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—— Abstract

We present a lightweight reencoding technique that augments propositional formulas containing
implicit or explicit exactly-one constraints with auxiliary variables derived from the order encoding.
Our approach is based on the observation that many formulas contain clauses where each literal
appears only in that clause, and that these unique literal clauses can be replaced by the corresponding
sequential counter encoding of exactly-one constraints, which introduces the same variables as the
order encoding. We implemented the reencoding in the state-of-the-art SAT solver CaDiCal with
support for proof logging and solution reconstruction. Experiments on SAT Competition benchmarks
demonstrate that our technique enables solving dozens of additional formulas. We found that shuffling
a formula before reencoding harms performance. To mitigate this issue, we introduce a method that
sorts literals within clauses based on the formula structure before applying our reencoding. The
same technique also predicts whether reencoding is likely to yield improvements.
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1 Introduction

When encoding combinatorial problems into propositional logic, it is often necessary to encode
the selection of an object from a set. The direct encoding handles this with one propositional
variable per object, which is true if that object is selected, along with a clause enforcing that
one of these variables must be true. A potential disadvantage of the direct encoding is that it
does not contain variables to facilitate reasoning about multiple objects simultaneously. For
example, it could be beneficial to have a variable that indicates whether an object in the first
half of the set is selected (using some ordering). If this variable is assigned to false, then the
solver knows that the selected object needs to be in the second half. Other encodings, such
as the sequential counter encoding [28] and the order encoding [30], include such variables.
This paper presents a lightweight reencoding method that incorporates these variables by
replacing specific clauses to enhance solver performance across various benchmarks.

It is well-known that auxiliary variables in proofs could reduce their size exponentially [31].
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The impact of auxiliary variables in formulas has been less studied. However, the variables
that we introduce are used in the order encoding, which improves solver performance on a
range of problems [1,8,10,24,29]. Moreover, the award-winning CSP solver Sugar employs the
order encoding [30]. Introducing new variables tends to reduce propagation speed, thereby
offsetting potential gains. Hence, ideally, the order variables should only be introduced when
they provide a tangible benefit.

While automatically reencoding problems can be challenging, direct encodings for object
selection constraints are typically easy to detect: the literal that expresses that an object is
selected occurs only once in the formula. We exploit this property by searching for unique
literal clauses (ULCs), that is, clauses containing only literals that do not appear elsewhere in
the formula. We will show later that ULCs express either implicit or explicit EXACTLYONE
constraints. Whenever we find a ULC, we can reencode the involved part of the formula to
turn the direct encoding into the sequential counter or order encoding.

To make this transformation effective, two additional steps are required. First, many
formulas contain pairs of ULCs with complementary literals. We resolve these pairs to obtain
longer ULCs and to simplify the reencoding process. Second, it is critical to sort the literals
in ULCs in a way that respects the structure of the formula. We introduce the concept of
aligning ULCs so that the newly introduced order variables have a meaningful interpretation.
We observed that when ULCs cannot be aligned, the reencoding can be harmful.

Existing work on reencoding propositional formulas focuses on reducing the size of the
formula by introducing new variables [13,20,26]. In contrast, our reencoding increases the
size of the formula, although it may be reduced because certain clauses become redundant.
The closest related work is by Manthey and Steinke [21], who also propose transforming the
direct encoding into the sequential counter encoding. They detect direct encodings of explicit
EXACTLYONE constraints rather than ULCs to guarantee a reduction in formula size. Due
to a small-scale evaluation that showed limited impact on performance, it is unclear whether
their approach is effective.

Experiments show that our reencoding strategy, implemented in the state-of-the-art solver
CaDiCalL [5], solves substantially more formulas from the 2022 SAT Competition Anniversary
Track. The introduction of meaningful order variables is the key component of our technique.

2 Encodings

In this section, we describe the three encodings of the EXACTLYONE constraint that are
relevant to this paper. The constraint EXACTLYONE ({1, ..., ¢x) requires that exactly one of
the literals ¢1, ..., ¢ is assigned to true.

2.1 Direct Encoding

The direct encoding of EXACTLYONE (¢4, ..., #) splits the constraint into ATLEASTONE
(01,...,¢;) and ATMOSTONE ({1,...,%;), where the former is just a clause and the latter
blocks any pair of these literals from both being true.:

(Lvve) A N GV
1<i<j<k

Note that the number of binary clauses is quadratic in k.

If the literals ¢4, ..., ¢, do not occur in other clauses, the binary clauses can be omitted
while preserving satisfiability. In that case, we call it an implicit EXACTLYONE constraint.
If all binary clauses are present, we call it an explicit EXACTLYONE constraint.



A. Sheng, J.E. Reeves, and M.J.H. Heule

2.2 Sequential Counter Encoding

The sequential counter encoding by Sinz [28] facilitates a compact representation of cardinality
constraints. The method works for arbitrary cardinality constraints and uses auxiliary
variables s; ; expressing that out of the first ¢ literals, exactly j are true. Since we focus on
the EXACTLYONE constraint, we only use variables with 7 = 1 and therefore drop the second
index. For this restricted case, the encoding uses the following definitions: s; +> (s;—1 V £;)
for 1 < i < k and s; <> ¢1. Additionally, to enforce that at most one can be true, the clauses
5;_1 V {; are included for 1 < i < k. Finally, at least one of them must be true, which is
encoded as follows: 5_1 — €.

