
Appeared in Proceedings of First International ACM/IEEE Symposium on Code Generation and Optimization, 2003

Optimizing Memory Accesses For Spatial Computation

Mihai Budiu and Seth C. Goldstein
Computer Science Department

Carnegie Mellon University�
mihaib,seth � @cs.cmu.edu

Abstract
In this paper we present the internal representation and

optimizations used by the CASH compiler for improving
the memory parallelism of pointer-based programs. CASH
uses an SSA-based representation for memory, which com-
pactly summarizes both control-flow- and dependence in-
formation.

In CASH, memory optimization is a four-step process:
(1) first an initial, relatively coarse, representation of mem-
ory dependences is built; (2) next, unnecessary memory de-
pendences are removed using dependence tests; (3) third,
redundant memory operations are removed (4) finally, par-
allelism is increased by pipelining memory accesses in
loops. While the first three steps above are very general,
the loop pipelining transformations are particularly appli-
cable for spatial computation, which is the primary target
of CASH.

The redundant memory removal optimizations pre-
sented are: load/store hoisting (subsuming partial re-
dundancy elimination and common-subexpression elimina-
tion), load-after-store removal, store-before-store removal
(dead store removal) and loop-invariant load motion.

One of our loop pipelining transformations is a new
form of loop parallelization, called loop decoupling. This
transformation separates independent memory accesses
within a loop body into several independent loops, which
are allowed dynamically to slip with respect to each other.
A new computational primitive, a token generator is used to
dynamically control the amount of slip, allowing maximum
freedom, while guaranteeing that no memory dependences
are violated.

1 Introduction
One of the main bottlenecks to increasing the perfor-

mance of programs is that many compiler optimizations
break down in the face of memory references. For exam-
ple, while SSA is an IR that is widely recognized as en-
abling many efficient and powerful optimizations it cannot
be easily applied in the presence of pointers. In this paper
we present an intermediate representation, Pegasus, that
enables efficient and powerful optimizations in the pres-

ence of pointers. Pegasus also increases available paral-
lelism by supporting aggressive predication without giving
up the features of SSA.

One of Pegasus’ main design goals is to support spa-
tial computation. Spatial computation refers to the direct
execution of high-level language programs in hardware.
Each operation in the program is implemented as a hard-
ware operator. Data flows from one operation to another
along wires that connect the operations.

Pegasus is a natural intermediate representation for spa-
tial computation because its semantics are similar to that
of an asynchronous circuit. Pegasus is an executable IR
which unifies predication, static-single assignment, may-
dependences, and data-flow semantics. The most powerful
aspect of Pegasus is that it allows the essential information
in a program to be represented directly. Thus, many op-
timizations are reduced to a local rewriting of the graph.
This makes Pegasus a particularly scalable representation,
yielding efficient compilation, even when compiling entire
programs to circuits.

In this paper we describe optimizations which increase
memory parallelism, eliminate redundant memory refer-
ences, and increase the pipeline parallelism found in loops.
We show how Pegasus’ explicit representation of both con-
trol and data dependences allows these optimizations to be
concisely expressed.

2 Example
We motivate our memory representation with the fol-

lowing example:

void f(unsigned*p, unsigned a[], int i)
{

if (p) a[i] += *p;
else a[i] = 1;
a[i] <<= a[i+1];

}

This program uses a[i] as a temporary variable. We
have compiled this program using the highest optimization
level using seven different compilers:� gcc 3.2 for Intel P4, -O3,

� Sun WorkShop 6 update 2 for Sparc, -xO5,� DEC CC V5.6-075 for alpha, -O4,� MIPSpro Compiler Version 7.3.1.2m for SGI, -O4,� SGI ORC version 1.0.0 for Itanium, -O4,� IBM AIX cc version 3.6.6.0, -O3� CASH.

Only CASH and the AIX compiler removed all the
useless memory accesses made for the intermediate result
stored in a[i] (two stores and one load). The other com-
pilers retain the intermediate redundant stores to a[i],
which are immediately overwritten by the last store in the
function. The CASH result is even more surprising in
light of the simplicity of the analysis it performs: the op-
timizations consist only of reachability computations in a
DAG and localized code transformations (term-rewriting).
The point of this comparison is not to show the superior-
ity of CASH; rather, we want to point out that optimiza-
tions which are complicated enough to perform in a tradi-
tional representation (so that most compilers forgo them),
are very easy to express, implement and reason about when
using a better program representation.

The strength of CASH originates from Pegasus, its in-
ternal program representation. The optimization occurs in
three steps, detailed in Figure 1. (We describe Pegasus in
Section 3 and details of these optimizations in Section 5.)

Figure 1A depicts a slightly simplified1 form of the pro-
gram representation before any optimizations. Each oper-
ation is represented by a node in a graph. Edges represent
value flow between nodes. Pegasus uses predication [20];
throughout this paper, dotted lines represent predicate val-
ues, while dashed lines represent may dependences for
memory access operations; these lines carry token values.
Each memory operation has a predicate input, indicating
whether it ought to be executed, and a token input, indi-
cating that the side-effects of the prior dependent opera-
tions have occurred. At the beginning of the compilation
process the token dependences track the original program
control-flow. The nodes denoted by “V” represent opera-
tions that combine multiple input tokens into a single token
for each output; these originally represent joins in the pro-
gram control-flow. The “*” node is the token input, indi-
cating that side-effects in the previous part of the program
have completed.

CASH first proves that a[i] and a[i+1] access dis-
joint memory regions, and thus commute (nodes 3/5, 2/5
and 5/6). By removing the token edges between these
memory operations the program is transformed as in Fig-
ure 1B. Notice that a new combine operator is inserted at
the end of the program; its execution indicates that all prior
program side-effects have occurred.

1We have elided the address computation part.

