragma that accounts for all the
observed speed-up; it breaks dependencies within a memcpy-like
loop. In 177.mesa, three pragmas inside a critical function with
pointer arguments are enough to account for all of the speed-up.

The execution speed-up for annotated code compiled for a re-
configurable fabric is shown in Figure 7. Most benchmarks demon-
strate meaningful speed-ups with the most significant being speed-
ups of 2.00, 1.93, 1.74, 1.35 for adpcm d, jpeg d, adpcm e,
and gsm d respectively.

Figure 8: Score histogram for 132.ijpeg.

6.3 Scoring
One goal of our tool is to give the programmer a way to pass

information to the compiler without increasing the programming
burden. To this end we evaluated the effectiveness of our tools
in guiding the programmer effort toward the most profitable code
regions.

Histograms of the scores of the pragmas, like the one in Figure 8
for 132.ijpeg, look surprisingly similar across all programs.
Figure 8 shows histograms of both the static and dynamic scores.
The x axis is the normalized score of an annotation, binned in 20
equal intervals. The y axis represents the number of annotations
that have a score within 5% of the x value. For example, the 5%
bar labeled “dynamic”, with a value of 3, shows that 3 annotations

Figure 7: Speed-up using #pragma independent annotated code compiled with the CASH compiler for a simulated reconfig-
urable fabric.

Figure 9: Speed-up for 132.ijpeg run on a simulated recon-
figurable fabric as a function of the number of pragmas used.
Pragmas were added in order of decreasing importance.

have a score between 5% and 10% of the maximum score found.
Both distributions have a sharp knee, which suggests a cut-off point
for useful annotations. In this example, 22 pragmas account for the
top 96% of the scores. These are the most likely to require the at-
tention of the programmer. And in fact, as Figure 9 shows, the top
18 pragmas account for almost all of the improvement that can be
gained.

In Table 1 we give the pragma counts found by our gcc-based
automatic instrumentation system. The first three columns show
the total number of pragmas inserted, the number of pointer pairs
that were executed at least once for the given input set, and the
number of pairs that were found to alias, thus whose annotations

are incorrect. The fourth column shows how many of the correct
annotations are below the “knee” of the curve (these were manually
estimated by looking at the score distribution).

In order to verify that the high scoring annotations are indeed the
most important we have carried out two experiments. We annotate
each program with only a small number of annotations, the ones
with the highest scores. Figure 10 presents results for all bench-
marks for which we manually inspected only the highest rank-
ing annotations (see below). Interestingly, in some cases using
only a subset of the pragmas resulted in larger performance gains
(mpeg2 d, pegwit d). In these cases it appears that the added
memory parallelism did not shorten the critical path, but did in-
crease the cost of synchronization (as represented by the V node in
Figure 5).

6.4 Validation
We tested our claim that manually validating an automatically

generated pragma is not an onerous task (even if the programmer
is unfamiliar with the code) by having several programmers verify
some of the annotated source. The programmers were instructed to
verify only the highest scoring annotations. The results are shown
in Table 2.

Even though they had little experience with the code, it took an
average of less than 2 minutes per pragma to validate its correct-
ness. Most of the time was spent exploring the call tree to deter-
mine the origins of pointer arguments to functions. In addition,
as the programmer became more acquainted with the structure and
conventions of a benchmark, validation took less time. Some pro-
gram constructs made validation difficult or impossible. In this case
the annotation was marked as incorrect. We expect that a program-
mer with a deeper understanding of the code would be able to verify
annotations almost instantaneously.

Bench total checked conflict useful
124.m88ksim 119 57 2 12
129.compress 3 3 0 3
130.li 56 21 3 6
132.ijpeg 490 142 8 22
134.perl 744 267 42 22
175.vpr 188 39 4 12
181.mcf 132 60 7 14
adpcm d 12 3 0 6
adpcm e 12 3 0 6
epic d 41 11 7 11
epic e 32 22 3 13
g721 d 0 0 0 0
g721 e 0 0 0 0
gsm d 36 10 1 9
gsm e 36 21 4 11
jpeg d 418 90 2 12
jpeg e 453 68 9 10

Bench total checked conflict useful
mesa 979 107 9 25
mpeg2 d 94 64 0 3
mpeg2 e 72 21 4 9
pegwit d 34 24 3 11
pegwit e 34 25 4 14
176.gcc 3470 2406 504 44
197.parser 159 144 38 12
256.bzip2 40 36 34 3
300.twolf 451 173 52 27
168.wupwise 3 3 0 3
171.swim 0 0 0 0
172.mgrid 7 7 1 5
173.applu 2 2 2 0
177.mesa 950 94 8 37
183.equake 30 13 2 6
188.ammp 252 82 11 11
301.apsi 463 362 3 14

Table 1: Annotations statistics. The columns represent: benchmark name, total pointer pairs instrumented, pointer pairs with at
least one run-time check, pointer pairs found to alias at run-time, number of most likely useful pointer pairs (knee of histogram
curve). The last column is the number of pragmas that would most likely bring the highest benefit, and would thus be the best targets
for manual validation.