» Example 1. Consider the constraint EXACTLYONE ({1, {2, ¢3). The sequential counter
encoding uses the following clauses:

(81 \/?1) A\ (51 \/El) A (gg \Y S1 \/42) N (82 \/51) N (82 \/22) N (51 \/ZQ) N (52 \/23) A\ (52 \ 63)
——

514301 si¢>(si—1VE;) i 1VE; Sp—1—lk

For our reencoding technique, we will replace a clause (€1 V - -V £y) if it represents an
implicit or explicit EXACTLYONE constraint with the sequential counter encoding shown
above. Note that the reencoding replaces one clause by roughly 3k clauses. However, clauses
of the form (¢; V £;) become redundant and will therefore be removed if present.

2.3 Order Encoding

The order encoding [30] uses order variables o<; with 1 < < k to express if one of ¢1,...,¥;
is true. To state that ¢; is true using only order variables, o<; must be true, while o<;_;
must be false. The case for ¢; is special: ¢; is true if and only if o<; is true. When

encoding EXACTLYONE, the case ¢}, is also special: ¢ is true if and only if o<y is false.

The order encoding uses the following clauses 0<; V 0<;11 stating that if one of the first ¢
literals is true, then one of the first i 4+ 1 is true.
The order encoding eliminates the x; variables by replacing all their occurrences with
o<; variables. More specifically,
all literals ¢1, 41, £), and £, are replaced by o<1, 0<1, 0<k—1, and o<j_1, respectively.
all literals ¢; with 1 < ¢ < k are replaced by 0<i—1 V 0<;.
all clauses with literals ¢; with 1 < i < k are duplicated with one copy using 0<;_; and
the other copy using o<; instead of ¢;.

» Example 2. For the order encoding of a graph-coloring problem with graph G = (V, E)
and k colors, let v<; denote whether vertex v has color at most ¢. The clauses are:

For each v € V: (ﬁgl V USQ) AN (ﬁgg \Y 'USS) VARERIVAN (@Sk,Q \Y ’ngfl)

For each (u,v) € E: (<1 VU<1) A (u<1 V<o Vo<1 VT<2) Ao A (U<ip—1 V U<i—1)
Note that for larger &, the clauses of length four will outnumber the binary clauses.

Transforming the direct encoding of EXACTLYONE into the sequential counter encoding
is simple: replace the clauses that encode the constraint. The remaining part of the formula
is unaltered. Now, observe that transforming from the sequential counter encoding into the
order encoding is also easy: eliminate the original variables using variable elimination (also
known as DP resolution). To see this, note that the s; variables of the sequential counter
encoding map to the o<; variables of the order encoding.

14:3
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3 Reencoding

In this section, we describe the theoretical foundation of our reencoding method. Our method
focuses on introducing meaningful auxiliary variables that help the solver. We aim to achieve
this by allowing the solver to reason about multiple objects simultaneously. We first describe
the pattern that we use to detect a reencoding opportunity. Afterward, we merge these
patterns when possible to increase effectiveness. Finally, we sort the literals to provide more
meaningful variables.

3.1 Unique Literal Clauses

The key building block of our reencoding method is the notion of unique literal clauses, which
is defined below.

» Definition 3. A clause C is a unique literal clause (ULC) with respect to a formula " if
none of the literals ¢ € C' occurs in T'\ {C'}.

Given a formula I', the set of ULCs can be computed in linear time in the size of I' by
first computing which literals occur only once in I' and then determining which clauses only
contain such literals.

» Lemma 4. Given a formula I and a« ULC C € T, if I' is satisfiable, then it can be satisfied
with exactly one literal in C assigned to true.

Proof. Let 7 be a satisfying assignment of I', then 7 must satisfy at least one literal in C.
Then, we flip assignments to variables in C until there is only one satisfied literal in it. Since
each literal in a ULC is unique in I', each flip cannot falsify any satisfied clause. <

An alternative argument showing Lemma 4 is that for a ULC (¢1 V --- V £), the formula
can be extended with all binary clauses (Zi \% Zj) for 1 < i < j < k using blocked clause
addition [19]. These binary clauses enforce that at most one literal of the ULC can be true.

To transform the direct encoding into the sequential counter encoding, ULC (¢1V .-V ¢y)
and all present binary clauses (¢; V Zj) for 1 <i < j < k are replaced by the definitions
of the auxiliary variables, s; <> ¢; and s; <> (s;—1 V ¢;) with 1 < i < k, together with the
at-most-one clauses (3;_1 V ;) with 1 <4 < k and the at-least-one clause (s3_1 V ).

Alternatively, one could reencode the direct encoding into the order encoding. This would
eliminate the ULC (¢1 V- --V ¢x) and replace the literals 01, ..., 0 by literals of new variables

0<1,...,0<k—1 that are inspired by the order encoding:
gl = 0<1
giEOSifl V o< forl<i<k
b = o<k

Again, binary clauses (¢; \/Zj) in I" would become redundant after the reencoding and should
be discarded. An optional extension of the reencoding is the addition of the order clauses
(0<i—1 V 0<;) for 1 < i < k. Typically, adding these order clauses improves performance.