In Figure 1B, the load from a[i] labeled 4 immedi-
ately follows the two possible stores (2 and 3). No compli-
cated dataflow or control-flow analysis is required to de-
duce this fact: it is indicated by the tokens flowing directly
from the stores to the load. As such, the load can be re-
moved and replaced with the value of the executed store.
This replacement is shown in Figure 1C, where the load
has been replaced by a multiplexor 7, drawn as a trapezoid.
The multiplexor is controlled by the predicates of the two
stores to a[i], 2 and 3: the store that executes (i.e., has
a “true” predicate at run-time), is the one that will forward
the stored value through the multiplexor.

As a result of the load elimination, in Figure 1C the
store 6 to a[i] immediately follows (and post-dominates)
the other two stores, 2 and 3, to the same address; in con-
sequence, 2 and 3 are useless, and can be completely re-
moved, as dead code. Again, the post-dominance test does
not involve any control-flow analysis: it follows immedi-
ately from the representation, because (1) the stores imme-
diately follow each other, as indicated by the tokens con-
necting them; (2) they occur at the same address and (3)
each predicate of an earlier store implies the predicate of
the latter one, which is constant “true” (shown as 1), in-
dicating the post-dominance. The post-dominance is de-
termined by only elementary boolean manipulations. The
transformation from C to D is accomplished in two steps:
(a) the predicates of the prior stores are “and”-ed with the
negation of the predicate of the latter store (i.e., the prior
stores should occur only if the latter one doesn’t overwrite
them) and (b) stores with a constant “false” predicate are
completely removed from the program as dead code.

2.1 Related Work
The explicit representation of memory dependences be-

tween program operations has been suggested numerous
times in the literature; for example in Pingali’s Depen-
dence Flow Graph [21], or Steensgaard’s adaptation to
Value-Dependence Graphs [24]. As Steensgaard has ob-
served, this type of representation is actually a generaliza-
tion of SSA designed to handle value flow through mem-
ory. Other researchers have explored the use of SSA for
handling memory dependences, e.g.,[7, 8, 15, 5, 6, 14].

The original contributions of this work are:� We apply the memory access optimization techniques in
the context of a spatial compiler, which translates C pro-
grams to hardware circuits.� We show how to use predication and SSA together for
memory code hoisting (subsuming partial redundancy
elimination and global common-subexpression elimina-
tion for memory operation), removing loads after stores,
dead store removal, and loop-invariant code motion for
memory operations; our algorithms rely on boolean ma-
nipulation of the controlling predicates (Section 5).

2

 * * * *

=a[i]=a[i] =a[i] =a[i]=*p=*p =*p =*p

=a[i+1]

a[i]=

=a[i+1]

=a[i+1]

a[i]=

p != 0

a[i]=

p != 0p != 0p != 0

a[i]=

!

a[i]=

!

a[i]= ?:

!

+

!

+

?:

V + V+V V

V <<

=a[i]

V

V<<

=a[i] a[i]=

V <<

V

=a[i+1]

a[i]=

<<

1

V

1

a[i]=

V

a[i]=

1

1 11

1

1

1

1

1 11

1

1

(A) (B) (C) (D)

54

1

2

3

6

1

2

3

4 5

6

1

2

35

1

5

6

7

6

Figure 1: Program transformations [dotted lines represent predicates, while dashed lines represent tokens]: (A) removal of
two extraneous dependences between a[i] and a[i+1], (B) load from a[i] bypasses directly stored value(s), (C) store to a[i]
kills prior stores to the same address (D) final result. This figure is automatically generated by the CASH compiler using
the Graphviz[9] graph visualization tool.

� We describe a representation and series of optimizations
which expose pipeline parallelism in the memory ac-
cesses within loops (Section 6).� We present (in Section 6.3) loop decoupling, a new loop
parallelization algorithm, which decomposes a single
loop into several independent loops and uses a novel
computational primitive, a token generator to dynami-
cally bound the slip between the newly created indepen-
dent loops, preserving memory dependences at run-time.

3 Pegasus
In this section we describe Pegasus, our intermedi-

ate representation; we emphasize the representation of
memory operations. Details about Pegasus, including a
complete algorithm for building it from a control-flow
graph representation, a formal semantics, and detailed de-
scriptions of numerous scalar optimizations can be found
in [1, 2].

3.1 From Control-Flow to Data-Flow
CASH essentially transforms the initial C program into

a pure dataflow representation. All C control-flow con-
structs are transformed into equivalent dataflow operations,
as described below. The resulting dataflow representation
has semantics similar to that of an asynchronous circuit:
data producers handshake with data consumers on data
availability and data consumption. This explicit dataflow
representation naturally exposes loop-level parallelism in
the form of loop pipelining [22]. The representation is a di-
rected graph where nodes are operations and edges indicate

value flow. A node may fanout the data value it produces to
multiple nodes; the fanout is represented as multiple graph
edges, one for each destination.

Predication and speculation. In order to uncover
more instruction-level parallelism, and to reduce the im-
pact of control-flow dependences, aggressive predication
and speculation are performed. We leverage the tech-
niques used in compilers for predicated execution ma-
chines [18]: we collect multiple basic blocks into one hy-
perblock2; each hyperblock is transformed into straight-
line code through the use of the predicated static single-
assignment (PSSA) form [4]. All instructions without side-
effects are aggressively predicate-promoted. Currently
only static information is used to produce the hyperblocks
(i.e., profiling is not used).

A difference between the algorithms we describe here
and truly global ones is that those described in this paper
are applied only within the scope of a single hyperblock.

Multiplexors. When multiple definitions of a value
reach a join point in the control-flow graph, they must be
merged together. This is done by using multiplexors3. The
mux data inputs are the reaching definitions. We use de-
coded muxes, which select one of � reaching definitions of
a variable; such a mux has

�
� inputs: one data and one

predicate input for each definition (see for example Fig-

2A hyperblock is a contiguous portion of the program control-flow
graph, having a single entry point and possibly multiple exits.

3The multiplexors correspond directly to the � functions in the SSA
representation.

