
API Code Recommendation using Statistical Learning from
Fine-Grained Changes

Anh Tuan Nguyen
1
, Michael Hilton

2
, Mihai Codoban

3
, Hoan Anh Nguyen

1
,

Lily Mast
4∗

, Eli Rademacher
2
, Tien N. Nguyen

1
, Danny Dig

2

1Department of Electrical and Computer Engineering, Iowa State University, USA
2School of EECS, Oregon State University, USA

3Microsoft, USA
4College of Engineering and Computer Science, University of Evansville, USA

ABSTRACT

Learning and remembering how to use APIs is difficult. While code-

completion tools can recommend API methods, browsing a long list

of API method names and their documentation is tedious. Moreover,

users can easily be overwhelmed with too much information.

We present a novel API recommendation approach that taps into

the predictive power of repetitive code changes to provide rele-

vant API recommendations for developers. Our approach and tool,

APIREC, is based on statistical learning from fine-grained code

changes and from the context in which those changes were made.

Our empirical evaluation shows that APIREC correctly recommends

an API call in the first position 59% of the time, and it recommends

the correct API call in the top 5 positions 77% of the time. This is

a significant improvement over the state-of-the-art approaches by

30-160% for top-1 accuracy, and 10-30% for top-5 accuracy, respec-

tively. Our result shows that APIREC performs well even with a

one-time, minimal training dataset of 50 publicly available projects.

CCS Concepts

•Software and its engineering → Software evolution; Integrated

and visual development environments;

Keywords

API Recommendation; Fine-grained Changes; Statistical Learning

1. INTRODUCTION
Today’s programs use Application Programming Interfaces (APIs)

extensively: even the “Hello World” program invokes an API method.

One great challenge for software developers is learning and remem-

bering how to use APIs [10, 25, 38, 40, 45].

The state-of-the-practice support for working with APIs comes in

the form of code-completion tools integrated with IDEs [11, 19, 20].

Code completion tools allow a user to type a variable and request

a possible API method call recommendation. Code completion

tools are among the top-5 most used features of IDEs [33]. Still, a

∗Work done while being an intern at Oregon State University

developer learning an API (or trying to remember it) can waste a lot

of time combing through a long list of API method names available

on a receiver object. For example, invoking the code completion

on an object of type String in JDK 8 populates a list of 67 possible

methods (and 10 additional methods inherited from superclasses).

The state-of-the-art research in code completion takes advantage

of API usage patterns [7, 12, 36, 44], which researchers mine via the

deterministic algorithms such as frequent itemset mining, pair asso-

ciations, frequent subsequence or subgraph mining. When a recom-

mendation is requested, these approaches analyze the surrounding

context. If the context matches a previously identified pattern, the

recommender will suggest the rest of the API elements in the pattern.

Other approaches [3,12,16,24,35,37,42,52] use statistical learning

via language models to recommend the next token, including API

calls. They rely on the regularity of source code [16] and create a

model that statistically learns code patterns from a large corpus. The

model then can predict what token is likely to follow a sequence of

given code elements. A key limitation to the approach is that it is

difficult to determine which tokens belong to a project-specific code

idiom. These tokens produce noise for recommendation.

We present a novel approach to code completion that leverages

the regularity and repetitiveness of software changes [1, 34]. Our

intuition is that when developers make low-level changes, even non-

contiguous changes are connected. These connections exist because

the developer made the changes with a higher-level intent in mind

(e.g., adding a loop collector). Grouping fine-grained changes by

higher-level intent allows us to cut through the noise of unrelated

tokens that may surround the recommendation point. To find these

groups of fine-grained changes, we use statistical learning on a large

code change corpus. The changes that belong to higher-level intents

will co-occur more frequently than non-related changes.

Additionally, we also consider the surrounding code context at the

recommendation point. For example, when adding a loop collector,

while the code tokens ‘for’ and ‘HashSet’ were not changed, they are

good indicators for a tool to recognize that high-level intent. Thus,

being aware of the code context, a tool would recommend correctly

the next token, e.g., HashSet.add.

We implemented our approach in a tool, APIREC, that computes

the most likely API call to be inserted at the requested location

where an API call would be valid. APIREC works in three steps:

(i) it builds a corpus of fine-grained code changes from a training

set, (ii) it statistically learns which fine-grained changes co-occur,

and (iii) it computes and then recommends a new API call at a given

location based on the current context and previous changes.

For the first step, we trained our model on a corpus of fine-grained

code changes from the change commits in 50 open-source projects

from GitHub. APIREC iterates over 113,103 commits and detects

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FSE’16, November 13–18, 2016, Seattle, WA, USA
c© 2016 ACM. 978-1-4503-4218-6/16/11...$15.00

http://dx.doi.org/10.1145/2950290.2950333

511



the differences in 43,538,386 Abstract Syntax Trees (AST) nodes

using the state-of-the-art AST diff tool GumTree [13].

For the second step, we developed an association-based inference

model that learns which changes frequently co-occur in the same

changed file. Additionally, the model operates on the code context

of fine-grained changes (e.g., for loops, preceding method calls).

In the third step, using the change context of previous changes, the

code context of the recommendation point, and the trained inference

model, APIREC determines the likelihood of a user inserting an API

method call at this location. If it determines that an API method

insertion is indeed likely, then it returns a list of candidate API calls

ranked by the computed likelihood of being selected by a developer.

To empirically evaluate the usefulness of our approach, we answer

three following research questions.

RQ1: Accuracy How accurate is APIREC in suggesting API calls?

RQ2: Sensitivity Analysis How do factors such as the size of

training data, the requested location, the sizes of the change context,

and code context impact accuracy?

RQ3: Running Time What is the running time of APIREC?

To answer RQ1 we measure the accuracy of the recommender.

Top-k accuracy measures how likely the correct API is in the first

k recommended APIs. We measure the accuracy in three different

evaluation editions. In the community edition, we first train APIREC

on 50 open-source projects and then measure APIREC’s accuracy on

a corpus of 8 projects that other researchers [16,35] have previously

used. In the project edition, we do a 10-fold validation on each of

the 8 above projects. For the user edition, we also do a 10-fold

validation on the same 8 projects as above, but only on the commits

coming from a single user. To answer RQ2, we studied the impact

of several factors on accuracy, e.g., the size of training data, previous

changes, surrounding context, and the location of recommendation

invocation. To answer RQ3, we look at the running time of APIREC.

For each evaluation, we compare APIREC with the previous state-

of-the-art learning approaches: n-gram [42], Bruch et al. [7], and

GraLan [35]. This paper makes the following contributions:

1. Approach. We present a novel approach that uses statisti-

cal learning on fine-grained changes with surrounding code

context to create a new code-completion tool. We set forth a

new direction that takes advantage of the repetiveness of both

source code and fine-grained code changes.

2. Implementation. We implemented our approach in a tool,

APIREC, that computes the most likely API method call to be

inserted at the requested location in the code.

3. Empirical Evaluation. Our empirical evaluation on real-

world projects shows that APIREC has high accuracy in API

code completion: 59.5% top-1 accuracy. This is an improve-

ment over the state-of-the-art approaches: 30–160% for top-1

accuracy. Our evaluation shows that APIREC also performs

well even with a one-time, minimal training dataset of 50

publicly available projects. Interestingly, we found that con-

sidering code authorship, one could train with less data, yet

achieve higher accuracy than when training with an entire

project. Training the model with the community corpus still

results in higher accuracy than training with the data from the

project or an individual developer. This finding suggests that

developers should obtain a community trained model, and

then further refine it with their own change histories.

2. MOTIVATING EXAMPLE
Figure 1 shows a real-world example that we collected from prior

work [34] in mining fine-grained code changes. This is a common

change pattern called Adding a Loop Collector. In this change, a

1 for (Task t : tasks) {
2 t .execute();
3 } a)

⇓

1 Set<TaskResult> results = new HashSet<>();

2 for (Task t : tasks) {
3 t .execute();

4 results.add(t.getResult()) ;

5 } b)

Figure 1: A Change Pattern: Adding a Loop Collector

developer introduces a new variable that collects or aggregates the

values processed in a loop. In the example, the fine-grained code

changes include the changes at line 1 and line 4 in Figure 1b. Specif-

ically, the changes at line 1 include the addition of the declaration of

the variable results with the type Set<TaskResult>, and the addition

of its instantiation via new HashSet<>(). Line 4 has the additions

of two method calls results.add() and t.getResult().

Assume that the current editing location is at line 4 of Figure 1b

after a developer has typed the changes at line 1 and the name of

the variable results. (S)he then triggers the code-completion tool.

Here is how different tools respond to their request. The de-facto

modern IDE will present the list of methods and fields of HashSet

in a pre-defined (usually alphabetical) order. (S)he must browse

through a list of 37 methods to find the desired method. Advanced

code completion engines [7, 35, 42] will recommend a list of API

calls based on the API usage patterns that are mined from the code

corpus. There are two common mining strategies. The first strategy

relies on deterministic mining algorithms such as frequent itemset,

common subsequence, or common subgraph mining [7, 36, 44]. The

second one uses statistical learning from code [16, 42, 52]. Both

strategies share the same principle that source code is repetitive [16].