3.2 Clashing ULCs

To maximize the effectiveness of the reencoding, the ULCs should be as large as possible. Also,
we want to reencode all ULCs above a size threshold. Since original variables occur positively
and negatively in the definition clauses of the sequential counter encoding, reencoding one
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ULC may break the ULC property of another clause. We achieve both objectives by resolving
“clashing” ULCs.

» Definition 5. Two unique literal clauses C and D are said to clash (on a literal £) if there
exist £ € C and £ € D. We also say that they clash on the variable v underlying £.

» Definition 6. A formula I' is clash-free if none of its ULCs clash.

We can extend Lemma 4 to show that if a satisfiable formula is clash-free, then every
ULC can be satisfied on a single literal.

» Lemma 7. Let I' be a clash-free formula. If T is satisfiable, then it can be satisfied with
exactly one literal in each ULC assigned to true.

Proof. Pick a satisfying assignment 7 of I'. For each ULC, augment 7 as in the proof of
Lemma 4. Since the ULCs do not clash, flipping assignments to literals in them does not
falsify other ULCs. <

Note that resolving two clashing ULCs either results in a tautology (if there are multiple
clashing pairs) or a new ULC. So, if a formula has a pair of clashing ULCs, we can either
just eliminate the pair (if the resolvent is a tautology) or replace the pair with a new one
while eliminating a variable.

» Lemma 8. Eliminating all clashing variables among the ULCs in a formula T is confluent,
and the unique fizpoint is a clash-free formula.

Proof sketch. There exists a unique partition of the clashing ULCs such that for each
partition, it holds that i) each ULC does not clash with any ULC in another partition, ii)
clashing ULCs are in the same partition, and iii) each ULC clashes with at least one other
ULC in its partition. If a partition with n ULCs has more than n — 1 clashing pairs, then
variable elimination will remove all ULCs in it. On the other hand, if a partition with n
ULCs has n — 1 clashing pairs, then variable elimination (which in this case is just resolution)
will result in a unique ULC consisting of all the literals that are not clashing. Because clashes
do not occur between partitions, the resulting formula is clash-free. |

Our reencoding method begins by making the input formula clash-free through variable
elimination, as described in the proof. Apart from eliminating clashes, variable elimination
increases the size of ULCs. The larger the ULC, the more likely the auxiliary variables will
be beneficial, as they allow the solvers to reason about more objects at the same time.

3.3 Aligning ULCs

In this section, we assume that a formula is clash-free. Any formula that is not clash-free can
be easily turned into one by applying the method described in Section 3.2. While all literals
are symmetric in the direct encoding, their order matters when performing our reencoding.
Since ULCs are clauses, the literals can be permuted in any way to optimize performance.
We consider ULCs as sequences of literals in this section. The following example shows that
the order of literals in ULCs could impact the effectiveness of our reencoding.

» Example 9. Consider a graph-coloring problem with k colors. Let the graph contain a
4-clique among the vertices u, v, w, z. The direct encoding contains the ULCs (u1 V ...V ug),
(v1V...Vug), (w V...Vwg), (1 V...V xr). The variables u; denote that vertex u has

14:5

SAT 2025



14:6

Reencoding Unique Literal Clauses

color i. Reencoding these ULCs using the natural ordering of the literals creates auxiliary
variables that can be interpreted as u<;, v<;, w<;, T<; with ¢ € {1,...,k —1}.

Now, let’s consider the assignment that makes u<s, v<s, w<s, v<3 false, which makes
variables w1, us, us, v1, V2, U3, W1, Wa, W3, L1, T2, X3 false by unit propagation. Using k = 6,
a solver can quickly determine that this assignment cannot be extended to a satisfying
assignment as at least four distinct colors are required for the vertices u, v, w,z. Hence, the
solver can learn the clause (u<s3 V v<s V w<s V x<3). Note that a similar clause with original
variables would be much longer: (u; V us VugV oy VuaVogVw VwsVwsVaVaVaes).

Alternatively, consider the case of a different order of literals in ULCs. For example,
using k = 6, they could be (ug V us V us V us V ug V us), (va Vo1 VugVogVugVus),
(w1 Vws Vwy VwsVwsVuwy), (tgVaoeVaygVaesVe Vas). After reencoding, the auxiliary
variables have no meaning. Moreover, assigning the corresponding four auxiliary variables to
false will falsify the first three literals in each clause to false by unit propagation. Now it is
still possible to assign the vertices u, v, w, z to four distinct colors, so no (short) clause can
be learned. Therefore, order of literals in ULCs is crucial for learning the short clause.

To allow the solver to make good use of the auxiliary variables, we want to order the
literals in the ULCs so that the solver can learn more useful short clauses like the one above.
This motivates our definition of aligned ULCs.

» Definition 10. Let T’ be a formula whose unique literal clauses are {C1,...,Cp}. We say
that T is aligned if for every pair of binary clauses (@ V b),(¢V d) € T with a,c € C; and
b,d € Cj, it holds that literal a occurs before c in C; if and only if b occurs before d in C}.