Bench lines inspected correct time (min) time/pragma
adpcm d 307 8 8 5 � 1
adpcm e 307 8 8 2 � 1
gsm e 5841 9 9 25 2.8
gsm d 5841 5 5 9 1.8
epic d 2528 9 9 33 3.7
epic e 2830 21 20 11 � 1
mpeg d 10596 58 34 113 1.9
mpeg e 7791 10 10 8 � 1
jpeg e 27496 32 31 90 2.8
jpeg d 27496 13 13 10 � 1
pegwit e 6944 26 26 24 � 1
pegwit d 6944 26 26 2 � 1
mesa 67081 30 27 16 � 1

Table 2: Manual verification effort, expressed in minutes. For each benchmark we list the number of lines of source code, the
number of automatically generated pragmas, the number of pragmas manually inspected (if there were many generated pragmas,
only the highest ranking were inspected), the number of pragmas ascertained correct, and the times spent on validation: overall, and
per-pragma.

Figure 10: Speed-up due to pragmas on the reconfigurable hardware platform. First bar uses all pragmas (and is potentially unsafe);
the second bar uses the highest-ranking pragmas that were manually certified to be safe.

local argument global
local 30 51 24
argument 92 29
global 9

Table 3: The types of pointer pairs verified. Of the 235 pairs
that were manually inspected, we classified each verified pair
by the defining scope of its members. A local pointer vari-
able was always counted as a local reference, even if it could
be proved to always equal a pointer argument.

Table 3 shows the counts for the different relationships between
the verified pointers. Not surprisingly, few pointer pairs were be-
tween global references as the compiler can almost always differ-
entiate the pointers in this case. Without inter-procedural analysis,
function arguments, and local variables whose values come from
function arguments, are the most likely candidates for programmer
specified pointer analysis.

7. CONCLUSION
Uncertainty about pointer relationships and the inability to per-

form whole program analysis frequently handicaps compiler op-
timizations, particularly for languages like C. However, it is fre-
quently the case that the programmer has knowledge about pointers
that could help the optimizer, but the language provides no conve-
nient mechanism for expressing this type of information. In this pa-
per we have presented a mechanism that enables the programmer to
specify to the compiler that certain pointers access disjoint memory
regions and quantified the benefits that can be derived from exploit-
ing this mechanism. We have also presented a tool-chain that uses
compile-time and run-time information to suggest to the program-

mer a small number of pointer pairs for which independence infor-
mation could have a big impact on program performance. While
these suggested pairs require manual verification, we have shown
that even an investment of 10 minutes of code analysis can provide
significant benefits.

The reliance upon manual verification is the single biggest draw-
back of our approach. If the code is improperly verified, or if cor-
rect code is later changed to be incorrect, subtle errors could be
introduced. Given the flexibility and power of the C language, we
feel that the additional burden to the programmer is relatively little,
especially in light of the performance benefits. If automatic verifi-
cation is desired, or if our approach were to be used in a language
with a different paradigm than C, an expensive inter-procedural
analysis could be performed at link time. Since this analysis would
only have to verify the annotated pointers, which consist of just
those with the largest impact upon performance, and not perform
any additional optimizations, such an approach would be consider-
able more efficient than a fully automatic approach that performed
all pointer analysis and optimization at link time.

Allowing programmers to provide pointer independence infor-
mation can result in meaningful increases in performance provided
that the compiler and targeted architecture are capable of taking
advantage of such information. Programmer specified pointer in-
dependence is a scalable, effective alternative to inter-procedural
pointer analysis. Conventional compilers (such as gcc) lack so-
phisticated memory optimizations as such optimizations require ex-
pensive pointer analyses. Our approach removes this barrier to op-
timization at the cost of some programmer effort.

8. ADDITIONAL AUTHORS
Additional author: Seth Copen Goldstein (Carnegie Mellon Uni-

versity, email: seth@cs.cmu.edu).

9. REFERENCES
[1] J. Aldrich, V. Kostadinov, and C. Chambers. Alias

annotations for program understanding. In Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), November 2002., 2002.

[2] ANSI. Programming languages - C, 1999.
[3] Mihai Budiu and Seth Copen Goldstein. Compiling

application-specific hardware. In Proceedings of the 12th
International Conference on Field Programmable Logic and
Applications, Montpellier (La Grande-Motte), France,
September 2002.

[4] Mihai Budiu and Seth Copen Goldstein. Optimizing memory
accesses for spatial computation. In Proceedings of the 1st
International ACM/IEEE Symposium on Code Generation
and Optimization (CGO 03), San Francisco, CA, March
23-26 2003.

