TaSSAT: Transfer and Share SAT*

Md Solimul Chowdhury ◇, Cayden R. Codel ◇, and Marijn J. H. Heule ◇

Carnegie Mellon University, Pittsburgh, PA, USA
{mdsolimc,ccodel,mheule}@cs.cmu.edu

Abstract. We present TaSSAT, a powerful local search SAT solver that effectively solves hard combinatorial problems. Its unique approach of transferring clause weights in local minima enhances its efficiency in solving problem instances. Since it is implemented on top of YalSAT, TaSSAT benefits from practical techniques such as restart strategies and thread parallelization. Our implementation includes a parallel version that shares data structures across threads, leading to a significant reduction in memory usage. Our experiments demonstrate that TaSSAT outperforms similar solvers on a vast set of SAT competition benchmarks. Notably, with the parallel configuration of TaSSAT, we improve lower bounds for several van der Waerden numbers.

Keywords: Local Search for SAT · Weight Transfer · Memory Efficiency

1 Introduction

The SAT problem asks if there exists a satisfying truth assignment for a given formula in propositional logic. SAT is known to be intractable [10], but modern SAT solvers, particularly conflict-driven clause learning (CDCL) solvers, have made significant progress in solving large formulas from various application domains. When it comes to combinatorial problems, stochastic local search (SLS) solvers are often more effective than CDCL. Because SLS and CDCL solvers have complementary strengths, some SAT solvers like Kissat [7] and CryptoMiniSAT [16] combine SLS and CDCL techniques, and SLS methods play a key role in shaping the capabilities of modern SAT solvers.

SLS solvers explore truth assignments by flipping the truth value of individual variables until a solution is found or until timeout. The solver generally tries to flip variables that will minimize the number of falsified clauses. When a solver determines that no variable flip will lead to an improvement according to some heuristic or metric, it has reached a local minimum.

To escape local minima, the solver can either make random flips or adjust its internal state until improvement is possible. Despite being an effective family of algorithms for escaping local minima, Dynamic Local Search (DLS) has attracted

* The authors were supported by NSF grant CCF-2229099. Md Solimul Chowdhury was partially supported by a NSERC Postdoctoral Fellowship.
limited attention in the recent years. DLS algorithms assign weights to clauses, search to find a solution by minimizing the total amount of weight held by falsified clauses, and adjust these weights in local minima as a means of escaping them.

The tool we present in this paper is ultimately based on DDFW [15] (divide and distribute fixed weights), a DLS algorithm that dynamically transfers weight from satisfied to falsified clauses along neighborhood relationships in local minima. DDFW is remarkably effective at solving hard combinatorial problems, such as matrix multiplication [13], graph coloring [12], edge matching [11], the coloring of the Pythagorean triples [14], and finding bounds for van der Waerden numbers [3]. Notably, DDFW solves satisfiable instances of the Pythagorean triples problem in under a minute, whereas CDCL solvers take CPU years.

In this paper, we introduce Transfer and Share SAT (TaSSAT), a novel parallel SLS solver. TaSSAT implements LiWeT, a simplification of the algorithm from our recent work [9] modifying DDFW. Our implementation of TaSSAT is built on top of a leading SLS solver YalSAT [5], and it adds two new features. First, it incorporates the weight-transfer methods from LiWeT, leading to more efficient solving. Specifically, a new weight-transfer parameter allows TaSSAT to shift more clause weight in local minima, enhancing its adaptability during the search. Second, TaSSAT’s parallel mode shares data structures among threads to reduce its memory footprint by up to 80%.

Our results show that TaSSAT substantially outperforms YalSAT on an extensive benchmark set of 5355 anniversary instances from the 2022 SAT Competition. Further, TaSSAT’s parallel version improves the lower bounds for nine van der Waerden numbers, surpassing prior work by Ahmed et al. [3] that used 29 algorithms (including DDFW) and extensive parallelization. Our results demonstrate the clear algorithmic and practical improvements of TaSSAT.