As we will show in the experimental evaluation, aligning ULCs increases the effectiveness
of our reencoding method. Moreover, when formulas are not aligned or unalignable, the
reencoding can become ineffective or even harmful to performance.

» Definition 11. A formula is independent if it is trivially aligned, that is, it does not
contain any binary clauses between its ULCs. Suppose T' is not independent. Then it is
alignable if there exists a permutation of the literals in its ULCs such that it becomes aligned,
and unalignable otherwise.

Whether a formula is alignable is computable in linear time in the size of the formula.
We will discuss this in more detail in Section 4. Since we can efficiently determine whether a
formula is alignable, we can run this check first and only reencode alignable formulas.

3.4 Exclusive Literal Clauses

Manthey and Steinke discuss transforming the direct encoding of EXACTLYONE constraints [21].
They look for the following pattern: a clause (¢1 V - - -V £) together with all binary clauses
(¢; V) with 1 <4 < j < k. Note that they do not require literals ¢4, ..., ¢ to occur uniquely
in the formula, in contrast to ULCs. On the other hand, ULCs do not rely on the presence
of binary clauses (¢; V Zj). Thus, each method targets a different pattern. The concept of
exclusive literal clauses generalizes both methods.

» Definition 12. Given a formula I' and a clause C. Let U(C,T') be the set of literals in C

that do not occur in T\ {C} and X (C,T)=C\U(C,T). A clause C is an exclusive literal
v

clause (XLC) with respect to T if (Vv £) €T for all £, € X(C,T).

So, a ULC is an XLC in which all literals are unique, while Manthey and Steinke detect
XLCs with no unique literals. For the purpose of experiments, it is convenient to consider
XLCs that are not ULCs separately, and we call them proper XLCs.



A. Sheng, J.E. Reeves, and M.J.H. Heule

Similar to a ULC, an XLC can be considered an implicit EXACTLYONE constraint as all
missing binary clauses can be added via blocked clause addition. The notion of a pair of
clashing XLCs is the same as for ULCs: the pair contains complementary literals. In contrast
to ULCs, it is not the case that resolving two XLCs always results in a new XLC.

» Example 13. Consider the formula I'= (z Vz) A (@ Vu) A(yVa) A (yV z) A (Z). The
clauses (z V u) and (y V@) are clashing XLCs with u and @ being unique literals. Resolving
these clauses results in (x V y), which is not an XLC. Moreover, it cannot be turned into
XLC, because adding the missing binary clause (Z V 3) does not preserve satisfiability.

The above issue arises when resolving on unique literals. When resolution on a pair of

clashing XLCs is restricted to non-unique literals, then the resulting clause will be XLC.

However, doing so can be very costly in practice, as many clauses may contain the resolution
variable. We observed that there are many formulas from SAT Competitions for which
resolving away all pairs of clashing XLCs resulted in an enormous blowup of the formula. For
these reasons, we will not resolve clashing XLCs in our experiments, and we apply only the
sequential counter encoding in our experiments, without trying to eliminate into the order

encoding. Definitions regarding alignment extend straightforwardly to formulas with XLCs.

3.5 Proof Production

Modern SAT solvers support proof logging, so the results of each run can be verified [14].
All techniques used in our reencoding technique can be compactly expressed in the DRAT
proof system [32]. The first step of our method, described in Section 3.2, makes the formula
clash-free. Each step either resolves two ULCs or eliminates a pure literal. Since clauses are
sets of literals, one can shuffle the literals around without any proof logging, so aligning is
not explicit in the proof.

The reencoding consists of four stages for the sequential counter encoding and an additional
fifth stage for the order encoding. We will explain the proof logging procedure for reencoding
ULCs. The procedure for XLC is similar but somewhat more complicated.

1. Make the EXACTLYONE constraint explicit. Before reencoding a ULC ({1 V ---V £}), we
need all the binary clauses (¢; ij) with 1 < i < j < k to be present in the formula. Each
of the missing ones can be added using blocked clause addition.

2. Add the definitions. Next, we add the definitions of the sequential counter encoding;:
s1 ¢ 01 and s; <> (s;-1 V£;) for 1 < i < k. The clauses corresponding to these definitions
can be added using blocked clause addition by adding them in increasing order of i.

3. Express ATMOSTONE and ATLEASTONE. Now, we need to express that exactly one of
the £y, ..., ¢ literals can be true using the new definitions. For the at-most-one part, the
clauses (3;,_1 V Zi) are included for 1 < i < k, while for the at-least-one part we add the
clause (sk—1 V £). All these clauses have the reverse unit propagation (RUP) property
w.r.t. the formula and can be added in arbitrary order [11].

4. Remove the original clauses. At this point, we no longer need the original clauses,
including the added binary clauses, and we remove them. After the prior step, these
clauses become RUP, so deleting them will not introduce additional satisfying assignments.

5. Eliminate the original variables. In case of a transformation to the order encoding, we
need to apply variable elimination on all the original variables in the direct encoding.
When reencoding ULCs, this step will decrease the number of clauses. However, when
reencoding XLCs, this step could substantially increase the number of clauses.

14:7
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The main difference between reencoding ULCs and proper XLCs is the need for careful
accounting in the latter case. It may not be allowed to remove some of the original binary
clauses.