Code suggestion techniques (e.g., n-gram model [16, 52]), which

rely on the code context, identify the context as the sequence of

tokens preceding the variable results (in our example, the sequence

‘t.execute();’). However, this code sequence is specific to this project,

and is not part of any code pattern related to the method add. Thus,

tools based on code patterns might not recommend the correct API

call HashSet.add. More advanced approaches [35, 42], which also

consider program dependencies among the entities (e.g, at line 1 and

line 4), still might not see HashSet.add as a good candidate because

other API calls from HashSet are just as likely to occur.

Key Ideas

Instead of relying on source code repetitiveness, APIREC is based

on code change repetitiveness [34]. Hindle et al. [16] reported that

software exhibits its naturalness: source code has a higher degree of

repetitiveness than natural-language texts. We expect the same prin-

ciple of naturalness of software [16] to occur on fine-grained code

changes (i.e., naturalness of code changes) since similar changes

may be performed to introduce similar behavior. In our example,

the addition of a new HashSet (generally a Collection) is followed

by the addition of the call HashSet.add on the same variable. Since

APIREC observed the addition of a new HashSet in the current

change context, it is able to correctly suggest HashSet.add at line 4.

For APIREC to work, we rely on the following key ideas:

1) First, we develop an association-based model to implicitly

capture change patterns, i.e., frequent, co-occurring, fine-grained

code changes in our training data. Our insight for using associations

among fine-grained changes is that such changes in a pattern do

not need to have strict order as required in a traditional n-gram

512



model. For example, HashSet.add could be edited before or after

the addition of the declaration of the HashSet variable.

2) Second, the recent fine-grained code changes in the change

context of the current code lead the trained model to recommend the

next method call (e.g., the addition of a HashSet object often leads to

the call HashSet.add). Moreover, we use the code context surround-

ing the requested location, which might contain the code tokens that

are part of the change patterns. For example, the token ‘for’ is part

of both the code context and the change pattern of Adding a Loop

Collector because users often collect the elements into a collection

via a for loop. Thus, it helps suggest the method call add at line 4.

3) Third, not all the changes in the current context are useful in

recommendation because they can be project-specific and consid-

ered as noise in the change patterns. Recent work [41] confirms

that not all code changes are repetitive. To address this, we rely on

the basis of consensus: given a large number of changes in many

projects, the project-specific changes are less likely to appear fre-

quently than the changes belonging to a higher-level intent pattern.

3. DEFINITIONS

3.1 API Call Completion
An API (method) call is a call to an API of an external or internal

library, while a method call is a call to a method within a project.

For brevity, we call both types API calls. We distinguish them if

needed. In traditional code completion, a programmer invokes code

completion by placing a dot after a variable, such as v. APIREC

supports any recommendation where the addition of a method call

would result in syntactically correct code. For example, after the =

sign in an assignment, as in v = , it recommends a method call.

3.2 Fine-grained Atomic Code Changes
We represent source code as ASTs to avoid formatting changes

which are not helpful for suggestion. For a changed file, we com-

pare the ASTs before and after the changes to derive the fine-grained

changes. The state-of-the-art differencing tool GumTree [13] is used.

DEFINITION 1 (ATOMIC CHANGE). A (fine-grained)

atomic change is represented by a triplet of (<operation kind>,

<AST node type>, <label>).

Table 1 shows the atomic changes for the editing scenario in Fig-

ure 1. Each atomic change corresponds to a change to an AST node

in the program. We consider each change to be one of the following

operations: change, add, delete, and move. The AST node types

represent the Java AST nodes. The labels represent the textual infor-

mation of the AST nodes. We only use labels for some types of AST

nodes. For method invocation, simple type, and simple name (of a

method invocation or a simple type), we use the labels to identify

the name of a method or type. We use the name to find change pat-

terns and to recommend. For example, in Table 1, two SimpleTypes

have their labels of Set and TaskResult. We also keep the labels

for boolean constants and the null value. These labels are special

literals that help in detecting change patterns involving those values.

For the AST nodes for which we keep the labels, in addition to node

types and operation kinds, we use the labels when comparing ASTs.

DEFINITION 2 (TRANSACTION). Atomic changes from the

same changed file in a commit are collected into a transaction.

We use a bag (or multiset, which allows for multiple instances of

an element) to represent a transaction, rather than a list, since the

atomic changes might be different depending on each programmer,

even though they belong to the same change pattern. Thus, if we

establish a strict order, we might not be able to statistically learn

the patterns for recommendation. Moreover, because the atomic

code changes are recovered from the committed changes in a code

repository, we do not have the order in which they were written.

3.3 Change Context and Code Context

DEFINITION 3 (CHANGE CONTEXT). The change context is

the bag of fine-grained atomic changes that occurred before the re-

quested change at the current location in the same editing session.

The change context at the underlined location in Figure 1 con-

tains atomic changes at line 1 (partially shown in Table 1), and the

addition of results (not shown for space reason). They are useful

in recommending the method add at line 4. The instantiation of a

HashSet object and the call to the method add are part of a change

pattern. Identifying these changes as the beginning of a pattern helps

APIREC recommend the addition of HashSet.add. We also give a

larger weight to the changes made to the program elements that

have data dependencies with the current code element (i.e., results),

because they are more likely to occur together in a change pattern

than other elements with no data dependency. We currently consider

only the dependencies between variables’ definitions and their uses,

and between the method calls on the same variable.

DEFINITION 4 (CODE CONTEXT). The code context is the

set of code tokens that precede the current editing location within a

certain distance in terms of code tokens.

We obtain the code tokens from the AST. For example, the to-

kens for, Task, t, tasks, and execute will be used as the code context

to recommend the API call HashSet.add. The rationale is that the to-

kens surrounding the recommendation point might often go together

with the API call as part of a pattern even though they might not be

recently changed. Thus, the code context helps us recommend the

correct API call. We do not consider separators and punctuation.

For both change and code contexts, we consider the distance and

the scope of a change and token. We attribute a higher impact to the

preceding changes or code tokens that are nearer to the current loca-

tion. Thus, we give them higher weights in the decision process. We

measure the distance by the number of code tokens in the program.

Since we focus on recommending API calls in a method, we give

higher weights to the changes and code tokens within the method

under edit, and lower weights to the changes/tokens outside of it.

4. CHANGE INFERENCE MODEL
To rank and recommend the candidates of API calls, APIREC uses

our association-based change inference model. The model learns

from a fine-grained change corpus to compute the likelihood scores

for each candidate change c to occur at the requested location given

both the change and code contexts. To do that, it computes the

contributions of individual changes and code tokens in the contexts

by counting in the corpus the co-occurrence frequency of each

atomic change in the change context with c and the frequency of each

code token in the code context appearing in the change c. Finally,

the contributed scores are integrated and adjusted via the weighting

factors for the distances between changes and the scope of changes.

4.1 Model Overview
The goal of our model is to compute the likelihood score that a

change c occurs at the requested location given (i) the fine-grained

code changes in the change context C preceding the current change

c, and (ii) the code tokens of interest in the code context T sur-

rounding the requested location. c is in the form <add, MethodInvo-

cation, methodName> and APIREC needs to predict methodName.

513



Table 1: Fine-grained Atomic Code Changes

Ind. Oper. AST Node Type Label Content of AST’s Sub-Tree

c1 Add VariableDeclarationStatement (VDS) VariableDeclarationStatement Set <TaskResult> results = new HashSet<>();
c2 Add ParameterizedType (PT) ParameterizedType Set <TaskResult>
c3 Add SimpleType (ST) Set Set
c4 Add SimpleName (SN) Set Set
c5 Add SimpleType (ST) TaskResult TaskResult
c6 Add SimpleName (SN) TaskResult TaskResult
c7 Add VariableDeclarationFragment (VDF) VariableDeclarationFragment results = new HashSet <>();
... ... ... ... ...

The occurrence likelihood Score(c,(C ,T )) of a change c is a

function of c, C , and T . Generally, learning that function from data

is challenging. To make it computable, we assume that both change

and code contexts have independent impacts on the occurrence of

the next token. We denote the impacts of change and code contexts

on the occurrence of c by Score(c,C ) and Score(c,T ), respectively.

We aim to learn the occurrence likelihood Score(c,(C ,T )) of change

c in the form of a weighted, linear combination of two impacts:

Score(c,(C ,T )) = wC ×Score(c,C )+wT ×Score(c,T )

where wc and wT are the weights corresponding to the impacts of

contexts. Other types of combinations can be explored in future.

To compute the impact of the change context via Score(c,C )
with C consisting of the atomic changes c1,c2, ...,cn, we adapted the

concept of trigger pairs by Rosenfeld [23,46] in language models for

natural-language texts. That is, if a word sequence A is significantly

correlated with another word sequence B, then (A→B) is considered

as a trigger pair. When A occurs before (does not need to be within a

n-gram), it triggers B, causing its probability estimate to change [46].