3

ure 1C). When a predicate evaluates to “true”, the mux se-
lects the corresponding input. The mux predicates corre-
spond to the path predicates in PSSA.

Merge and eta operators. After hyperblock construc-
tion, the only remaining control-flow constructs are inter-
hyperblocks transfers, including loops. The next com-
pilation phase stitches the hyperblocks together into a
dataflow graph representing the whole procedure by creat-
ing dataflow edges connecting each hyperblock to its suc-
cessors. Each variable live at the end of a hyperblock
gives rise to an eta node. Eta nodes were originally in-
troduced in the Gated-Single Assignment form [19]. Eta
nodes have two inputs—a value and a predicate—and one
output. When the predicate evaluates to “true,” the input
value is moved to the output; when the predicate evaluates
to “false,” the input value and the predicate are simply con-
sumed, generating no output. A hyperblock with multiple
predecessors receives control from one of several different
points; such join points are represented by merge nodes.

Figure 2 illustrates the representation of a program com-
prising multiple hyperblocks, including a loop. The eta
nodes (shown as triangles pointing down) in hyperblock 1
will steer data to either hyperblock 2 or 3, depending on
the test k!=0. Note that the etas going to hyperblock 2 are
controlled by this predicate, while the eta going to hyper-
block 3 is controlled by the complement. There are merge
nodes (shown as triangles pointing up) in hyperblocks 2
and 3. The ones in hyperblock 2 accept data either from
hyperblock 1 or from the back-edges in hyperblock 2 itself.
The arrows going up are back-edges denoting the flow of
data along the while loop. The merge node in hyperblock
3 can accept control either from hyperblock 1 or from hy-
perblock 2.

Side-Effects Operations with side-effects are parame-
terized with a predicate input, which indicates whether the
operation should take place. If the predicate is false, the
operation is not executed and it generates a token instan-
taneously (loads and procedure calls generate an arbitrary
result when their controlling predicate is false).

3.2 Tokens
Not all program data dependences are explicit: op-

erations with side-effects can interfere with each other
through memory. To ensure correctness, the compiler adds
edges between operations whose side-effects may not com-
mute. Such edges do not carry data values, instead, they
carry an explicit synchronization token. Operations with
side-effects wait for the presence of a token before execut-
ing; on completion, these instructions generate an output
token to enable execution of their dependents. The token
is really a data type with a single value, requiring 0 bits of
information; in hardware it can be implemented with just
the “data ready” signal. At run-time, once a memory op-

 a

ret

 k

 k

!=

 b a

 a

1

!0

0

0

 b k a

 a

 a

+ −

 b k!

0

!=

1

1

(B)

merge node

parameter
1

2

3

merge nodes

loop again

loop done

eta nodes

eta nodes
to hyper 2

to hyper 3

(A)

 b = b + tmp;

 int tmp = a;
 while (k) {

 a = b;

 }
 return a;
}

 k−−;

 int a=0, b=1;

int fib(int k) {

Figure 2: (A) Iterative C program computing the � -th Fi-
bonacci number and (B) its Pegasus representation, com-
prised of 3 hyperblocks. The dotted lines represent predi-
cate values.

eration has started execution and its effect is guaranteed
to occur, the operation generates tokens for its dependents.
Note that the token can be generated before memory has
been updated.

Operations with memory side-effects (loads, store, calls
and returns) all have a token input. When a side-effect op-
eration depends on multiple other operations (e.g. a write
operation following a series of reads), it must collect one
token from each of them. For this purpose a combine op-
erator is used; a combine has multiple token inputs and a
single token output; the output is generated after it receives
all its inputs. Figure 3a shows a token combine operator,
depicted by “V”; dotted lines indicate token flow. From
now on, to reduce clutter, we elide combines without am-
biguity, depicting Figure 3a as in Figure 3b.

Token edges explicitly encode data flow through mem-
ory. In fact, the token network can be interpreted as an SSA

4

V

(b)(a)

Figure 3: (a) “Token combine” operations emit a token
only on receipt of tokens on each input. (b) Reduced rep-
resentation of the same circuit, eliding the token combine.

b[i+2]=

=b[i] =*p

a[i]=

extern int a[], b[];

{
 b[i+2] = i & 0xf;
 a[i] = b[i] + *p;
}

void g(int *p, int i)

Figure 4: A program and the schematic Implementation of
its memory synchronization, assuming all memory instruc-
tions can access any memory word (i.e. with no pointer
analysis).

form encoding of the memory values, where combine oper-
ations are similar to � -functions. The tokens encode both
true-, output- and anti-dependences, and they are “may”
dependences.

3.3 Synchronization-Insertion Algorithm
During the construction of the Pegasus graph token

edges are inserted using the following algorithm:� A flow-insensitive analysis determines local scalar val-
ues whose address is never taken; these are assigned to
registers. In Figure 2 values a, b and k are scalars. All
other data values (non-scalars, globals or scalars whose
address is taken) are manipulated by load and store op-
erations through pointers. These are the subject of this
paper.� Each memory access operation has an associated
read/write set [11] (also called “tags” in [17] or M-lists
in [6]): the set contains the memory locations that the
operation may access.� Memory instructions are created by traversing the
control-flow graph in program order.� Instruction � receives tokens from all instructions � such
that there is a control-flow path from � to � , and � does not
commute with � (i.e. � and � aren’t both memory reads)
and the read/write sets of � and � overlap.

Figure 4 shows a sample program and the constructed
representation. Notice that the two memory reads (of
b[i] and *p) have not been sequentialized, since read
operations always commute.

3.4 Transitive reduction of the token graph
The graph formed by token edges is maintained in a

transitively reduced form by the compiler throughout the
optimization phases. This is required for the correctness of
some of the optimizations described below. The presence
of a token edge between two memory operations in a tran-
sitively reduced graph implies the following properties:� the two memory operations may access the same mem-

ory location, and� there is no intervening memory operation affecting that
location.