4 Implementation

We implement XLC reencoding inside the state-of-the-art solver CaDiCal [5]. Reencoding
is performed as preprocessing immediately before entering the CDCL loop. By default, no
preprocessing is performed in CaDiCal; however, the order of literals within clauses may be
changed by unit propagation during parsing and by propagation during lucky search [27].
We perform reencoding after lucky search so that trivial problems are still solved quickly.

Classify XLCs

Perform variable elimination with clashing ULCs
Optionally, align all XLCs

Add sequential counter encoding

Remove tautologies and clauses that became redundant

s,

Optionally, perform variable elimination to create the order encoding

First, we classify clauses as XLCs. Each clause in the formula is considered during this
stage, and the clause size cutoff is only enforced during reencoding in step 4. We compute
occurrence counts for each literal in the formula T, then classify clauses as an ULC, XLC, or
neither. In the first check, the clause is considered a ULC if occ(¢,I') =1 for all £ € C. If
this check fails, then in the second check, the clause is classified as an XLC if all of the binary
clauses between the negations of all pairs of non-unique literals in C' exist in the formula. To
perform this check efficiently, we use a lookup table that stores the binary clauses for each
literal. Finally, if neither check succeeds, the clause is neither a ULC or XLC and therefore
is not a candidate for reencoding.

Second, we perform resolution on ULC clashes. For each literal ¢ in a ULC with
occ(¢,T') = 1 and occ(¢,I') = 1 we mark the literal as clashing only if ¢ occurs in a ULC,
and store a clause lookup table L(¢) and L(¢) pointing to the clauses £ and ¢ occur in. We

then process each ULC with a clashing literal ¢, resolving both L(¢) and L(¢). We delete
L(¢) and L(f), eliminating the variable var(¢) from the formula. The resolvent may take two
forms: (1) the resolvent is a tautology in which case we delete it; (2) the resolvent is a clause
with at least two literals in which case we add it to the formula and mark it as a ULC. The
resolvent cannot be empty because we propagate unit clauses in a separate procedure, and
the resolvent cannot be unit because we only resolve two ULCs. We must also update the
lookup table for any clashing literals contained in the resolvent because it may also clash
with an existing ULC. We do not perform variable elimination on clashing XLCs that are
not ULCs to avoid a blowup in the formula size.

Third, we optionally align XLCs. The alignment algorithm is described in more detail
below in Section 4.1. Alternatively, the user may specify the natural or a shuffled ordering
for literals within XLCs. The natural ordering is the ordering of literals by variable names
(ids in the DIMACS format). This ordering of literals within each XLC will determine which
clauses are generated in the sequential counter encoding. This step is crucial, even without
alignment enabled because propagations during the parsing and lucky search can change the
ordering of literals within a clause since newly watched literals are swapped to the front.

Before the fourth step of reencoding we perform several checks. We encode all XLCs of
size 5 and up, preventing the reencoding of small XL.Cs that will have little impact on the
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formula. If the clause is an XLC and not a ULC, we must check if the XLC is clashing on a
unique literal with another XLC. If so, we can only encode one of the XLCs, and choose to
encode the first one that is seen. Finally, before adding the sequential counter encoding, we
may first need to add clauses to the proof to ensure that the sequential encounter encoding
can be derived. This is only necessary if the binary clauses described in Step 1 of Section 3.5
do not exist in the formula, in which case we can add them or add them directly or can add
a more compact set of clauses [12].

Fourth, we reencode each XLC by adding the sequential counter encoding to the formula.

We generate new variables for the encoding starting from one plus the maximum variable
in the formula. This strategy of adding new variables is not viable in the incremental setting
when new variables may be added through the API between solver calls, but this limitation
can be resolved and is not the focus of this work.

Fifth, we remove tautologies and redundant binary clauses. We use a time stamp to make
this procedure efficient by marking the negation of literals occurring together in sequential
counter encodings. For example, binary clauses formed of two negated literals from the
same XLC can be removed after encoding the sequential counter, and this can be done by
checking if the time stamp of both literals in the binary clause is the same. However, if a
literal appears in multiple XLCs, it will have an updated time stamp. In this case, we must
delete the binary clauses using a lookup table. Further, any binary clause added to the proof
before adding the sequential counter encoding is deleted. Finally, we delete all reencoded
XLCs from the formula.

Sixth, we optionally perform variable elimination on the literals occurring in reencoded
ULCs. This will transform the sequential counter encoding into the order encoding. Variable
elimination for all ULCs is done in a single pass over the clauses in the formula by using
a variable substitution mapping. For each clause containing a negated literal from a ULC,
literals in that clause are mapped to their replacements in a new clause, and the old clause
is deleted. Note that some negated literals from ULCs will be replaced by two literals from
the sequential counter encoding, and this could turn many binary clauses into clauses of
length three or four, potentially slowing down solver propagations. Then, clauses from
the sequential counter encodings that contain ULC literals are deleted. While we perform
variable elimination by hand, it is possible that the solver would have eliminated some or all
of these literals in the bounded variable elimination (BVE) inprocessing steps. On the other
hand, the solver may eliminate variables from the sequential counter encoding.