While Rosenfeld considers words, we consider each of the changes

in the context C as a trigger where the order among cis is not needed

as explained in Section 2. However, instead of using maximum en-

tropy [21], in APIREC, we approximate Score(c,C ) by the product

of each trigger pair Score(c,ci) i = 1...n because the number of

changes in a change context is much smaller than the number of

words in a document. We then compute each trigger pair Score(c,ci)
via the conditional probability Pr(c|ci). This probability can be esti-

mated with their association score, i.e., the ratio between the number

of transactions having both changes c and ci over the number of

transactions having ci. Finally, we also incorporate the weights for

distance between the two changes and the scope of a change. We

similarly compute the impact Score(c,T ) of the code context via

the trigger pair Score(c, ti) with ti is a token in T .

4.2 Details on Model Computation

4.2.1 Computing Score(c,C )

The value of Score(c,C ) represents the impact of the atomic

changes in the change context for predicting c. One could compute:

Score(c,C ) = Score(c,{c1,c2, ...,cn}) =
N(c,c1,c2,...,cn)
N(c1,c2,...,cn)

(1)

where N(c1,c2, ...,cn) is the number of transactions containing the

changes c1,c2, ...,cn, and N(c,c1,c2, ...,cn) is the number of trans-

actions containing the changes c,c1,c2, ...,cn including change c.

However, we cannot always compute those numbers. This is

because in the training data, we might not frequently encounter the

cases where those changes occurred in the same transaction. That

is, we might have a small number of such co-appearance. Thus, we

adapted the trigger pair concept to compute Equation 1 as follows.

Score(c,C ) = Score(c,{c1,c2, ...,cn})
≃ Score(c,c1)×Score(c,c2)× ...×Score(c,cn)

(2)

In maximum entropy [21], the impact of a term on the presence of

another is modeled by a set of constraints. Their intersection is the

set of probability functions that are consistent for all the terms. The

function with the highest entropy in that set is the ME solution [46].

In APIREC, because the number of changes in C is usually small,

we do not aim to find the combined estimation. Instead, we estimate

Score(c,ci) (i.e., the probability that c occurs given that ci occurred)

as the following and then take the product of all scores:

Score(c,ci)≃ Pr(c|ci)≃
N(c,ci)+1

N(ci)+1

where N(c,ci) is the number of transactions in which the changes c

and ci co-appear, and N(ci) is the number of transactions having ci.

The ratio represents the association score between two changes.

To account for the distance between a change ci and the current

change c and to avoid underflow, we use the logarithmic form:

log(Score(c,ci)) ∝
1

d(c,ci)
× log

N(c,ci)+1

N(ci)+1

where d(c,ci) is the distance between c and ci, which is measured

as the number of tokens in the code between the two tokens corre-

sponding to the two changed nodes of c and ci. We sort the changes

ci according to their distances to c. The smaller the distance, the

higher the change ranks. Then, we use the rank for a change ci as its

distance d(c,ci). The log form is to avoid underflow in computation.

Because c = <add, MethodInvocation, methodName> and we

want to recommend an addition of a method invocation, the method

name (denoted by mname) is the only variable in c. Thus, we have

log(Score(c,ci))∝ logScore(cmname|ci)≃
1

d(c,ci)
×log

N(c,ci)+1

N(ci)+1

cmname is an addition of a method call with the name of mname.

To consider the scope of the changes (e.g., the changes outside of

the current method are weighed lower than those occurring inside

it), we set different constants for the weights of the factors:

log(Score(c,ci))∝ logScore(cmname|ci)≃
wscopeci

d(c,ci)
×log

N(c,ci)+1

N(ci)+1

wscopeci
is the weight accounting for the scope of the change ci.

It equals 1 if ci occurs in the current method of c, and equals 0.5

if ci occurs outside of the method. Similarly, we set the values of

the weights wdepci
for the changes to code elements having data

dependencies with the current element. Finally, from Equation 2:

log(Score(c,C )) ∝ log(Score(cmname,C ))
≃ log(Score(c,c1))+ log(Score(c,c2))+ ...+ log(Score(c,cn))

≃ ∑i=1..n
wscopeci

×wdepci

d(c,ci)
× log

N(c,ci)+1

N(ci)+1

(3)

4.2.2 Computing Score(c,T )

We estimate the likelihood score Score(c,T ) of c given the code

context T in the same manner as the computation for the score

514



Score(c,C ). Score(c,T ) is estimated according to:

log(Score(c,T )) ∝ log(Score(cmname,T ))
≃ log(Score(c, t1))+ log(Score(c, t2))+ ...+ log(Score(c, tm))

≃ ∑i=1..m
wscopeti

×wdepti

d(c,ti)
× log

N(c,ti)+1

N(ti)+1

(4)

In this formula:

1. t1, t2, ..., tm are m code tokens of interest in the code context.

2. Score(c, ti) is the likelihood score that the code token ti in the

surrounding context (e.g., the token for) indicates the occurrence the

change c (e.g., the addition of HashSet.add).

3. wscopeti
is the weight on the scope of the token ti. It equals 1 if

ti is within the current method of c, and equals 0.5 if ti is outside.

4. d(c, ti) is the distance between the token ti and the requested

location. It is computed similarly as d(c,ci).
5. N(c, ti) is the number of transactions in which the token ti is in

the nearby code context of the change c in the change history. N(ti)
the number of transactions in which ti appeared.

From Formulas 3 and 4, we compute Score(c,C ) and Score(c,T ).

5. TRAINING AND RECOMMENDATION
Before APIREC can recommend API calls, we must first train it.

We will explain how we train and use the model for recommendation.

5.1 Learning Change and Code Co-occurrences
According to Formulas 3 and 4, to be able to compute Score(c,C )

and Score(c,T ), APIREC needs to learn three types of parameters:

1) the numbers of (co-)occurrences of the fine-grained atomic

changes, i.e., N(c,ci) and N(ci) in Formula 3

2) the numbers of (co-)occurrences of atomic changes and code

tokens of interest, i.e., N(c, ti) and N(ti) in Formula 4.

3) The weights wC and wT , one of which we fix by using wC +

wT = 1.

We use hill-climbing adaptive learning [50] to learn the value

for wC from a training set. The idea of the training algorithm to

adjust that weight is via gradient descent as follows. First, it is

initialized with a value. We train on (k−1) folds and test on one fold.

The parameters of the trained model is used to estimate the scores

Score(c,C ) and Score(c,T ). The combined score is computed

with the current value of the weight wC . The candidates for c are

ranked. We compute the goal function MAP (mactual ,Plist) between

the list of predicted method calls, Plist , and the actual one, mactual .

The weight is then adjusted. The process is repeated. Finally, the

optimal weight corresponding to the highest value of MAP is used.

5.2 API Call Recommendation
After all above parameters were trained, we use the Formulas 3

and 4 with all the occurrence counts obtained during training to

estimate the likelihood of a change c, i.e., an addition of a method

invocation with the method name mname. We compute the occur-

rence likelihood for all candidate changes in the vocabulary that

satisfy the following: (i) it is an addition of a method invocation,

and (ii) it has appeared in at least one transaction with at least one

change in c1, ...,cn, or in at least one transaction with at least one

token in t1, ..., tm. The second condition avoids the trivial cases of

zero occurrences. Finally, we rank the candidates by their scores.

Let us explain this computation using the example in Figure 1. Let

us assume that the programmer finishes the changes and stops right

after typing the variable results at line 4 of Figure 1b. They request

APIREC to complete the code with an API method invocation. Our

goal is to recommend a method call for the variable results.

Table 2 shows the computation of the scores. All the atomic

changes that preceded the current location are collected into the

Table 2: Example of Score Calculation for Candidates (bold are

highest component scores, see operation notations in Table 1)

Ind. <Operation,Type,Label> Score(a candidate given ci)

Candidates add remove contains addAll clear

c1 Add, VDS, VDS 0.02 0.01 0.02 0.02 0.03
c2 Add, PT, PT 0.01 0.02 0.02 0.03 0.02
c3 Add, ST, Set 0.20 0.11 0.13 0.08 0.10

c4 Add, SN, SN 0.01 0.01 0.02 0.01 0.01
... ... ... ... ... ... ...
c11 Add, ST, HashSet 0.22 0.12 0.12 0.09 0.09

... ... ... ... ... ... ...
c13 Add, ES, ES 0.02 0.02 0.01 0.02 0.01

Ind. <Token, Type, Label> Score(a candidate given ti)

t1 Token, FOR, for 0.15 0.01 0.13 0.02 0.02

t2 Token, Type, Task 0.00 0.00 0.00 0.00 0.00
t3 Token, Var, t 0.00 0.00 0.00 0.00 0.00
... ... ... ... ... ... ...
t6 Token, MI, execute 0.00 0.00 0.00 0.00 0.00

Combined score 0.40 0.20 0.24 0.11 0.13

Rank 1 3 2 5 4

change context c1,c2, ...,c13 (assume that in this example, there are

no other changes outside of the method). The tokens prior to the

current location are considered including t1, t2, ..., t6 (i.e., the code

context). The token types and labels are presented in Table 2.