4 Increasing Memory Parallelism
CASH performs a series of optimizations with the goal

of increasing the available memory parallelism and reduc-
ing the number of redundant memory operations. The basic
idea is to remove token edges between memory operations
that are actually independent.

4.1 Removing dead memory operations
As mentioned, memory operations are predicated and

should execute only when the run-time value of the predi-
cate is “true”. In particular, a side-effect operation having
a constant “false” predicate can be completely removed by
the compiler from the program; its token input is connected
to its token output. Such constant false predicates can arise
due to control-flow optimizations (such as if statements
with constant tests) or due to redundant memory optimiza-
tions, described below.

4.2 Immutable objects
Accesses made through pointers to constants (such as

constant strings or pointers declared const) can be opti-
mized: if the pointed value is statically known, the pointer
access can be removed completely; otherwise, the access
does not require any token, since it does not need to be se-
rialized with any other operation. The access also does not
need to generate a token.

4.3 Removing unnecessary token edges
CASH processes token edges by considering pairs of in-

structions directly synchronized (i.e. one produces a token
consumed by the other) and tries to prove that they will
never simultaneously access the same memory address. If
this proof succeeds, the token between these instructions
is removed. The transitive closure of the token graph (mi-
nus the removed edge) must be preserved, so new tokens
are inserted for this purpose. The basic algorithm step is
illustrated in Figure 5. (Notice that, although the number
of explicit synchronization tokens may increase, the total
number of synchronized pairs in the transitive closure of
the token graph is always reduced as a result of token re-
moval.)

CASH uses several heuristics to prove that some ad-
dresses can never be equal: (1) symbolic computation is

5

*p=

*q=

*p=

*q=

Figure 5: Removing unnecessary tokens when heuristics
can prove that p and q do not alias.

b[i+2]=

=b[i] =*p

a[i]=

Figure 6: Implementation of the sample program in Fig-
ure 4 when using read/write sets information. Since arrays
a and b are disjoint, there is no need for a token edge be-
tween accesses to their elements.

used to check whether two address expressions are always
different (as shown in Figure 1A-B) (2) within loops in-
duction variable analysis is used to prove that induction
variables with the same induction step and different start-
ing values are always different and (3) pointer analysis is
used to detect instructions having disjoint read/write sets
(see Figure 6 for an example).

5 Removing redundant memory accesses
In this section we describe several optimizations which

take advantage of the SSA-like nature of our representation
for memory in order to discover useless memory accesses.
The explicit token representation makes the following op-
timizations easy to describe and implement for memory
operations: load and store merging (subsuming partial re-
dundancy elimination and global common-subexpression
elimination), dead store removal, load-after-store removal
and loop-invariant code motion. Token edges simultane-
ously represent control-flow and dependence information,
which makes it easy for the compiler to focus its opti-
mizations on interfering memory operations. The first
three transformations described are implemented simply as
term-rewriting rules, much as depicted in the associated
figures.

Optimizations involving memory operations must prop-
erly handle the controlling predicates: an optimization

=*pp1

=*pp2
=*por

p1 p2

Figure 7: Load operations from the same address and hav-
ing the same token source can be coalesced; the predicate
of the resulting load is the disjunction of the original pred-
icates.

should not create cycles in the program representation. For
example, when merging two loads, a cycle may be created
if the predicate of one of the loads is a function of the re-
sult of the other load. Testing for the cycle-free condition is
easily accomplished with a reachability computation in the
Pegasus DAG which ignores the back-edges. By caching
the results of the reachability computation for a batch of
optimizations, its amortized cost remains linear.

Notice that the optimizations described in this section
all assume aligned memory accesses. All are applicable
only when the optimized memory operations access the
same address and manipulate the same amount of data (i.e.
they do not handle the case of a store word followed by a
load byte).

5.1 Merging equivalent memory operations
We first present an optimization merging distinct but

equivalent memory operations. It generalizes global
common-subexpression elimination, partial redundancy
elimination and code hoisting for memory accesses, by
merging multiple accesses to the same memory address
into one single operation. How this optimization operates
for loads is shown in Figure 7; this optimization is applica-
ble to stores as well. If the two predicates of the loads
are the same node, this optimization becomes common-
subexpression elimination for memory operations.

5.2 Redundant store removal
Figure 8 depicts the store-before-store code transforma-

tion (used in the example in Figure 1C). We ensure that at
run time the first store is executed only if the second one
is not, since the second one will overwrite the result. If the
predicate of the prior stores implies the predicate of the fol-
lowing store (which happens if the second post-dominates
the first), the first predicate will become constant “false”.
If the boolean manipulation performed by the compiler can
prove this fact, the first store can be eliminated using the
rule from Section 4.1. Notice that, if the predicate is false,
but the boolean manipulation cannot simplify it, the store
operation nevertheless does not occur at run-time.

6

*p=

*p=

p1

p2

& *p=

p2

V

p1

*p=not

Figure 8: Redundant store-after-store removal: a store im-
mediately preceding another store having the same address
should execute only if the second one does not. Since the
two stores may never occur at the same time, the token
edge connecting them can be safely removed.

*p=

=*p

*p=

d1d2

p1p2

pk

*p=

=*p

*p=

d1 d2

p1

or

p2

pk

and

not

Figure 9: Removal of loads following stores from the same
address. The stored value is directly forwarded if any of the
stores occurs, otherwise the load has to be performed.