All of our clause additions and deletions use the DRAT proof API inside CaDiCalL. This
uses the extension stack for RAT deletions to reconstruct solutions for the original set of
variables upon solve completion. CaDiCal supports proof logging in LRAT, and in future
work, we plan to support LRAT proof production.

The reencoding preprocessor is called once before solving, and checks every clause in

the formulas for the XLC criteria. In addition, this could be performed as inprocessing [17].

The solver cannot learn a ULC directly through conflict analysis, because prior to clause
learning, the literals in the learned clause must have been pure and therefore fixed. However,
techniques like subsumption, probing, or variable elimination that remove literals from clauses
and delete clauses may produce ULCs. To detect ULCs in inprocessing, it would suffice
to check the occurrence counts for irredundant clauses. If an irredundant clause meets the
ULC criteria, we delete all redundant clauses containing the literals from the ULC. Then,
this clause could be reencoded as a ULC. Also, the solver could learn binary clauses that
allow some other clause to meet the XLC criteria. We do not implement these inprocessing
procedures because the preprocessing approach already performs well on a wide range of
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problems containing ULCs, and does not improve performance much on problems containing
XLCs.

4.1 Alignment of XLCs

This section presents a procedure for aligning the XLCs within a formula. This amounts to
assigning each literal occurring in an XLC an integer alignment value and then using these
values to sort the literals within the XLCs.

To perform alignment, we first construct a graph G where nodes are literals and the
graph contains an undirected edge between two literals £ and ¢ iff (¢ v 7) € T and both ¢
and ¢ occur in distinct XLCs. Next, we sort the XLCs from largest to smallest, sort the
literals within each individual XLC by the natural ordering, and initialize the alignment of all
literals to 0. Then, for each C € XLC's and for each ¢ € C if £ is not aligned, ¢ is assigned
alignment + 1 and all unaligned literals in the connected component of G containing ¢ are
aligned with alignment + 1. We increment alignment, then continue to the next literal.
After aligning all literals in C', the clause is sorted based on the alignment values. If any pair
of literals in C shares the same alignment value, the problem is said to be unalignable. This
will happen if two literals from an XL.C occur in the same connected component in G. In
this case, the literals are sorted lexicographically by alignment and then by natural ordering.
If no alignment occurs and the formula is independent (i.e., G is empty), then each clause
retains its natural literal ordering.

» Example 14. Consider the following formula:
Cl : (61 \/EQ \/63) /\CQ : (£4V€5 \/&3) A\ (?1 \/ZG)/\ (ZQ \/Z4) /\F

Assume T" does not contain a binary clause with literals from C; and Cs, so they are both
ULCs. We first consider the literals from C; in natural order. After ¢; is given alignment 1,
£ also receives this alignment because of the binary clause (¢; V £g). {5 is given alignment 2,
along with £4. {3 is given alignment 3. Now, C is sorted by alignment to ¢1 V {5 V £3. When
(5 is processed, both ¢4 and g are skipped because they already have alignments. /5 is given
alignment 4, and the clause is sorted as £g V £4 V £5. If the binary clause f5 V £5 would have
been in I', the formula becomes unalignable because ¢4 and ¢5 would receive alignment 2.

The alignment procedure uses a linear number of steps to assign alignment values,
processing each literal within an XLC once and processing all binary clauses within the
formula at most once. There are multiple possible alignments for any set of alignable XLCs.
For instance, in Example 14, /5 can be placed at the beginning of C; and the XLCs would
still be aligned. Specifically, after assigning each literal an alignment value, those values
can then be ordered in some way, and that ordering can be used to sort the clauses. In
addition, the alignment procedure will always produce an aligned formula if the formula is
alignable. This is the case because our procedure aligns all variables within a connected
component before moving on to the next connected component, ensuring that the property
in Definition 10 is not violated.

The independent and unalignable problems may also benefit from ordering. For example,
the shiftladd family benchmarks each contain only a single ULC (after resolving clashing
ULCs) and are thus independent, but in experiments we found by accident that different
orderings can lead to 10x difference in solving time. Recent work sorts literals in a single
cardinality constraint [25], and a similar approach may be beneficial here. Furthermore, for
unalignable problems, partial alignment may still be possible. We focus on the alignable case
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Table 1 Number of formulas reencoded, along with their formula types, average preprocessing
time, number of formulas that take longer than 20 seconds, the medium number of encoded XLCs,
and the medium of the maximum sizes of encoded XLCs. ULC-Clash is ULC detection without
resolution on clashing literals. XLC shows results for formulas where at least one proper XLC was
detected and reencoded. XLC-full is full detection, combining ULC and proper XLC. SBVA is only
run on formulas for which an XLC was detected, and the reencoded count shows the number of
those formulas for which SBVA performed any reencoding.

Reencoded Alignable Ind. Unalign. Avg. (s) > 20s Med. # Med. Max

ULC-clash 891 415 145 331 4 29 760 45
ULC 1014 459 216 339 4 43 760 40
XLC-proper 825 305 187 333 1 9 1001 70
XLC-full 1739 791 294 654 3 49 867 52
SBVA 1616 679 314 623 30 356 - -

as these benchmarks tend to yield the most positive results, and leave ordering of independent
and unalignable formulas for future work.