The candidate method invocations that satisfy the above condi-

tions (i) and (ii) are listed in the columns including the method calls

add, remove, contains, addAll, and clear.

The scores in Table 2 shows the likelihood scores Score(c,ci)
(representing how likely the change c occurs given ci occurred in the

change context of interest) and Score(c, ti) (representing how likely

the change c occurs given the token ti appear in the code context).

Score(c,ci) and Score(c, ti) are computed by Formulas 3 and 4.

For example, the scores for the candidates with respect to the pre-

vious change c3 (<Add, ST, Set>: adding a simple type Set) and to

the previous change c11 (<Add, ST, HashSet>: adding a simple type

HashSet) are higher than others since in the training data, the changes

involving adding a variable with the type Set or HashSet often co-

occur with the changes involving the add method of the variable

of that type. That is, the change pattern consists of an addition of

a variable of the type Set or HashSet followed by an addition of a

call to the add method of that variable. Both of the scores for Set

and HashSet are high, since in the training data, programmers might

declare the type of HashSet in some cases, and that of Set in others.

The scores for the candidates with respect to the prior tokens are

computed similarly. For example, in Table 2, the scores for the can-

didates with respect to the token ‘for’ is higher than those of the other

tokens because a ‘for’ iteration and the API method call HashSet.add

is part of the change pattern Adding a Loop Collector.

Among the candidate method calls, (more precisely, the candidate

changes with the change kind of add and the change AST node of

MethodInvocation), the method call add has the highest scores. This

is reasonable because programmers often use the method to collect

elements into a collection via a loop. Finally, the combined score

for each candidate API call is computed according to the Formulas 3

and 4. The method call add is ranked highest when other factors

such as distance, scope, and dependency are considered as well.

6. EMPIRICAL METHODOLOGY
To evaluate APIREC, we answer the following research questions:

RQ1: Accuracy How accurate is APIREC when recommending

API calls? How does its accuracy compare to the state-of-the-art ap-

515



proaches Bruch et al. [7] (set-based approach on code only, available

as an advanced feature [12] in Eclipse), n-gram [42] (sequence-based

statistical approach with program dependencies), and GraLan [35]

(statistical learning without modeling changes)?

RQ2: Sensitivity Analysis How do factors such as the size of

training data, the requested location, the sizes of the change context

and code context impact accuracy?

RQ3: Running Time What is the running time of APIREC?

6.1 Corpora
We compiled two disjunct corpora to train and test APIREC.

Large Corpus. This corpus consists of 50 randomly selected

Java projects from Github that have long development histories

(+1,000 commits each). Table 3 shows the number of commits

contained in this corpus. Based on previous research [6], in order to

avoid large commit size, we do not select repositories which were

migrated to GitHub from a centralized version control system. We

extract the atomic changes from all the commits in the corpus. To

do this, we iterate over all the files in all the commits. We then

use GumTree [13] to compute the atomic changes (see definition in

Section 3.2) between the before and after versions of each file.

Community Corpus. This smaller corpus contains eight projects

from GitHub that have been used by previous researchers [16, 35].

The third column in Table 3 lists the statistics about this corpus. We

extract atomic changes from this corpus in the same manner.

6.2 Evaluation Setup
We aim to investigate the foundation of our hypothesis, the repet-

itiveness of changes. We posit that changes performed on different

projects and by different programmers have different degrees of

repetitiveness. Thus, to evaluate the impact that the project’s culture

and individual developer’s habits play, we designed three scenarios:

Community Edition. We trained APIREC with the Large Corpus

and then we tested it against the Community Corpus.

Project Edition. For each project in the Community Corpus, we

trained APIREC on the first 90% of commits, and then we tested on

the remaining 10% of commits (10-fold validation).

User Edition. This is similar to the Project Edition scenario, but

we only used the commits from one user from each project. We

selected the user who authored the most commits in each project.

6.3 Procedure, Metrics, and Settings
To measure APIREC’s accuracy, we reenact real-world code evo-

lution scenarios. We use the real API calls from the corpora as the

“oracle” for determining the correct recommendation.

For each transaction we choose an atomic change to be used as

the prediction point. The prediction point represents the change that

APIREC will try to predict. This mimics real development where a

developer has typed part of the changes in a commit, and at some

point, they invoke APIREC. We used the following procedure to

choose the prediction point. First, we order the atomic changes in

the transaction according to their locations in the file. Let n be the

transaction’s size, i.e. it contains n changes. We assume the change

is at different positions l = 1...n to study the impact of the prediction

point on accuracy. If the change at position l is the addition of an API

call m, we will use m as a prediction point. Otherwise, we will check

the atomic change at l +1 and so on until we encounter a method

addition. If no such change is found, we skip that transaction.

We use the atomic changes in the current transaction preceding

the prediction point m as the change context. We collect all the code

tokens prior to m in the current file as the code context. The changes

and code tokens that are outside of the method containing m are

assigned lower weights (Section 4). We invoke APIREC with this

Table 3: Collected Data on Fine-grained Code Changes

Large Corpus Community Corpus

Projects 50 8
Total source files 48,699 8,561
Total SLOCs 7,642,422 1,331,240

Number of commits 113,103 18,233
Total changed files 471,730 63,962
Total AST nodes of changed files 714,622,846 86,297,938

Total changed AST nodes 43,538,386 4,487,479
Total detected changes 1,915,535 252,522
Total detected changes with JDK APIs 788,741 117,481

context to recommend the candidate list L of API calls. If the method

m (the API call from the oracle) is in the top k positions of the list L

of API calls, we count it as a hit for top-k accuracy. Otherwise, it

is a miss. The top-k accuracy for a project is calculated as the ratio

between the number of hits over the total number of hits and misses.

Model Parameters. APIREC has two parameters: the weights

wC and wT for the change and code contexts. However, we use

adaptive learning [50] to learn the optimal weights wC and wT

from a training data (Section 5.1). The other parameters are wscopeci
,

wscopeti
, wdepci

, and wdepti
, which are the weights for the scopes

and dependencies of the elements in the two contexts in relation

to the prediction point. Since we focus on recommending the API

call in the current method, we use two levels of weights for the

contexts inside and outside of the containing method, and two levels

of weights for having or not having data dependencies (Section 4).

7. EMPIRICAL RESULTS

7.1 Accuracy: Community Edition
In this experiment, we evaluate APIREC’s recommendation accu-

racy when it is trained on the Large Corpus and tested on the Com-

munity Corpus. We compare APIREC with the state-of-the-art API

completion approach by Raychev et al. [42]. We implemented their

n-gram API recommendation model according to the description in

their paper. We also compare APIREC with Bruch et al. [7] (which

uses association among APIs in a set for recommendation), and

with GraLan [35], a graph-generative model. We trained all those

n-gram-based, set-based, and graph-based models with the source

code of the entire last snapshots of the projects in the Large Corpus.

We compared the approaches in two settings: 1) on all APIs in all

libraries in the corpora, and 2) on the APIs of the JDK library.

7.1.1 Accuracy Comparison for General API calls

APIREC is a statistical, data-driven approach, which could not

predict an API call that it has not seen in the training data. This

is often referred to as out-of-vocabulary (OOV). An API call is

considered to be OOV if it is neither declared nor used in the training

data, but is in the testing data. This can occur when APIREC is

trained on the Large Corpus, but is tested on the Community Corpus.

For a fair comparison, we measured in-vocabulary accuracy (IN)

of APIREC and three above approaches (Figure 2). To compute in-

vocabulary accuracy, we followed the same procedure as explained

earlier except when we search for the prediction point we only stop

when we find an API call m′ that previously appeared in the training

data (in our vocabulary). If we cannot find m′ in our training data,

we skip the current transaction and continue. Thus, APIREC only

tried to predict methods which it had previously seen.

In this experiment, we used APIREC to predict the middle point of

the change transaction l = ⌊n/2⌋ + 1. The total number of recommen-

dations for a project appears in parentheses after the project name.

516



Figure 2: API Recommendation Accuracy for Community Edition (%) per Project (the parentheses are the number of recommendations)

APIREC outperforms others across the board. At Top-1, it is

better from 30–160%, and at Top-5 from 20–30%.

APIREC achieves high accuracy. Top-1 is correct in 44.2–59.5%

of the cases (IN). Top-5 accuracy is as high as 83.6% (IN).

We investigated the differences in accuracy between the approaches.