5.3 Load after store removal
In Figure 9 we show how loads following a store can di-

rectly bypass the stored value (Figure 1B shows an instance
of this transformation). This transformation ensures that if
either of the stores is executed (i.e. its predicate is “true”),
then the load is not executed. Instead, the stored value is
directly forwarded. The load is executed only when none
of the stores takes place. If the stores collectively dominate
the load (as formally defined by Gupta in [12]), the latter is
completely removed, since the corresponding multiplexor
predicate will become constant “false”.
5.4 Loop-invariant load motion

A scalar computation is loop invariant if: (1) it is con-
stant, (2) its value circulates around the loop unchanged
through a merge-eta loop or (3) it has no side-effect and all
its inputs are loop-invariant. Loop-invariant code motion
for memory operation does not require any special han-
dling: the same algorithm which handles loop-invariant
code motion for scalars works equally well. The require-
ment for a memory operation to be loop-invariant is that
all its inputs are loop-invariant, including the predicate and
the token. Then such an operation (together with its loop-

(a) (c)

=*s

*d=

=*s

*d=

for (;;) {

}

f
f

 *d++ = res;

(b)

 res = f(data);
 data = *s++;

Figure 10: Fine-grained memory synchronization facili-
tates loop pipelining.

invariant inputs) can be lifted to a newly created, loop-
header hyperblock, preceding the loop. The next section
describes how loops handle tokens.

Notice that loop-invariant stores are not detected using
this scheme, since they generate a fresh token in each iter-
ation; thus, their token input is not loop invariant.

6 Pipelining loops with fine-grained syn-
chronization

The algorithms presented in this paper, and in particular
in this section, are motivated by our intended target: direct
hardware implementation of the program. Pipelining loops
is especially important to fully realize the performance of
dataflow machines, synthesized directly in hardware. The
optimizations presented in this section increase the oppor-
tunities for pipelining by removing dependencies between
memory operations from different loop iterations and by
creating structures which allow them to execute in parallel.

The key to increasing the amount of pipeline paral-
lelism available is to correctly handle memory synchro-
nization across loop iterations. We do this by carrying
fine-grained synchronization information across loop iter-
ations using several merge-eta token loops. Figure 10 il-
lustrates schematically how pipelining is enabled by fine-
grained synchronization. In 10(a) is a schematic code seg-
ment which reads a source array, computes on the data
and writes the data into a distinct destination array. Fig-
ure 10(b) shows a traditional implementation which exe-
cutes the memory operations in program order: the reads
and writes are interleaved. Meanwhile, Figure 10(c) shows
how separately synchronizing the accesses to the source
and destination array “splits” the loop into two separate
loops which can advance at different rates. The “producer”
loop can be several iterations ahead of the “consumer”
loop, filling the computation pipeline.

Figure 11 shows an example loop and its representation
(we show only the memory operations and their synchro-
nization). Notice that each merge-eta circuit is associated
with a particular set of memory locations. There are cir-

7

a

=*p

b

b[i+1]=

U

=b[i]

b

a[i]=

Ua

extern int a[], b[];

void g(int* p)

 int i;
{

 for (i=0; i < N; i++) {
 b[i+1] = i & 0xf;
 a[i] = b[i] + *p;
 }
}

Figure 11: Implementation of memory synchronization in
loops.

cuits for a and b and one, labeled U, which represents all
anonymous memory objects. The merge node tagged with
a represents all accesses made to a in the program before
the current loop iteration, while the eta represents the ac-
cesses following the current loop iteration.

The circuit was generated using the following algo-
rithm:� The read-write sets of all pointers in the loop body are

analyzed; the objects in these sets are grouped into equiv-
alence classes: two objects are equivalent if they appear
together in all read-write sets. For the example in Fig-
ure 11, the read-write sets are as follows:

a � � a[] � pointer a points to array a[]
b � � b[] �
p � � a[],b[],U � p can point to anything

The objects in the read-write sets are a[], b[] and U.
In this example each object is in its own equivalence class.� A merge-eta cycle is created for each equivalence class.� The merge and eta are treated as writes to all objects in

the equivalence class.� The loop body is synthesized as straight-line code, as if
preceded by all merges and succeeded by all etas.

6.1 Read-only accesses
As mentioned above, the token-insertion algorithm for

building loops treats the merge and eta operations as writes
to the corresponding object(s) when building the token
edges. Treating them as writes ensures that all operations
accessing the object in the � -th iteration will complete be-
fore the ����� -th iteration can start, preventing pipelining.
Sometimes this amount of synchronization is excessive. In
particular, we can optimize the loop when all operations
are reads: we can then safely overlap different loop itera-
tions by pipelining.

If a memory object accessed in a loop does not appear
in any of the write-sets, the loops is optimized by split-
ting it into three parallel loops, enabling fast access to all
read-only objects: (1) one loop containing the accesses to

b[i]= =a[i+2] =a[i]
 b[i] = a[i] + a[i+2];

for (i=0; i < 10; i++)

Figure 12: Sample code and naive implementation of a
loop containing read-only accesses to array a.

a

=a[i+2]=a[i]

a

a

a

b

b[i]=

b

read−writecollectorgenerator

Figure 13: Optimized implementation of the read-only
loop from Figure 12.

all the written objects (2) a generator loop, which gener-
ates tokens to enable the read operations for all the loop
iterations, allowing operations from multiple iterations to
issue simultaneously, and (3) a collector loop, which col-
lects the tokens from the read operations in all iterations;
this ensures that the loop terminates only when all reads in
all iterations have occurred.

An example program and implementation of the token-
insertion algorithm for loops is given in Figure 12; apply-
ing the read-only optimization results in Figure 13.

6.2 Using address monotonicity

There is no need to synchronization writes to different
addresses. For example, all writes to b in Figure 12 are
to different addresses. The compiler attempts to discover
such writes, where the addresses vary strictly monotoni-
cally from one iteration to the next using an extended form
of induction variable analysis as in Wolfe’s [25]. When
such a case is found, as in Figure 13, the loop is trans-
formed as described above for read-only accesses, causing
multiple loop iterations to be initiated in pipelined fashion.
The result after the optimization of the read-write loop of
b from Figure 13 is shown in Figure 14.

8

a b

=a[i+2] b[i]==a[i]

a b

a b

a b

collectorgenerator generator collector

monotoneread−only

Figure 14: The loop in Figure 13 after simplifying the b
loop using address monotonicity.

a

=a[i+3] a[i]=

a

for (i=0; i < N−3; i++) {

 a[i] =

 = a[i+3];

}

Figure 15: Program and its implementation before loop de-
coupling.