5 Results

We ran our implementation to scan and reencode formulas in the Anniversary track of
SAT Competition 2022 [4] for ULCs and XLCs, and the data are in Table 1. Of the 5,355
benchmarks, our method reencoded 1,739 (~ 32%) formulas with at least one XLC, with
1,014 (~ 19%) of them having ULCs, of which 459 (~ 9%) are alignable. These formulas are
encoded after resolving clashing ULCs and filtering out clauses of size 4 or less, as explained
in Section 4. Notice that by resolving clashing ULCs, we obtain more formulas containing
ULCs above the set size threshold. This suggests that our method can sometimes find implicit
large EXACTLYONE constraints that the user is not aware of when encoding a problem. We
also tested if the state-of-the-art reencoding technique SBVA (structured bounded variable
addition) [13] would reencode these formulas, and found that it does affect most of them, so
our experiments include a performance comparison between our method and SBVA, which
will be discussed later in this section. An observation to be made now is that our method is
very efficient, taking less than 5 seconds on average to reencode these formulas, while SBVA
took 30 seconds on average.

All experiments were carried out at the Pittsburgh Supercomputing Center on nodes
with 128 cores and 256 GB RAM [7], running solvers on the 1,014 benchmarks with ULCs.
We used a 5,000 second timeout for solving, and 64 experiments were run in parallel per
node, so each process held approximately 4GB of memory. SBVA was allowed to run for
200 seconds (if it does not terminate by then) before solving the reencoded formula with
CaDiCal as in the original paper [13]. All runtimes include reencoding time.

We used the following solving configurations for reencoding ULCs: original encoding,
SBVA, sequential counter encoding with aligned, natural, or shuffled sorting, and order
encoding with aligned sorting. Resolution was performed on clashing unique literal clauses
before applying sequential counter and order encodings. Table 2 presents the performance of
these configurations on all formulas that contain ULCs, divided into three classes: aligned,
independent, and unalignable. Each class is further divided into satisfiable (SAT) and
unsatisfiable (UNSAT) instances. Both the number of solved instances and the average
solve time (where unsolved formulas contribute twice the time limit, denoted by Par2) are
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Table 2 Performance of ULC reencoding across different configurations. *SBVA uses original
encoding for the 123 formulas it does not reencode.

Alignable (459) Independent (216) Unalignable (339)
# Solved Avg. PAR2 # Solved Avg. PAR2 # Solved Avg. PAR2

SAT UNS SAT UNS SAT UNS SAT UNS SAT UNS SAT UNS
Original 118 123 1652 3081 62 90 593 823 122 103 1534 1534
SeqShuft 124 122 1237 3066 58 90 1173 899 121 102 1811 1596
SeqNat 125 137 1109 2088 56 91 1364 825 122 102 1526 1560
SeqAli 127 152 951 1159 56 91 1364 831 122 103 1544 1470
OrdAli 125 155 1149 993 58 89 1225 1011 115 90 2019 2595
SBVA* 122 137 1395 2068 61 91 616 713 120 107 1687 1108
VBS 137 163 256 513 63 93 301 471 137 112 293 672

reported. Best performing configurations in each column are highlighted in bold, and a VBS
(virtual best solver, which picks the best solver from available configurations) configuration
is included for reference.

Reencoding ULCs with our method provides a significant speedup on solving alignable
formulas, even when compared with SBVA. In particular, the sequential counter encoding
with alignment yields the best overall results. We visualized the impact of our aligned
sequential counter ULC reencoding on solver performance using scatter plots, comparing it
against configurations on different formula classes. In each plot, every point represents one
benchmark formula, comparing the runtime or conflicts of two solver configurations. Points
below the diagonal indicate instances where the tested configuration yields improvement
against the baseline configuration (lower values on the y-axis), while points above the line
indicate slower performance. We distinguish satisfiable (SAT) and unsatisfiable (UNSAT)
instances by marker style in each plot to analyze performance trends across these classes. We
now discuss each comparison in detail, highlighting the key patterns and what they reveal
about the reencoding method.

We also ran experiments for reencoding XLCs with the aligned sequential counter encoding
on formulas where at least one proper XLC was detected and reencoded. On these formulas,
reencoding had limited impact, and data will be provided in Section 5.5.

5.1 Alignable Formulas

The left plot of Figure 1 compares solver runtimes on alignable formulas, contrasting our
method’s aligned sequential counter encoding against the original encoding (baseline). For
alignable formulas, we observe a clear performance improvement with the aligned reencoding,
particularly on UNSAT instances. Most UNSAT points lie well below the diagonal, often
on the axes, indicating that adopting our method can solve more UNSAT formulas using
much less time. The SAT instances exhibit mixed results, but still, our method solves more
SAT formulas and has an overall advantage. We have verified all the proofs and satisfying
assignments produced by our method on the original formulas in this plot to make sure these
speedups are not due to conceptual or implementation errors.