2 Preliminaries

A SAT formula in conjunctive normal form (CNF) is a conjunction of clauses, each of which is a disjunction of literals (Boolean variables or their negations). A clause C is satisfied by a truth assignment α if α satisfies at least one of its literals, and is otherwise falsified. A formula F is satisfied by α when all of its clauses are. Clauses C and D are neighbors if they share a common literal.

In DLS, clauses are assigned weights, denoted as $W : C \rightarrow \mathbb{R}_{\geq 0}$, representing the cost of leaving a clause falsified. The total weight of the falsified clauses is the falsified weight. Variables that reduce the falsified weight when flipped are called weight-reducing variables, while those that do not impact the falsified weight when flipped are called sideways variables.

DDFW starts with a random initial truth assignment and sets all clause weights to parameter w_0 ($w_0 = 8$ in the original paper [15]). It then flips weight-reducing variables until none remain. Upon reaching a local minimum, DDFW randomly chooses between making a sideways flip (if possible, and with a 15% chance) or entering the weight transfer phase. During weight transfer, each falsi-
The Weight Transfer Algorithm

TaSSAT takes ideas from DDFW and distills them into an algorithm called LiWeT (Linear Weight Transfer), which is a simplification of our prior work [9]. LiWeT uses a novel linear weight transfer rule to determine how much weight to move in local minima. The rule takes three parameters: currpct, a multiplier on the current clause’s weight; basepct, a multiplier on the initial weight \(w_0 \); and initpct, a multiplier for clauses with exactly \(w_0 \) weight. For most clauses \(C_s \), the amount of weight that is transferred is \(\text{currpct} \cdot W(C_s) + \text{basepct} \cdot w_0 \). For clauses with \(W(C_s) = w_0 \), the amount taken is \(\text{initpct} \cdot w_0 \). As a result, initpct controls how much weight is initially taken from a clause.

The weight transfer rule offers two key advantages. First, the use of floating-point parameters rapidly establishes distinct weights for clauses, eliminating the need for tie-breaking near local minima and, consequently, explicit sideways flips. Second, the initpct parameter enables LiWeT to release a larger proportion of the total clause weight, enhancing its adaptability to challenging formulas. In DDFW and LiWeT, maximum-weight neighbors are selected for each falsified clause within local minima. Clauses with weights less than \(w_0 \) are unlikely to contribute more weight, artificially reducing the total amount of weight LiWeT can move around. The initpct parameter prevents this from happening.

LiWeT differs from DDFW in one other respect: in local minima, it increases the probability of choosing a randomly satisfied clause, rather than a maximum-weight neighbor, to 10%. We found that this improves overall performance.

Algorithm 1 shows LiWeT’s pseudocode.
Algorithm 1: The LiWeT algorithm

```plaintext
Input: CNF formula F, w₀, initpct, basepct, currpct
Output: Satisfiability of F
1. W(C) ← w₀ for all C ∈ F
2. α ← random truth assignment on the variables in F
3. for 1 to MAXFLIPS do
4.   if α satisfies F then return “SAT”
5.   else
6.     if a weight reducing variable is available then
7.         flip the variable that reduces the falsified weight the most
8.     else
9.         foreach clause C ∈ F falsified under α do
10.        Cₛ ← select a satisfied clause
11.        if W(Cₛ) = w₀ then w ← initpct · w₀
12.        else w ← currpct · W(Cₛ) + basepct · w₀
13.        transfer w from Cₛ to C
14. return “No SAT”
```

To determine the effect of the three parameters, we conducted parameter searches across them. We ranged basepct ∈ [0, 0.3], currpct ∈ [0, 0.2], and initpct ∈ [0, 1.0] with increments of 0.1, 0.05 and 0.2, respectively. Our searches were done on a combined 168 instances from the 2019 SAT Race and the 2021 and 2022 SAT competitions, each with a 900-second timeout. We picked these instances because they were solved by previous versions of LiWeT and DDFW, and thus were less likely to result in timeout.