6.3 Loop Decoupling: Using Dependence Dis-
tances

The most sophisticated pipeline-enabling optimization
in our compiler is a novel form of loop parallelization
which is particularly effective for spatial compilation. This
transformation, loop decoupling is remotely related to loop
skewing and loop splitting. Analogously to the optimiza-
tion for read-only values, it “vertically” slices a loop into
multiple independent loops, which are allowed to slip with
respect to each other (i.e. one can get many iterations ahead
of the other). The maximum slip is derived from the depen-
dence distance, and ensures that the loops slipping ahead
do not violate any program dependence. To dynamically
control the amount of slip a new operator is used, a token
generator.

We illustrate its effect on the circuit in Figure 15, ob-
tained after all previously described optimizations are ap-
plied to the shown program. Dependence analysis indi-
cates that the two memory access are at a fixed distance,
of 3 iterations. The two accesses are separated into two
independent loops by creating a token for each of them.
The a[i+3] loop can execute as quickly as possible. To
preserve correctness, the loop for a[i] can only execute
3 iterations ahead of the a[i+3] loop, because otherwise

a+3

=a[i+3]

a

a[i]=

tk(3)

a+3 a

p

Figure 16: The program from Figure 15 after loop decou-
pling. We have also depicted p, the loop-controlling predi-
cate.

it would violate the dependences. In order to dynamically
bound the slip between these two loops a token genera-
tor operation which can generate 3 tokens is inserted be-
tween the two loops. The resulting structure is depicted
in Figure 16. The token generator can instantly generate
3 tokens; subsequently it generates additional tokens upon
receipt of tokens at the input.

More precisely, a token generator tk(�) has two inputs:
a predicate and a token, and one output, a token. � is a pos-
itive integer, the dependence distance between the two ac-
cesses. The token generator maintains a counter, initialized
with � . The predicate input is the loop-controlling predi-
cate. On receipt of a “true” predicate, the generator decre-
ments the counter, and if the counter is positive, it emits a
token. On receipt of a token, it increments the counter. On
receipt of a “false” predicate (indicating completion of the
loop), the counter is reset to � (3 in our example).

The a[i] loop must receive tokens from the a[i+3]
loop in order to make progress. It may receive the first
three tokens before any iteration of the latter has com-
pleted, directly from the token generator, so it can slip up
to three iterations ahead. Afterwards, it will receive a new
token enabling it to make progress only after the a[i+3]
loop completes one iteration. In contrast, the a[i+3] loop
can slip an arbitrary number of iterations ahead (the token
generator stores the extra tokens in its internal counter).

Notice that after loop decoupling each of the resulting
loops contains only monotone induction variables, so it can
be further optimized as described in Section 6.2. The final
result is shown in Figure 17.

The idea of explicitly representing the dependence dis-
tances in a program can be found in Johnson’s et al. paper
“An executable representation of distance” [13]. While that
paper gives a general scheme for representing dependence
distances in nested loops as functions of multiple loop in-
dices, it does not discuss how the resulting representation
can be used to optimize the program. Our scheme can also
be generalized to deal with nested loops, although our cur-

9

a+3 a+3

a+3

a

a+3

a

a a

tk(3)

a[i]=

=a[i+3]

Figure 17: Program after loop decoupling and monotone
induction variable optimization.

Optimization LOC
Useless dependence removal 160
Immutable loads 70
Dead-code elimination (incl. memory op) 66
Load-after-load and store-after-store removal 153
Redundant load and store removal (PRE) 94
Transitive reduction of token edges 61
Loop-invariant code discovery (scalar and memory) 74
Loop decoupling+monotone loops 310

Table 1: Lines of C++ code, including comments and
white-space, implementing the optimizations described in
this paper.

rent implementation only handles innermost loops. The in-
carnation of the dependence distance in the “token genera-
tor” operator, which is used to dynamically control the slip
between decoupled loop iterations is a new idea, which, we
believe, is indeed an executable representation of distance.

7 Results
In this section we evaluate the CASH compiler on

programs from the Mediabench [16] and SpecInt95 [23]
benchmark suites. We present results for all programs
which successfully went through our infrastructure.

7.1 Compilation process measurements
One measure of the Pegasus’ efficiency is in the amount

of code it takes to implement each of the optimizations
which, as shown in Table 1, is quite small.

Limitations in our current simulation infrastructure pre-
vented us from successfully evaluating all functions in the
programs. The left side of table 2 shows the amount of
code we have compiled and evaluated from each bench-
mark, measured according to three different criteria: num-
ber of functions, source-code lines and run-time (as mea-
sured on a SimpleScalar [3] 4-way out-of-order processor).
All measurements reported in this paper are only for these
selected functions.

CASH is notably slower than gcc (version 3.2 running
-O3), up to 30 times for perl, on average being about 10

Kernels Pragmas
Benchmark Funcs Lines Cov # Cov
adpcm e 1 93 100 6 100
adpcm d 1 70 100 5 100
gsm e 76 1667 97 20 43
gsm d 75 1644 96 15 71
epic e 32 629 12 11 84
epic d 13 529 77 3 100
mpeg2 e 94 4766 96 1 72
mpeg2 d 112 4942 99 1 20
jpeg e 108 3268 30 7 40
jpeg d 100 3203 82 8 69
pegwit e 95 1556 94 0
pegwit d 95 1556 100 1 30
g721 e 15 386 97 0
g721 d 20 463 96 0
mesa 225 9892 61 6 33
099.go 371 12259 76 4 1
124.m88ksim 104 2379 70 17 28
129.compress 17 590 98 4 9
130.li 35 300 60 2 5
132.ijpeg 120 3404 70 0
134.perl 220 8505 65 0
147.vortex 241 7075 60 0
Total 2170 69176 n/a 111 n/a

Table 2: Statistics of the program fragments compiled
and number of pragma statements introduced. Numeric
columns are: total number of functions compiled, total
source-level lines in these functions and dynamic program
coverage in these functions; number of pragma inde-
pendent statements inserted, percent of the program run-
ning time in the modified functions.

times slower. About half the time spent in CASH is spent
on the optimizations described in this paper and the fol-
lowing optimizations: constant folding, global constant
propagation, loop unrolling, strength reduction, dead-code
elimination, loop-invariant code motion, partial redun-
dancy elimination, global common-subexpression elimina-
tion, unreachable code elimination, re-association, alge-
braic simplifications and intra-procedural pointer analysis.
The remaining time is spent doing parsing, I/O, pointer
analysis and in constructing the hyperblocks.