[5] Doug Burger and Todd M. Austin. The SimpleScalar tool set,
version 2.0. In Computer Architecture News, volume 25 (3),
pages 13–25. ACM SIGARCH, June 1997.

[6] Ben-Chung Cheng and Wen-Mei W. Hwu. Modular
interprocedural pointer analysis using access paths: design,
implementation, and evaluation. In Proceedings of the ACM
SIGPLAN 2000 conference on Programming language
design and implementation, pages 57–69. ACM Press, 2000.

[7] David Evans. Static detection of dynamic memory errors. In
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’96), 1996.

[8] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken.
Flow-sensitive type qualifiers. In Proceeding of the ACM
SIGPLAN 2002 Conference on Programming language
design and implementation, pages 1–12. ACM Press, 2002.

[9] Rakesh Ghiya and Laurie J. Hendren. Putting pointer
analysis to work. In Proceedings of the 25th ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 121–133. ACM Press, 1998.

[10] Rakesh Ghiya, Daniel Lavery, and David Sehr. On the
importance of points-to analysis and other memory
disambiguation methods for C programs. In Proceedings of
the ACM SIGPLAN 2001 conference on Programming
language design and implementation, pages 47–58. ACM
Press, 2001.

[11] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks,
Yanling Wang, and James Cheney. Region-based memory
management in Cyclone. In Proceedings of the ACM
Conference on Programming Language Design and
Implementation, June 2002.

[12] Michael Hind. Pointer analysis: haven’t we solved this
problem yet? In Proceedings of the 2001 ACM
SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering, pages 54–61. ACM Press,
2001.

[13] Michael Hind, Michael Burke, Paul Carini, and Jong-Deok
Choi. Interprocedural pointer alias analysis. ACM
Transactions on Programming Languages and Systems,
21(4):848–894, 1999.

[14] Michael Hind and Anthony Pioli. Evaluating the
effectiveness of pointer alias analyses. Sci. Comput.
Program., 39(1):31–55, 2001.

[15] Joseph Hummel, Laurie J. Hendren, and Alexandru Nicolau.
A language for conveying the aliasing properties of dynamic,
pointer-based data structures. In Proceedings of the 8th
International Parallel Processing Symposium, pages

208–216, Cancun, Mexico, April 1994. IEEE Computer
Society.

[16] Intel Corporation. Intel Itanium 2 Processor Reference
Manual, 2002.

[17] Chunho Lee, Miodrag Potkonjak, and William H.
Mangione-Smith. MediaBench: a tool for evaluating and
synthesizing multimedia and communications systems. In
Micro-30, 30th annual ACM/IEEE international symposium
on Microarchitecture, pages 330–335, 1997.

[18] Jin Lin, Tong Chen, Wei-Chung Hsu, and Pen-Chung Yew.
Speculative register promotion using advanced load address
table (alat). In International Symposium on Code Generation
and Optimization, pages 125–133, 2003.

[19] John Lu and Keith D. Cooper. Register promotion in C
programs. In Proceedings of the 1997 ACM SIGPLAN
conference on Programming language design and
implementation, pages 308–319. ACM Press, 1997.

[20] Alexandru Nicolau. Run-time disambiguation: coping with
statically unpredictable dependencies. IEEE Transactions on
Computers, 38(5):633–678, 1989.

[21] Matt Postiff, David Greene, and Trevor N. Mudge. The
store-load address table and speculative register promotion.
In International Symposium on Microarchitecture, pages
235–244, 2000.

[22] A. V. S. Sastry and Roy D. C. Ju. A new algorithm for scalar
register promotion based on SSA form. In Proceedings of the
ACM SIGPLAN ’98 conference on Programming Language
Design and Implementation, pages 15–25. ACM Press, 1998.

[23] Standard Performance Evaluation Corp. SPEC CPU95
Benchmark Suite, 1995.

[24] Standard Performance Evaluation Corp. SPEC CPU2000
Benchmark Suite, 2000.

[25] Robert P. Wilson, Robert S. French, Christopher S. Wilson,
Saman P. Amarasinghe, Jennifer M. Anderson, Steve W. K.
Tjiang, Shih-Wei Liao, Chau-Wen Tseng, Mary W. Hall,
Monica S. Lam, and John L. Hennessy. SUIF: An
infrastructure for research on parallelizing and optimizing
compilers. In ACM SIGPLAN Notices, volume 29, pages
31–37, December 1994.

[26] Robert P. Wilson and Monica S. Lam. Efficient
context-sensitive pointer analysis for C programs. In
Proceedings of the ACM SIGPLAN 1995 conference on
Programming language design and implementation, pages
1–12. ACM Press, 1995.