We found that n-gram model requires strict, unnecessary ordering

between API calls. For example, in HashMap, clone→put→remove

and clone→remove→put are not considered as the same pattern by

n-gram. Thus, clone→put cannot be used to recommend remove. In

contrast, a clone was changed/added together with an addition of

either a put or a remove. APIREC uses the context with the modifi-

cation/addition of clone to recommend either put or remove. That is,

the atomic changes for the same high-level intent often co-occur in

the same transaction (e.g., the tasks “clone a hash map and add to it”

or “clone a hash map and remove from it”).

Bruch et al. [7] does not consider the order of API calls for recom-

mendation. This could lead to more noise due to its use of different

subsets of API calls for recommendation. In contrast, GraLan uses

partial orders among API calls, leading to better performance. For

example, clone→put→remove and clone→remove→put belong to a

pattern that clone appears before others, but there is no strict order

between put and remove. APIREC has higher top-k accuracy than

GraLan for small ks. There are two reasons: 1) APIREC relies on the

repeated changes that a user has with high-level intents (e.g. adding

a loop collector) that connect the fine-grained changes logically; and

2) APIREC’s consideration of the impacts of the distance between

context changes and the recommendation location (nearby changes

or code tokens are better for recommendation). Their accuracies are

comparable for larger ks as more candidates are considered.

7.1.2 Accuracy Comparison for JDK

In this section, we evaluate APIREC’s accuracy in recommending

a specific API library (in contrast to general API calls). We chose

JDK for this experiment since it is frequently used in Java programs.

We followed a similar evaluation procedure as before. However,

while selecting the prediction point, we search for a method m that

belongs to the JDK library after the location l. That is, the actual

change must be the addition of a method call from JDK. We skip

the transaction if we do not find such a method.

Table 4 shows the accuracy comparison. The accuracy for rec-

ommending API calls in JDK is high. In 56.4–74.3% of the cases,

APIREC can correctly recommend the JDK method call as the top

recommendation. In 76.1-89.8% of the recommendation cases, the

actual JDK method call is in the top five candidates.

The accuracy in all the projects is higher than those for recom-

mending general API calls (Figure 2). This is expected since JDK is

popular. With the 50 projects for training, all the JDK API calls are

in the vocabulary (IN). At Top-1, APIREC improves over n-gram by

200%, over Bruch et al.’s by 170%, and over GraLan by 120%.

7.2 Accuracy: Project Edition
In this experiment, we aimed to evaluate the impact of project’s

culture on APIREC’s accuracy. We trained/tested it on the fine-

grained changes of the same project. For comparison, we used the

testing projects in the community edition. However, for each project,

we sorted all the commits in the chronological order. We then used

the oldest 90% of the project commits for training APIREC and the

10% most recent commits for recommendation.

Tables 5 and 6 show accuracy results for the project edition setting

for recommending general and JDK API calls. The changes in

individual projects do not repeat as much as those across projects.

Thus, the accuracy is generally lower than those in the community

edition (comparing Table 5 and Figure 2, Tables 6 and 4).

Since JDK is a popular Java library, the code changes involving

JDK APIs still occur and repeat more frequently than the project-

specific method calls. Thus, the accuracy in recommending JDK

APIs is higher than the accuracy in recommending general API calls

(comparing Tables 5 and 6). Note that, in this experiment, with our

training projects, all JDK API calls are in the vocabulary. Thus,

Table 6 only contains the result for APIREC.in.

517



Table 4: JDK Recommendation Accuracy for Community Edi-

tion (%) (No OOV APIs in JDK library in this experiment)
System Model Top1 Top2 Top3 Top4 Top5 Top10

Galaxy APIREC 66.8 78.0 80.9 82.1 82.6 85.6
(6,956) n-gram 17.6 23.5 26.1 29.1 31.9 39.3

Bruch et al. 19.7 32.9 41.9 47.0 52.1 58.7
GraLan 25.1 42.1 59.0 68.8 74.0 84.9

log4j APIREC 57.3 70.7 72.6 75.0 76.1 78.4
(5,679) n-gram 15.5 21.2 25.4 29.2 31.7 37.8

Bruch et al. 22.7 36.9 45.4 52.5 57.1 64.6
GraLan 29.5 41.7 48.3 53.3 57.8 76.0

spring APIREC 61.1 70.6 76.1 77.4 79.0 80.6
(9,885) n-gram 19.1 24.8 27.5 29.8 32.3 40.0

Bruch et al. 24.6 38.2 47.7 55.1 57.8 70.9
GraLan 29.4 42.1 50.2 56.7 60.8 75.9

antlr4 APIREC 67.9 81.9 83.6 84.0 84.5 85.5
(11,150) n-gram 22.8 30.9 34.7 37.6 39.5 46.9

Bruch et al. 24.7 50.6 65.3 72.2 74.6 78.6
GraLan 30.3 76.1 80.5 81.7 82.7 87.2

JGit APIREC 73.4 82.6 85.1 85.9 86.0 87.7
(9,075) n-gram 17.6 25.0 28.3 31.0 33.0 40.8

Bruch et al. 23.1 37.5 48.8 54.9 59.1 66.3
GraLan 27.5 35.9 48.4 57.3 65.2 85.6

Froyo-E APIREC 74.3 81.7 84.5 85.6 86.0 89.8
(5,568) n-gram 39.9 46.7 48.5 51.6 54.9 60.4

Bruch et al. 26.1 43.3 53.8 63.8 67.8 80.6
GraLan 32.4 45.5 55.1 63.5 75.8 90.4

Grid-S APIREC 61.6 80.2 88.0 88.8 89.8 91.1
(9,215) n-gram 22.3 27.7 29.9 32.2 34.2 42.5

Bruch et al. 25.3 41.6 54.3 62.5 64.5 67.6
GraLan 27.6 42.4 68.9 82.9 83.9 90.8

Itext APIREC 56.4 76.5 77.5 79.5 80.1 81.5
(6,427) n-gram 31.4 37.5 40.8 44.0 47.9 55.6

Bruch et al. 25.7 44.3 53.5 60.0 63.9 78.7
GraLan 32.9 44.7 53.4 61.5 66.5 80.1

Table 5: API Recommendation Accuracy - Project Edition (%)
System Model Top1 Top2 Top3 Top4 Top5 Top10

Galaxy APIREC.oov 11.1 20.3 23.9 30.3 35.4 51.9
(6,956) APIREC.in 11.2 21.9 25.7 30.0 36.0 48.8

log4j APIREC.oov 15.4 26.0 32.6 35.2 37.5 40.9
(5,679) APIREC.in 18.1 29.7 36.2 39.1 42.1 45.8

spring APIREC.oov 18.5 23.5 26.1 26.8 28.0 31.5
(9,885) APIREC.in 21.7 29.7 32.9 33.4 34.4 40.2

antlr4 APIREC.oov 11.1 11.3 12.7 20.7 21.2 21.2
(11,150) APIREC.in 11.1 11.1 12.7 20.7 21.2 21.2

JGit APIREC.oov 7.0 18.1 21.2 23.3 26.8 41.4
(9,075) APIREC.in 7.2 20.6 22.5 24.0 27.1 42.3

Froyo- APIREC.oov 12.7 19.2 22.8 27.8 31.2 38.6
Email APIREC.in 13.8 20.7 25.7 28.9 31.9 39.4

Grid- APIREC.oov 33.1 42.9 48.3 49.2 49.8 55.0
Sphere APIREC.in 41.4 45.8 51.0 51.6 51.9 58.7

Itext APIREC.oov 9.6 18.2 18.8 21.6 22.9 25.6
(6,427) APIREC.in 14.0 23.7 24.2 27.4 30.2 33.7

Table 5 shows that the values for APIREC.in are slightly higher

than those for APIREC.oov. This is reasonable since most used

method calls existed. Thus, if we use a change history in a project

covering as many project-specific methods as possible, APIREC can

be used to recommend the calls to those methods. The same trends

apply for top-k accuracy numbers for other models (not shown in

Table 5). APIREC outperforms the other models across the board.

7.3 Accuracy: User Edition
In this experiment, we evaluate how APIREC performs when

being trained only on the commits from a single user. From each

project in the test corpus, we selected the user who has the most

Table 6: JDK Recommendation Accuracy for the Project Edi-

tion (%) (No OOV APIs in JDK library in this experiment)
System Model Top1 Top2 Top3 Top4 Top5 Top10

Galaxy APIREC 31.4 38.7 42.2 45.7 49.9 63.7

log4j APIREC 24.2 34.4 38.5 41.1 42.9 51.5

spring APIREC 34.3 47.0 52.6 53.7 55.0 59.5

antlr4 APIREC 24.8 24.8 24.8 33.4 33.6 33.6

JGit APIREC 16.5 20.6 28.7 30.3 32.3 57.6

Froyo-E APIREC 22.6 33.6 46.8 53.4 55.2 61.9

Grid-S APIREC 60.0 68.6 75.6 76.7 77.0 80.4

Itext APIREC 33.7 48.5 50.7 51.7 53.9 62.6

Table 7: API Recommendation Accuracy for User Edition (%)
System User Top1 Top2 Top3 Top4 Top5 Top10

Galaxy (6956) dandiep (864) 27.0 46.5 49.2 53.0 55.8 60.7

log4j (5,679) ceki (967) 27.6 37.4 42.2 43.1 47.5 59.4

spring (9,885) jhoeller (2,542) 9.5 14.8 17.5 18.7 27.3 30.0

antlr4 (11,150) parrt (1,412) 57.0 65.8 68.3 68.9 69.9 76.2

JGit (9,075) spearce (938) 26.1 45.3 70.1 70.3 76.3 81.3

Froyo-E (5,568) mblank (946) 23.3 32.7 38.7 40.0 49.3 58.7

Grid-S (9,215) novotny (2,613) 34.4 40.3 43.6 44.6 44.8 45.2

commits. A user makes up a significant part of each project, ranging

from 10% to 28% of all commits in a single project. To compare

results, we used the same projects as the Project Edition. We used

the same sorting technique so that 90% of the commits were used for

training, and the most recent 10% were used for recommendation.