Approximating inter-procedural pointer-analysis. In
a language like C which permits the liberal use of pointers
a pointer analysis made only at the procedure level must
be exceedingly conservative. In order to approximate a
more precise whole-program analysis with little effort we
resorted to manual annotation of the program.

#pragma independent p q guarantees to the
compiler that, in the current scope, pointers p and q never
point to the same address. This pragma is somewhat sim-

10

Figure 18: Static and dynamic reduction of memory traffic
in percents. The baseline is obtained with CASH and only
scalar optimizations (all memory optimizations turned off).
The lines represent static counts, while the bars are dy-
namic counts.

ilar to the proposed C99 restrict keyword, but much
more intuitive to use. We use a simple, intraprocedural
version of connection analysis [10] to propagate the inde-
pendence information through pointer expressions. If two
pointer references are declared independent, a token is not
necessary to synchronize them. We have profiled the pro-
grams and inserted annotations in the most important func-
tions. A pragma is most often used to indicate that the
pointer arguments to a function do not alias to each other.
Only a handful of pragmas were inserted into the programs
as shown in the right-hand side of Table 2. For a few pro-
grams these pragmas are extremely effective in aiding op-
timization.

7.2 Static measurements
The space complexity of the internal representation

when doing no memory-related optimizations is asymptot-
ically the same as a classical SSA representation. There
was some concern that the fine-grained representations of
tokens would blow up quadratically. However, indepen-
dent of which memory optimizations were turned on or off,
the size of the IR never varied by more than 3%.

The number of memory operations varies more substan-
tially; up to 8% of the static stores and up to 28% of the
loads are removed. The line graphs in Figure 18 quantify
these effects for all the programs.

Notice we can’t directly compare these metrics with
compilers such as gcc, since in hardware CASH can al-
locate an unbounded number of registers, while gcc must
sometimes spill registers to memory, increasing memory
traffic.

7.3 Dynamic measurements
We evaluated the effectiveness of our optimizations on a

coarse hardware simulator. We assume that the entire pro-
gram can be translated to hardware. Each operation has the

Figure 19: Program speed-up over scalar-only optimiza-
tions when varying compiler optimizations and memory
bandwidth. The first two bars compare different optimiza-
tions for dual-ported memory system. The last two bars
show the effect of increasing the memory bandwidth for
the highest level of optimizations.

same latency as in a pisa architecture SimpleScalar simula-
tor. All memory operations inject requests into a load-store
queue with a finite number of ports and a finite size. We
have evaluated several memory systems, ranging from per-
fect memory to a realistic memory system with two levels
of cache. Spatial computation does not need to issue in-
structions, so there’s no instruction cache. The L1 cache
has 2 cycles hit latency and 8kb, while the L2 cache has 8
cycles hit latency and 256kb. Memory latency is 72 cycles,
with 4 cycles between consecutive words. The memory is
dual-ported. The data TLB has 64 pages with a 30 cycle
TLB miss cost.

There are three ways in which our algorithms can in-
crease the performance of a program:� By reducing the number of memory operations executed;� By overlapping many memory operations (increasing

traffic bandwidth) through loop pipelining;� By creating more compact schedules and issuing the
memory operations faster.

The bars in Figure 18 shows that the compiler reduces
the dynamic amount of memory references for some of
the programs. This arises from the algorithms described
in Section 5. However, the latter two ways of increasing
performance appear to be more important as one compares
Figure 18 to Figure 19. By comparing the rightmost three
bars of Figure 19 we can also see that although perfor-
mance improves with an increase in memory bandwidth,
even small amounts of bandwidth can be utilized quite ef-
fectively by the compiler.

In addition to these overall statistics, we compiled each
of the benchmarks with different sets of optimizations
and simulated them with different memory systems. We
found that the programs benefited most from using pointer
analysis to reduce token edges during construction (Sec-

11

tion 3.3), eliminating synchronization edges by disam-
biguating memory addresses (Section 4.3), and increasing
pipelining from induction variable analysis (Section 6.2).
This set of optimizations is shown by the first bar, labeled
“Medium,” in Figure 19. In all but a few cases, the inde-
pendence pragmas were helpful in augmenting the pointer
analysis. The read-only optimizations in Section 6.1 were
almost always not very profitable. Loop Decoupling (Sec-
tion 6.3) was also not very useful as it was applicable in
only 28 loops from all the programs. We expect that it
would be more applicable to Fortran-type loops. We found
that the result of applying optimizations together was more
powerful than simply the product of their individual effect.

8 Conclusions
In this paper we have shown how powerful sophisticated

memory optimizations can be simply implemented in our
intermediate representation, Pegasus. The power of Pega-
sus is a direct result of its ability to explicitly represent all
the dependences in a program—scalar dependences, may
dependences through memory, and dependence distances
around loops. This combines well with Pegasus’ use of a
predicated SSA-like representation. We have shown how
this representation can be used to increase memory paral-
lelism, remove redundant memory operations, and increase
the amount of pipeline parallelism available. Pegasus, and
the optimizations presented here, is motivated by our de-
sire to compile high-level language programs directly into
hardware. However, many of the techniques used in CASH
are applicable for traditional and parallel compilation.