Figure 1 shows the PAR-2 scores for two parameter searches, where a lower score indicates better performance. The left plot shows that TaSSAT performs better with higher values of both basepct and currpct when initpct = 1. The optimal configuration is (basepct, currpct) = (0.175, 0.075). The right plot shows that LiWeT performs best when initpct = 1 for any basepct value when currpct = 0. This suggests that taking all weight from satisfied clauses early in the search is crucial for better performance. We ran all subsequent TaSSAT experiments with (initpct, basepct, currpct) = (1, 0.175, 0.075).

We conclude this section by outlining the distinctions between the algorithm presented in [9] and LiWeT, underscoring the simplifications introduced in the latter compared to the former. Compared to the algorithm from our previous work [9], LiWeT has two fewer parameters. Previously, the algorithm used two pairs of (a, c) parameters to transfer a * W(Cₛ) + c weight from satisfied clauses Cₛ in local minima. One pair of (a, c) values was used when W(Cₛ) > w₀, and the other for when W(Cₛ) = w₀. In LiWeT, we replaced the second pair with initpct. Then based on the observation in the right plot of Figure 1, we set

1 The PAR-2 score is defined as the average solving time, with twice the timeout as the time for unsolved instances.
initpct to 1 for performance reasons. This adjustment eliminates initpct from line 11 of Algorithm 1, transforming it into a two-parameter algorithm.

Another simplification was the removal of sideways variable flips from LiWeT. DDFW and previous versions of our algorithm would flip sideways variables, but we found that they rarely occurred with floating-point weights, and refusing to flip them didn’t affect performance. Notably, these simplifications enhance the algorithmic power of LiWeT over the previous algorithm, which we demonstrate in section 5.

4 Implementation of TaSSAT and PaSSAT

We implemented TaSSAT on top of YalSAT [6], a state-of-the-art SLS solver that implements the ProbSAT algorithm [4]. As a result, our implementation benefits from the practical techniques present in YalSAT, including restart techniques. Our TaSSAT implementation\(^2\) includes a parallel version, called PaSSAT, that improves the memory management of the parallel version of YalSAT.

Because LiWeT is computationally expensive when there are a higher number of falsified clauses, TaSSAT has an optional mode to run ProbSAT until the number of falsified clauses drops beneath a dynamically computed threshold based on the formula’s size, at which point it resumes LiWeT. By default, we ran TaSSAT with this option disabled in our experiments, but we enabled it for the van der Waerden experiments.

We also improve on the parallel features in YalSAT. The main issue in the parallel version of YalSAT was that the formula data structures were not shared. As a result, each thread had to independently parse, store, and simplify the input formula, resulting in redundant computation and a bloated memory footprint. We solved this problem in PaSSAT by nominating a primary thread to parse and simplify the formula and to allocate the core data structures. Once the primary thread finishes, it hands solving off to the secondary threads, which can then jointly refer to the shared data structures.

5 Evaluation

We now present our experimental results\(^3\) of TaSSAT against similar algorithms. Our baseline solvers are the original YalSAT (YalSAT-Prob); our DDFW-inspired, YalSAT-based solver from previous work [9] (YalSAT-Lin); a YalSAT-based implementation of DDFW (YalSAT-DDFW); and the UBCSAT implementation of DDFW (UBCSAT-DDFW). We include two DDFW implementations to check that the YalSAT version performs similarly to the UBCSAT one, despite being implemented with a different base solver.

We ran these four solvers on two benchmark sets: a set of 5355 instances from the 2022 SAT Competition’s anniversary track (the anni set) [1] covering instances from the previous 20 years of competition, and a set of nine van

\(^2\) TaSSAT source code is available at https://github.com/solimul/tassat.

\(^3\) Details are available at https://github.com/solimul/TACAS-24-solve_details.
der Waerden number instances. For reproducibility, we set all randomization seeds to 0. For the anni instances, we ran TaSSAT and our baseline solvers in the StarExec Cluster [2] with a 5000-second timeout. For the van der Waeren instances, we ran the parallel version of TaSSAT with and without the ProbSAT-LiWeT option with a 48-hour timeout on the Bridges-2 cluster [?] with AMD EPYC 7742 CPUs (128 cores, 512GB RAM).