Table 7 shows the result for the user with most commits from

each project. When compared with Figure 2 and Table 4, accuracy

in the User Edition is lower than that in Community Edition. We

expect this result because more training should yield better results.

Interestingly, the User Edition’s accuracy generally is higher than

that of Project Edition. For the data we randomly selected, each user

commits to only one project. This leads us to infer that there is a

subset of the training data that is more important. Considering code

authorship, we could train with less data, yet have more precise

results than when training with the entire project.

7.4 Sensitivity Analysis: Out-Of-Vocabulary
Data

As with all statistical learning methods, APIREC’s results are af-

fected by the sufficiency of the training data. Thus, we evaluated to

what extent OOV impacts APIREC’s accuracy. We chose a random

project, Froyo-Email, from the Community Corpus. We conducted

two executions with two experimental procedures to compare accu-

racy when OOV occurs and does not occur. In the first execution,

we followed the same procedure in Section 6.3 to measure top-k

accuracy. For this study, we use the prediction point at the middle

of a transaction, i.e., l = ⌊n/2⌋ + 1. When an API call is OOV,

we counted it as a miss. In the second execution, we followed the

same procedure to measure in-vocabulary accuracy as described in

Section 7.1.1. To be able to compare against the two runs, APIREC

made exactly 5,568 recommendations in each execution.

Table 8 shows the top-k accuracy for the two cases. Even with

the OOV issue, APIREC is able to achieve high accuracy. With a

single recommendation, it is able to correctly recommend the API

call in almost 45% of the cases. In 56.8% of the cases, the actual

call is in the list of only five candidates. APIREC’s accuracy is even

higher if trained with enough API calls (the IN case). Here, it is

able to correctly recommend the call with a single recommended

candidate in almost 60% of the cases. In 75% of the cases, it

correctly recommends the call with only five candidate APIs.

518



Table 8: Impact of OOV on Recommendation Accuracy (%)

Top-1 Top-2 Top-3 Top-4 Top-5 Top-10

OOV 44.8 51.6 54.7 55.9 56.8 62.5
IN 59.5 67.1 71.7 73.0 75.0 81.2

Figure 3: Impact of Change Context’s Size on Accuracy

When APIREC uses in-vocabulary elements, it makes better rec-

ommendations ranging from 14.5% to 18.7% improvements in ac-

curacy. We measured the OOV rate, defined as the percentage of

predicted API call in the Community Corpus that are not contained

in the Large Corpus. The OOV rate for Froyo-Email project is 28.1%,

a lower bound of the loss in accuracy. This result shows that OOV

has impact on accuracy. This is expected because as a learning

model, APIREC needs to observe the API calls to recommend them.

7.5 Sensitivity Analysis: Change Context and
Code Context

APIREC relies on both change and code contexts in recommenda-

tion. Thus, we also conducted an experiment to measure the impact

of the size of the change context (number of changes) and that of

the code context (number of code tokens) preceding the prediction

point. We randomly chose a project, antlr, in Community Corpus.

We varied the contexts’ sizes and measured in-vocabulary accuracy.

Figures 3 and 4 show accuracy with various sizes of either con-

texts. As seen, when increasing either context’s size, accuracy im-

proves. However, the impact on accuracy for the size of the change

context is higher when considering small sizes. For example, increas-

ing the change context’s size from 1 to 10, top-1 accuracy improves

34%, while increasing the code context’s size from 1 to 10, accuracy

improves only 3-5%. Thus, adding more changes to the context

helps connect better the changes in a high-level intent, leading to

higher accuracy. The increase is smaller when adding more code

tokens to the code context. When contexts’ sizes are greater than

15 (15 prior changes or tokens), accuracy improves only slightly

since the information needed to correctly recommend was sufficient.

Thus, we chose 10 as the default sizes for both contexts. This result

also shows that APIREC maintains reasonably high accuracy with

small sizes of contexts of prior changes and code tokens.

7.6 Sensitivity Analysis: Prediction Locations
Because APIREC is also based on the change context, i.e., prior

changes, selecting a prediction point among n changes in a transac-

tion might have impact on accuracy. Thus, we conducted another

experiment to measure that. We first chose a random project, JGit,

from the Community Corpus after training APIREC on the Large

Corpus. We chose a prediction point at three locations among n

changes in a transaction: the first quartile point l1 = ⌊n/4⌋ + 1,

the middle point l2 = ⌊n/2⌋ + 1, and the third quartile point l3 =

⌊3 ∗ n/4⌋ + 1. We followed the same procedure to measure top-k

accuracy. We used the in-vocabulary setting.

Table 9 shows the accuracy with different prediction locations.

As seen, accuracy slightly increases if we move the point to a later

Figure 4: Impact of Code Context’s Size on Accuracy

Table 9: Impact of Recommendation Points on Accuracy (%)

Location Top-1 Top-2 Top-3 Top-4 Top-5

1st quartile 64.18 75.10 77.69 80.20 82.17
middle point 64.24 75.27 77.70 80.26 82.20
3rd quartile 67.00 75.45 77.96 80.33 82.36

part of a transaction from 1st to 3rd quartile point. This is expected

because APIREC collects more prior changes in the change context.

7.7 Sensitivity Analysis: Training Data’s Size
We want to analyze the impact of the size of the training dataset of

fine-grained changes on accuracy with the test project, antlr, in the

Community Corpus. We built 6 training datasets by increasing their

sizes with additional projects in GitHub from 50 to 300 projects. We

ran APIREC for each dataset (Table 10). As seen, top-1 accuracy

increases from 57.3 to 58.6% with more training data. As expected,

larger training data sets perform better, however the improvements

are small. This shows that a minimum training set of 50 projects

produces good results. Results get stable when we use +300 projects.

7.8 Running Time
All experiments were run on a computer with Xeon E5-2620

2.1GHz (configured with 1 thread and 32GB RAM). The time com-

plexity is reported in Table 11. The training time is significant, but

training can be done off-line for our model. The recommendation

time is short (<1 second per recommendation), thus APIREC is

suitable to be interactively used in an IDE.

7.9 Threats to Validity
Our corpus in Java only might not be representative. For different

projects with different OOV rates, the results vary. For comparison,

we ran all approaches on the same dataset and measured IN accuracy.

We also evaluated the impact of OOV data (Section 7.4). We do not

have the tool in Raychev et al. [42] (it is not publicly available), but

we carefully followed the approach described in the paper.

The simulated procedure in our evaluation is not true editing. The

choice of the prediction point at the middle of a change transaction

could affect the accuracy as seen in Section 7.6. However, it is

representative as it achieves neither the best nor the worst accuracy.

The study on usefulness needs to involve human subjects, and will

be part of our future work. The results for JDK might be different for

other libraries. But APIREC is general for any library and language.

8. DISCUSSION

8.1 Limitations
Our approach also has shortcomings. First, out-of-vocabulary is

an issue. However, as seen, even with only 50 projects in the pres-

519



Table 10: Impact of Training Data’s Size on Accuracy (%)

Number of projects Top-1 Top-2 Top-3 Top-4 Top-5

DataSet-1 (50) 57.3 71.3 73.3 74.5 75.2
DataSet-2 (100) 57.7 71.4 73.7 74.5 75.3
DataSet-3 (150) 58.3 71.9 74.5 75.6 76.2
DataSet-4 (200) 58.5 72.7 75.0 75.8 76.6
DataSet-5 (250) 58.6 72.9 75.2 75.9 76.7
DataSet-6 (300) 58.6 73.0 75.3 75.9 76.8

Table 11: Performance

Cross Project Within Project

Storage 680 Mbytes 10 - 30 Mbytes

Training time 15 hrs (50 projs) 10 - 30 min

Recommendation time Avg 0.6 sec/change 0.2 sec/change
Max 2s/change 1 sec/change

ence of OOV, APIREC’s accuracy is high. Moreover, if trained with

sufficient data, APIREC performs better than existing approaches

(in-vocabulary accuracy). Second, using the file level as the scope

for transactions may also lead to a loss of accuracy. However, the

majority of change patterns appear in the same file [34]. In some

cases files may contain tangled changes: changes from multiple

tasks that are committed together [14]. This can introduce noise

while learning, as spurious changes would be associated with a pat-

tern. We also miss changes that span across files but are part of the

same pattern. Finally, we handle code context by finding the associ-

ations between code tokens in transactions. A potential alternative

is the combination between APIREC and a language model for code

(e.g., GraLan [35], cache model [52] or RNN LM [53]).