Acknowledgements
We thank Girish Venkataramani, Dan Vogel and David

Koes for discussions and help with pragma insertion,
scripting and comments on previous versions of this
manuscript. The comments of the anonymous reviewers
helped enormously the presentation and pinpointed impor-
tant errors in the presentation. This research is funded in
part by the National Science Foundation under Grant No.
CCR-9876248 and by Darpa under contract #MDA972-01-
03-0005.

References
[1] Mihai Budiu and Seth Copen Goldstein. Compiling application-

specific hardware. In Proceedings of the 12th International Confer-
ence on Field Programmable Logic and Applications, pages 853–
863, Montpellier (La Grande-Motte), France, September 2002.

[2] Mihai Budiu and Seth Copen Goldstein. Pegasus: An efficient
intermediate representation. Technical Report CMU-CS-02-107,
Carnegie Mellon University, May 2002.

[3] Doug Burger and Todd M. Austin. The SimpleScalar tool set, ver-
sion 2.0. In Computer Architecture News, volume 25 (3), pages
13–25. ACM SIGARCH, June 1997.

[4] Lori Carter, Beth Simon, Brad Calder, Larry Carter, and Jeanne
Ferrante. Path analysis and renaming for predicated instruction
scheduling. International Journal of Parallel Programming, spe-
cial issue, 28(6), 2000.

[5] Fred Chow, Raymond Lo, Shin-Ming Liu, Sun Chan, and Mark
Streich. Effective representation of aliases and indirect memory
operations in SSA form. In Proc. of 6th Int’l Conf. on Compiler
Construction, pages 253–257, April 1996.

[6] Keith D. Cooper and Li Xu. An efficient static analysis algorithm
to detect redundant memory operations. In Workshop on Memory
Systems Performance (MSP ’02), Berlin, Germany, June 2002.

[7] Ron Cytron and Reid Gershbein. Efficient accommodation of may-
alias information in SSA form. In Proceedings of the conference on
Programming Language Design and Implementation (PLDI), pages
36–45. ACM Press, 1993.

[8] David Mark Gallagher. Memory Disambiguation to Facilitate
Instruction-Level Parallelism Compilation. PhD thesis, University
of Illinois at Urbana-Champaign, 1995.

[9] Emden Gansner and Stephen North. An open graph vi-
sualization system and its applications to software engi-
neering. Software Practice And Experience, 1(5), 1999.
http://www.research.att.com/sw/tools/graphviz.

[10] Rakesh Ghiya and Laurie J. Hendren. Connection analysis: A prac-
tical interprocedural heap analysis for C. International Journal of
Parallel Programming, 24 (6):547–578, 1996.

[11] Rakesh Ghiya and Laurie J. Hendren. Putting pointer analysis to
work. In Proceedings of the 25th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL),
pages 121–133, San Diego, California, January 1998.

[12] Rajiv Gupta. Generalized dominators and post-dominators. In ACM
SIGPLAN-SIGACT 19th Symposium on Principles of Programming
Languages, pages 246–257, Albuquerque, New Mexico, January
1992.

[13] Richard Johnson, Wei Li, and Keshav Pingali. An executable rep-
resentation of distance and direction. Languages and Compilers for
Parallel Computers, 4, 1991.

[14] Robert Kennedy, Sun Chan, Shin-Ming Liu, Raymond Lo, Peng Tu,
and Fred Chow. Partial redundancy elimination in ssa form. ACM
Trans. Program. Lang. Syst., 21(3):627–676, 1999.

[15] Christopher Lapkowski and Laurie J. Hendren. Extended SSA
numbering: Introducing SSA properties to languages with multi-
level pointers. In Springer, editor, Proceedings of the 1998 Inter-
national Conference on Compiler Construction, volume 1383 of
LNCS, pages 128–143, March 1998.

[16] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith.
MediaBench: a tool for evaluating and synthesizing multimedia and
communications systems. In Micro-30, 30th annual ACM/IEEE in-
ternational symposium on Microarchitecture, pages 330–335, 1997.

[17] John Lu and Keith D. Cooper. Register promotion in C programs. In
Proceedings of the 1997 ACM SIGPLAN conference on Program-
ming language design and implementation, pages 308–319. ACM
Press, 1997.

[18] Scott A. Mahlke, David C. Lin, William Y. Chen, Richard E. Hank,
and Roger A. Bringmann. Effective compiler support for predicated
execution using the hyperblock. In Proceedings of the 25th Interna-
tional Symposium on Microarchitecture, pages 45–54, Dec 1992.

[19] Karl J. Ottenstein, Robert A. Ballance, and Arthur B. Maccabe.
The program dependence web: a representation supporting control-,
data-, and demand-driven interpretation of imperative languages. In
Proceedings of the Conference on Programming Language Design
and Implementation PLDI 1990, pages 257–271, 1990.

[20] Joseph C. H. Park and Michael S. Schlansker. On predicated execu-
tion. Technical Report HPL-91-58, Hewlett-Packard Laboratories,
May 30 1991.

12

[21] Keshav Pingali, Micah Beck, Richard Johnson, Mayan Moudgill,
and Paul Stodghill. Dependence flow graphs: An algebraic ap-
proach to program dependencies. In Proceedings of Principles of
Programming Languages POPL, volume 18, 1991.

[22] Jurij Silc, Borut Robic, and Theo Ungerer. Asynchrony in paral-
lel computing: From dataflow to multithreading. Parallel and Dis-
tributed Computing Practices, 1 (1):3–30, 1998.

[23] Standard Performance Evaluation Corp. SPEC CPU95 Benchmark
Suite, 1995.

[24] Bjarne Steensgaard. Sparse functional stores for imperative pro-
grams. In In Proceedings of the ACM SIGPLAN Workshop on In-
termediate Representations, pages 62–70, 1995.

[25] Michael Wolfe. Beyond induction variables. In Proceedings of the
Conference on Programming Language Design and Implementation
(PLDI), volume 27 (7), pages 162–174, New York, NY, 1992. ACM
Press.

13