Figure 2 illustrates our results for the anni dataset. TaSSAT performed the best by solving 1040 problem instances, surpassing YalSAT-Lin, UBCSAT-DDFW, YalSAT-DDFW, and YalSAT-Prob with 969, 874, 859, and 857 solved instances, respectively. In particular, TaSSAT solved 71 more instances than YalSAT-Lin, the solver from our previous work, showing that our algorithmic changes are, in fact, improvements. The slight difference in solve counts between UBCSAT-DDFW and YalSAT-DDFW (874 vs. 859) can be attributed to random noise.

Notably, TaSSAT exclusively solved 12 instances that no 2022 SAT Competition solver could. However, YalSAT-Prob, YalSAT-Lin, UBCSAT-DDFW, and YalSAT-DDFW solved 73, 42, 40, and 38 anni instances, respectively, that TaSSAT could not.

We also present new lower bounds for van der Waerden numbers by running PaSSAT. The van der Waerden number $w(2; 3, t)$ is the smallest natural number n
Table 1: Lower bounds for van der Waerden numbers $w(2; 3, t)$.

<table>
<thead>
<tr>
<th>t</th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
<th>38</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahmed et al. [3]</td>
<td>930</td>
<td>1006</td>
<td>1063</td>
<td>1143</td>
<td>1204</td>
<td>1257</td>
<td>1338</td>
<td>1378</td>
<td>1418</td>
</tr>
<tr>
<td>Our work</td>
<td>953</td>
<td>1011</td>
<td>1071</td>
<td>1145</td>
<td>1208</td>
<td>1260</td>
<td>1341</td>
<td>1380</td>
<td>1419</td>
</tr>
</tbody>
</table>

where for any partition of $\{1, \ldots, n\}$ into P_0 and P_1, either P_0 contains a 3-term arithmetic progression or P_1 contains a t-term arithmetic progression. In Table 1, we present in the top row previously-known lower bounds for $w(2; 3, t)$ for $31 \leq t \leq 39$.

The best lower bounds are obtained when PaSSAT leverages TaSSAT with the activation of the ProbSAT-LiWeT toggle and integrates YalSAT-style restarts. This configuration solves all 9 vdw benchmarks, pushing the lower bounds of these 9 numbers to values that are highlighted in the bottom row of Table 1. In contrast, using the default TaSSAT configuration, PaSSAT solves 7 vdw benchmarks, establishing same lower bounds for all the numbers shown in the bottom row of Table 1, except for $w(2; 3, 32)$ and $w(2; 3, 37)$. Hence, this version enhances the lower bounds for $w(2; 3, 32)$ and $w(2; 3, 37)$ to 1010 and 1340, respectively, just 1 short of their best-evaluated lower bounds. The performance of TaSSAT-Prob-LiWeT compared to TaSSAT-LiWeT is evident in their respective average PAR-2 scores, with values of 31,943 and 91,744.

Putting these results into perspective, Ahmed et al. [3] were unable to solve any of these vdw instances, despite employing 29 algorithms and extensive parallelization. Notably, the best result attained by Ahmed et al. using only SLS methods for $w(2; 3, 31)$ was 919. We improved this bound to 953. These results emphasize the unique algorithmic strengths of our solver.

In addition to improved solving, PaSSAT achieves significant memory reduction compared to our previous parallel solver [9]. Across the seven vdw benchmarks solved by both PaSSAT and the parallel solver, the average memory reduction is substantial, decreasing from 3.2 GB to 686.17 MB, a nearly 80% reduction. The reduction held even for the largest problem instance ($t = 39$), where the memory footprint decreased by nearly 80%, from 4.42 GB to 966 MB.

Code and Data Availability Statement

The code and data that support the contributions of this work are openly available in the “Artifact for TaSSAT: A Stochastic Local Search Solver for SAT” at https://zenodo.org/records/10042124 [8]. The authors confirm that the data supporting the findings of this study are available within the article and the artifact.
References