8.2 Implications
We group implications by three categories of audiences: develop-

ers, tool builders, and researchers.

Developers. APIREC is data-driven, so choosing the right train-

ing corpus is important. Our results suggest that training on the

Community Corpus leads to higher accuracy than when training on

a project. When training and testing on changes of one user, the ac-

curacy was between that of the Community Corpus and each project.

Even though the Project Edition results are not directly compara-

ble to the other two (because the user commits are fewer than the

projects), the results suggest that with a user-specific change history,

the user-trained model achieves better accuracy. The implication

is that users should obtain a community trained model, and then

further refine it with their own changes.

Tool Builders. Section 7.8 shows that a challenge when using

statistical learning recommenders is the long training time for the

model. The problem can be mitigated in different ways. First, the

community models can be trained by the tool vendors and offered

with the tool. Second, the user’s continuous integration server can

incrementally augment the community model each night with the

changes that the user committed during the day.

Researchers. Our paper, together with recent related work [1,34],

shows that fine grained code changes are highly repetitive. This

opens up new research topics in mining fine-grained changes. First,

researchers can mine changes to actively help developers during

development: code completion, dynamically learned refactorings,

record/replay of bug fixes, etc. Second, they can mine changes to

learn and develop theories on the nature of software change, such as

building catalogs of software change building blocks, incorporating

change patterns into atomic changes via language and IDE design,

predicting the changes required for a task, etc.

9. RELATED WORK
Code and API completion based on statistical language models.

Hindle et al. [16] use the n-gram model [26] on code tokens to show

that source code has high repetitiveness, and then use it to recom-

mend the next token. Tu et al. [52] enhance n-grams with caching of

recently seen tokens. Raychev et al. [42] and GraLan were explained

earlier. White et al. [53] applied RNN LM on code tokens to achieve

higher accuracy than n-gram. Mou et al. [32]’s tree-based convo-

lutional neural network is applied to source code to recommend

syntactic units. Allamanis et al. [4] use bimodal modeling for short

texts and code snippets. Maddison and Tarlow [24] use probabilistic

context free grammars and neural-probabilistic language models

for source code. NATURALIZE [1] learns coding conventions to

recommend identifier names and formatting conventions.

In comparison to those statistical approaches, APIREC has key

differences. First, they are based on the principle of code repetitive-

ness, while APIREC relies on the repetitiveness of fine-grained code

changes. Second, APIREC is tailored toward method invocation

recommendation including API calls. Other models, except GraLan

and Raychev et al. [42], are either for general tokens [16, 37, 52]

or for special-purpose recommendations (e.g. AST structures [24],

coding conventions [1], or methods/classes’ names [2]).

Code and API completion based on mined patterns. Bruch et

al. [7] propose best-matching neighbor algorithm for code comple-

tion that uses as features the set of API calls of the current variable

v and the names of the methods using v. The set features in the

current code is matched against those in the codebase. Grapacc [36]

mines patterns as graphs and matches them against the current code.

Robbes and Lanza [44] improve code completion using recent mod-

ified/inserted code during an editing session. We train our model on

change histories, rather than the editing changes in a session.

There exist other deterministic approaches to improve code com-

pletion and code search by using editing history [18, 22, 44], cloned

code [15], API examples, and documentation [8, 27, 28, 30, 31, 49],

structural context [17, 29], parameter filling [5, 54], interactive code

generation [39], specifications [43, 48], documentation [28], type

information [47], Feature Requests [51]. APIExplorer [9] leverages

structural relations between APIs to facilitate their discoverability.

10. CONCLUSION
This work is the first that leverages the regularity of fine-grained

code changes in the context of API code-completion. Whereas the

previous approaches used the regularity of idioms of code tokens,

in this paper, we address the problem of API method recommen-

dation by a statistical learning model that we train on fine-grained

code changes. When we mine these in a large corpus, the changes

belonging to higher-level intents will appear more frequently than

project-specific changes. Our thorough empirical evaluation shows

that APIREC improves over the state-of-the-art tools between 30–

160% for top-1 recommendations. It performs well even with a

one-time, minimal training dataset of 50 publicly available projects.

We found that training the model with the changes from individ-

uals achieves higher accuracy than training with changes in their

entire projects. Thus, the recommender could be trained from a

large corpus of community projects, and an individual user could

further refine the model with their own changes.

11. ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their con-

structive feedbacks. This work was supported in part by the US NSF

grants CCF-1553741, CCF-1518897, CNS-1513263, CCF-1413927,

CCF-1439957, CCF-1320578, and TWC-1223828.

520



12. REFERENCES
[1] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton. Learning

natural coding conventions. In Proceedings of the 22nd ACM

SIGSOFT International Symposium on Foundations of

Software Engineering, FSE’14, pages 281–293. ACM, 2014.

[2] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton. Suggesting

accurate method and class names. In Proceedings of the 10th

Joint Meeting on Foundations of Software Engineering,

ESEC/FSE’15, pages 38–49. ACM, 2015.

[3] M. Allamanis and C. Sutton. Mining source code repositories

at massive scale using language modeling. In Proceedings of

the 10th IEEE Working Conference on Mining Software

Repositories, MSR’13, pages 207–216. IEEE CS, 2013.

[4] M. Allamanis, D. Tarlow, A. Gordon, and Y. Wei. Bimodal

modelling of source code and natural language. In

Proceedings of the 32nd International Conference on Machine

Learning, ICML’15, pages 2123–2132. ACM, 2015.

[5] M. Asaduzzaman, C. K. Roy, S. Monir, and K. A. Schneider.

Exploring API method parameter recommendations. In

Proceedings of the IEEE International Conference on

Software Maintenance and Evolution, ICSME’15, pages

271–280. IEEE CS, 2015.

[6] C. Brindescu, M. Codoban, S. Shmarkatiuk, and D. Dig. How

do centralized and distributed version control systems impact

software changes? In Proceedings of the 36th International

Conference on Software Engineering, ICSE’14, pages

322–333. ACM, 2014.

[7] M. Bruch, M. Monperrus, and M. Mezini. Learning from

examples to improve code completion systems. In

Proceedings of the 7th Joint Meeting of the European

Software Engineering Conference and the ACM SIGSOFT

Symposium on the Foundations of Software Engineering,

ESEC/FSE ’09, pages 213–222. ACM, 2009.

[8] R. P. L. Buse and W. Weimer. Synthesizing API usage

examples. In Proceedings of the 34th International

Conference on Software Engineering, ICSE ’12, pages

782–792. IEEE CS, 2012.

[9] E. Duala-Ekoko and M. P. Robillard. Using structure-based

recommendations to facilitate discoverability in APIs. In

Proceedings of the 25th European Conference on

Object-oriented Programming, ECOOP’11, pages 79–104.

Springer-Verlag, 2011.

[10] E. Duala-Ekoko and M. P. Robillard. Asking and answering

questions about unfamiliar APIs: An exploratory study. In

Proceedings of the 34th International Conference on Software

Engineering, ICSE’12, pages 266–276. IEEE Press, 2012.

[11] Eclipse. www.eclipse.org.

[12] Eclipse code recommenders.

http://www.eclipse.org/recommenders/.

[13] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and

M. Montperrus. Fine-grained and accurate source code

differencing. In Proceedings of the 29th ACM/IEEE

International Conference on Automated Software Engineering,

ASE ’14, pages 313–324. ACM, 2014.

[14] K. Herzig, S. Just, and A. Zeller. It’s not a bug, it’s a feature:

How misclassification impacts bug prediction. In Proceedings

of the 35th International Conference on Software Engineering,

ICSE ’13, pages 392–401. IEEE Press, 2013.

[15] R. Hill and J. Rideout. Automatic method completion. In

Proceedings of the 19th IEEE international conference on

Automated software engineering, ASE ’04, pages 228–235.

IEEE CS, 2004.

[16] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On

the naturalness of software. In Proceedings of the 34th

International Conference on Software Engineering, ICSE’12,

pages 837–847. IEEE Press, 2012.

[17] R. Holmes and G. C. Murphy. Using structural context to

recommend source code examples. In Proceedings of the 27th

International Conference on Software Engineering, ICSE’05,

pages 117–125. ACM, 2005.

[18] D. Hou and D. M. Pletcher. An evaluation of the strategies of

sorting, filtering, and grouping API methods for code

completion. In Proceedings of the 27th IEEE International

Conference on Software Maintenance, ICSM ’11, pages

233–242. IEEE CS, 2011.

[19] Informer. http://javascript.software.informer.com/download-

javascript-code-completion-tool-for-eclipse-plugin/.

