Bipartite Perfect Matching Benchmarks

Cayden R. Codel, Joseph E. Reeves, Marijn J. H. Heule, and Randal E. Bryant

Carnegie Mellon University
Introduction

The pigeonhole and mutilated chessboard problems are challenging benchmarks for most SAT solvers.

Some solvers employ special techniques that efficiently solve the canonical versions of these two problems.

We extend the problems with randomized constructions and various encodings to evaluate specific solvers and encourage robust implementations.

We also explore the impact of symmetry-breaking within this problem space.
Bipartite Problems and Encodings

Random Bipartite Graphs

Symmetry-breaking
Pigeonhole Problem (PHP)

- Place $n + 1$ pigeons into n holes
- Fully connected $K_{n,n+1}$
- Resolution proofs exponential
Mutilated Chessboard Problem (MChess)

- Tile an $n \times n$ board missing corners
- Partition black and white squares
- Dominoes are edges
- Resolution proofs exponential

Joseph Reeves
Random Bipartite Graphs

- Start with random spanning tree (black) on $n \times m$ partitions.
- Add edges (red) to desired density $density = \frac{\text{#edges}}{n \times m}$.
- Cardinality $(n - m)$ set to 1 for experiments.
Encoding as a CNF

ALO \((n_2) \) \(e_{2,5} \lor e_{2,6} \lor e_{2,7} \)

- Satisfying assignment is edges in perfect matching
- At Least One (ALO)
- At Most One (AMO) - Pairwise, Sinz, Linear
- **Sparse**, ALO larger partition, AMO smaller partition (PHP)
- **Full**, ALO, AMO both partitions (redundant clauses)
Solvers

Kissat
- State-of-the-art CDCL solver
- Not especially tuned for these problem instances

Lingeling
- CDCL solver with focus on pre-processing
- Built-in cardinality resolution
- Similar tools found in SAT4J

SaDiCaL
- Satisfaction-driven clause learner
- Learns PR clauses based on “positive reducts”
- Hand-crafted PHP and MChess proofs

PGBDD
- Binary Decision Diagram (BDD)-based solver generating extended resolution proofs
- Hand-crafted schedules for PHP and MChess
- *Bucket elimination* for automatic solving

PGBDD-Sched
- Extends PGBDD with automation
- Generates variable and bucket orderings (schedules)
- Specific to grid structure of the Sinz encoding
Bipartite Problems and Encodings

Random Bipartite Graphs

Symmetry-breaking
Kissat on Random Bipartite Graphs with 130 Edges

- 900 second timeout, 1800 second PAR-2
- Averaged over 60 seeds
- Sparse and Full encodings grouped together
- Mixed generally worse
- Pairwise-Full problem at higher density
Sparse encodings do terrible
Mixed generally better for Full encodings
Pairwise-Sparse with $density = 1$ is PHP
Lingeling on Random Bipartite Graphs with 140 Edges

- Absent experiments similar to Linear-Sparse
- Mixed and Sinz not detected in pre-processing
- AMO encodings grouped together, not Sparse and Full like Kissat, i.e., resistant to redundant clauses
PGBDD on Random Bipartite Graphs with 90/140 Edges

- Difference in edge count shows PGBDD general weakness
- A little information (variable or schedule ordering) helps a lot
- Best solver performance on mid range densities at 140 edges
Bipartite Problems and Encodings

Random Bipartite Graphs

Symmetry-breaking
Symmetry Breaking Clauses in Bipartite Graphs

\[\overline{e}_{2,7} \lor \overline{e}_{3,6} \] disallows the red matching in place of the blue matching

Joseph Reeves
Symmetry-breaking clauses help **Kissat** but hurt **SaDiCal**

- Does little for brute-force approach of **PGBDD**
Conclusion and Future Work

Structured benchmark generators can be useful in evaluating and improving special purpose solvers

Future Work:

▶ Implement harder benchmarks for improving general solver performance
▶ Evaluate different types of symmetry-breaking clauses and their relation to PR clauses used in SaDiCAL
▶ Extend PGBDD-SCHED to other problem domains that contain some underlying graph structure
AMO Encodings

Pairwise

AMO\((x_1, ..., x_n)\) is encoded as the conjunction of \((\overline{x}_i \lor \overline{x}_j)\) with \(1 \leq i < j \leq n\)

Sinz - introduce signal variables that propagate the AMO condition

\[
\overline{x}_i \lor s_i \quad \text{for } 1 \leq i \leq n \quad \overline{s}_i \lor s_{i+1}, \quad \overline{s}_i \lor \overline{x}_{i+1} \quad \text{for } 1 \leq i < n
\]

Linear - introduce variables to split up Pairwise encoding when \(n > 4\)

Pairwise\((x_1, x_2, x_3, y) \land AMO(\overline{y}, x_4, .., x_n)\)