[20] Intellisense.

https://msdn.microsoft.com/en-us/library/hcw1s69b.aspx.

[21] E. T. Jaynes. Information theory and statistical mechanics.

Phys. Rev., 106:620–630, May 1957.

[22] M. Kersten and G. C. Murphy. Using task context to improve

programmer productivity. In Proceedings of the 14th ACM

SIGSOFT international symposium on Foundations of

software engineering, SIGSOFT ’06/FSE-14, pages 1–11.

ACM, 2006.

[23] R. Lau, R. Rosenfeld, and S. Roukos. Trigger-based language

models: a maximum entropy approach. In Proceedings of the

IEEE International Conference on Acoustics, Speech, and

Signal Processing, ICASSP’93, pages 45–48, 1993.

[24] C. J. Maddison and D. Tarlow. Structured generative models

of natural source code. In Proceedings of the 31st

International Conference on Machine Learning, ICML’14,

pages 649–657, 2014.

[25] D. Mandelin, L. Xu, R. Bodík, and D. Kimelman. Jungloid

mining: helping to navigate the API jungle. ACM SIGPLAN

Notices, 40(6):48–61, 2005.

[26] C. D. Manning and H. Schütze. Foundations of statistical

natural language processing. MIT Press, Cambridge, MA,

USA, 1999.

[27] C. McMillan, M. Grechanik, D. Poshyvanyk, C. Fu, and

Q. Xie. Exemplar: A source code search engine for finding

highly relevant applications. IEEE Transactions on Software

Engineering, 38(5):1069–1087, 2012.

[28] C. McMillan, D. Poshyvanyk, and M. Grechanik.

Recommending Source Code Examples via API Call Usages

and Documentation. In Proceedings of the 2nd International

Workshop on Recommendation Systems for Software

Engineering, RSSE’10, pages 21–25. ACM, 2010.

[29] N. Meng, M. Kim, and K. S. McKinley. Lase: locating and

applying systematic edits by learning from examples. In

Proceedings of the 35th International Conference on Software

Engineering, ICSE’13, pages 502–511. IEEE Press, 2013.

[30] A. Mishne, S. Shoham, and E. Yahav. Typestate-based

semantic code search over partial programs. In Proceedings of

the ACM International Conference on Object Oriented

Programming Systems Languages and Applications,

OOPSLA’12, pages 997–1016. ACM, 2012.

[31] E. Moritz, M. Linares-Vasquez, D. Poshyvanyk,

M. Grechanik, C. McMillan, and M. Gethers. Export:

Detecting and visualizing api usages in large source code

repositories. In Proceedings of the 28th International

Conference on Automated Software Engineering, ASE’13,

pages 646–651. IEEE CS, 2013.

521

http://www.eclipse.org/recommenders/


[32] L. Mou, G. Li, Z. Jin, L. Zhang, and T. Wang. TBCNN: A

tree-based convolutional neural network for programming

language processing. CoRR, abs/1409.5718, 2014.

[33] G. Murphy, M. Kersten, and L. Findlater. How are Java

software developers using the Elipse IDE? IEEE Software,

23(4):76–83, July 2006.

[34] S. Negara, M. Codoban, D. Dig, and R. E. Johnson. Mining

fine-grained code changes to detect unknown change patterns.

In Proceedings of the 36th International Conference on

Software Engineering, ICSE’14, pages 803–813. ACM, 2014.

[35] A. T. Nguyen and T. N. Nguyen. Graph-based Statistical

Language Model for Code. In Proceedings of the 37th

International Conference on Software Engineering - Volume 1,

ICSE’15, pages 858–868. IEEE Press, 2015.

[36] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, A. Tamrawi, H. V.

Nguyen, J. Al-Kofahi, and T. N. Nguyen. Graph-based

pattern-oriented, context-sensitive source code completion. In

Proceedings of the 34th International Conference on Software

Engineering, ICSE’12, pages 69–79. IEEE Press, 2012.

[37] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen.

A statistical semantic language model for source code. In

Proceedings of the 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE’13, pages 532–542. ACM

Press, 2013.

[38] S. Okur and D. Dig. How do developers use parallel libraries?

In Proceedings of the ACM SIGSOFT 20th International

Symposium on the Foundations of Software Engineering,

FSE’12, pages 54:1–54:11. ACM, 2012.

[39] C. Omar, Y. Yoon, T. D. LaToza, and B. A. Myers. Active

code completion. In Proceedings of the 34th International

Conference on Software Engineering, ICSE’12, pages

859–869. IEEE, 2012.

[40] M. Piccioni, C. A. Furia, and B. Meyer. An empirical study of

API usability. In Proceedings of the 2013 ACM/IEEE

International Symposium on Empirical Software Engineering

and Measurement, ESEM’13, pages 5–14. IEEE, 2013.

[41] B. Ray, M. Nagappan, C. Bird, N. Nagappan, and

T. Zimmermann. The uniqueness of changes: characteristics

and applications. In Proceedings of the 12th Working

Conference on Mining Software Repositories, MSR’15, pages

34–44. IEEE Press, 2015.

[42] V. Raychev, M. Vechev, and E. Yahav. Code completion with

statistical language models. In Proceedings of the 35th ACM

SIGPLAN Conference on Programming Language Design and

Implementation, PLDI’14, pages 419–428. ACM, 2014.

[43] S. P. Reiss. Semantics-based code search. In Proceedings of

the 31st International Conference on Software Engineering,

ICSE ’09, pages 243–253. IEEE CS, 2009.

[44] R. Robbes and M. Lanza. How program history can improve

code completion. In Proceedings of the International

Conference on Automated Software Engineering, ASE’08,

pages 317–326. IEEE CS, 2008.

[45] M. P. Robillard. What makes APIs hard to learn? answers

from developers. IEEE Software, 26(6):27–34, 2009.

[46] R. Rosenfeld. A maximum entropy approach to adaptive

statistical language modelling. Computer Speech and

Language, 10(3):187–228, July 1996.

[47] A. A. Sawant and A. Bacchelli. A dataset for API usage. In

Proceedings of the 12th IEEE/ACM Working Conference on

Mining Software Repositories, MSR’15, pages 506–509.

IEEE, 2015.

[48] K. T. Stolee and S. Elbaum. Toward semantic search via SMT

solver. In Proceedings of the 20th ACM SIGSOFT

International Symposium on the Foundations of Software

Engineering, FSE’12, pages 25:1–25:4. ACM, 2012.

[49] S. Subramanian, L. Inozemtseva, and R. Holmes. Live API

documentation. In Proceedings of the 36th International

Conference on Software Engineering, ICSE’14, pages

643–652. ACM, 2014.

[50] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang. Towards more

accurate retrieval of duplicate bug reports. In Proceedings of

the 26th IEEE/ACM International Conference on Automated

Software Engineering, ASE ’11, pages 253–262. IEEE CS,

2011.

[51] F. Thung, S. Wang, D. Lo, and J. Lawall. Automatic

recommendation of API methods from feature requests. In

Proceedings of the 28th IEEE/ACM International Conference

on Automated Software Engineering, ASE’13, pages 290–300.

IEEE, 2013.

[52] Z. Tu, Z. Su, and P. Devanbu. On the localness of software. In

Proceedings of the 22nd Symposium on Foundations of

Software Engineering, FSE’14, pages 269–280. ACM Press,

2014.

[53] M. White, C. Vendome, M. Linares-Vasquez, and

D. Poshyvanyk. Toward deep learning software repositories.

In Proceedings of the 12th IEEE Working Conference on

Mining Software Repositories, MSR’15, pages 334–345. IEEE

CS, 2015.

[54] C. Zhang, J. Yang, Y. Zhang, J. Fan, X. Zhang, J. Zhao, and

P. Ou. Automatic parameter recommendation for practical

API usage. In Proceedings of the 34th International

Conference on Software Engineering, ICSE’12, pages

826–836. IEEE Press, 2012.

522


	Introduction
	Motivating Example
	Definitions
	API Call Completion
	Fine-grained Atomic Code Changes
	Change Context and Code Context

	Change Inference Model
	Model Overview
	Details on Model Computation
	Computing Score(c,C)
	Computing Score(c,T)


	Training and Recommendation
	Learning Change and Code Co-occurrences
	API Call Recommendation

	Empirical Methodology
	Corpora
	Evaluation Setup
	Procedure, Metrics, and Settings

	Empirical Results
	Accuracy: Community Edition
	Accuracy Comparison for General API calls
	Accuracy Comparison for JDK

	Accuracy: Project Edition
	Accuracy: User Edition
	Sensitivity Analysis: Out-Of-Vocabulary Data
	Sensitivity Analysis: Change Context and Code Context
	Sensitivity Analysis: Prediction Locations
	Sensitivity Analysis: Training Data's Size
	Running Time
	Threats to Validity

	discussion
	Limitations
	Implications

	Related Work
	Conclusion
	Acknowledgements
	References