To understand the importance of aligning variables in ULCs, we also evaluated a shuffled
reencoding configuration, where the literals in each ULC are randomized (and not aligned)
before reencoding. The right plot of Figure 1 compares this configuration against the
original encoding on the same set of alignable benchmarks. In stark contrast to the left one,
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Figure 1 Sequential counter encoding on alignable instances: Aligned vs. original (left) and
shuffled vs. original (right).

shuffling largely negates the performance gains of our reencoding method. Most points in
the plot lie near the diagonal, indicating no change over the baseline. While some formulas
experience degraded performance, several satisfiable instances still benefit substantially from
the reencoding, even after shuffling. However, the overall outcome is that shuffling offsets
the advantage of our reencoding method.

Table 3 shows solver performance on the subset of benchmarks explicitly labeled with
“Shuffled” or “Random”. Sequential counter and order encodings with aligned sorting provide
significant benefits, notably improving the number of solved UNSAT instances (from 55
solved by the original encoding to 73 with the order encoding). These results confirm the
importance and effectiveness of alignment.

5.2 Independent and Unalignable Formulas

Experiments on shuffled alignable formulas demonstrate that when the formulas are not
aligned, our method does not consistently provide benefits. We therefore expect the same
when our method is applied to independent and unalignable formulas. Figures 2 examine

Table 3 Results on aligned with Shuff or Rand in benchmark name (SAT: 63, UNS: 76, UNK: 74)

# Solved Avg. PAR2

SAT UNS SAT UNS
Original 62 55 159 3341
SeqShuff 63 57 21 3016

SeqNat 62 58 158 2891
SeqAli 63 72 22 1018
OrdAli 63 73 30 906
SBVA 62 60 158 2458
VBS 63 76 21 566
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Figure 2 Runtime comparison between the aligned sequential counter encoding and the original
encoding on independent formulas (left) and unalignable formulas (right). The cluster of UNSAT
formulas in the top left of the independent plot are the shiftladd formulas mentioned in Section 4.

the solver’s performance on these instances, comparing the reencoded formula to the original.
In both classes, most UNSAT instances lie close to the diagonal, and SAT instances are
spread out, with no clear performance gains observed. The results suggest that reencoding
ULCs tends to provide no benefit, occasionally even hurting performance. As mentioned
in Section 4, future work on ordering literals in independent and unalignable formulas may
yield better results with our reencoding.

5.3 Order Encoding

Our reencoding method can transform the direct encoding of EXACTLYONE constraints to the
sequential counter or the order encoding. The only difference between the two is that for the
latter, variables from the direct encoding are eliminated using variable elimination. Bounded
variable elimination [9], a technique used in all state-of-the-art SAT solvers, eliminates
variables if that results in a reduction in the number of clauses. After reencoding ULCs,
this is the case for all variables from the direct encoding, so solvers could eliminate them.
However, they may not be eliminated because the solver can choose to eliminate some of the
order variables instead. After eliminating some order variables, the variables from the direct
encoding can no longer be eliminated without increasing the size of the formula.

Figure 3 shows the comparison between the sequential counter encoding and the order
encoding on aligned formulas. When we compare the runtime (left), both encodings perform
quite similarly. This is even more apparent when comparing the number of conflicts (right).
If we only focus on the number of solved benchmarks, then the order encoding solves a
couple of extra UNSAT formulas, while the sequential encoding solves a couple of extra SAT
formulas. The results suggest that the solver does not always eliminate the original variables
in ULCs, and sometimes it is better to keep them.

Figure 4 shows the runtime and conflict comparison between the sequential counter
encoding and the order encoding on unalignable and independent formulas. The left plot
shows that the sequential counter encoding is noticeably faster than the order encoding. This
contrasts with the aligned formulas, where the two methods performed similarly. The right
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Figure 3 A comparison in runtime (left) and the number of conflicts (right) between the sequential
counter encoding and the order encoding on alignable formulas with ULCs.

plot suggests that the worse performance of the order encoding is due to slower propagation
rather than increased conflicts.
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Figure 4 Comparison between runtime (left) and conflicts (right) on unalignable and independent
formulas. The reduced runtime on unsatisfiable formulas is due to slower propagation.

5.4 Bounded Variable Addition

Bounded variable addition (BVA) is a reencoding technique that searches for sets of clauses
that can be reencoded to a smaller set of clauses by introducing a new variable [20]. In
most cases, BVA will more compactly encode the set of binary clauses. BVA was recently
improved by taking the structure of the formula into account during reencoding. This version
is known as structured BVA (SBVA) [13]. The combination of SBVA and CaDiCal won the
main track of SAT Competition 2023.
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Figure 5 A runtime comparison between aligned sequential counter encoding and SBVA on
alignable formulas (left) and unalignable and independent formulas (right). The runtime includes
the reencoding time. Formulas for which SBVA does not perform reencoding are filtered out.

We compared our reencoding method with SBVA as preprocessor for CaDiCaL. The results
are shown in Figure 5. Our sequential counter encoding with alignment can solve dozens of
alignable formulas that cannot be solved when using SBVA, suggesting that they reencode
the formulas differently. Note that a large majority of SAT formulas are below the diagonal,
showing that our reencoding works much better on both SAT and UNSAT formulas.

On unalignable and independent formulas, the picture is more mixed. Although most
points are below the diagonal, there are more formulas that time out after applying our
reencoding while they can be solved when using SBVA.

5.5 Reencoding XLCs

Table 4 and Figure 6 show the performance of sequential counter encoding on formulas
containing proper XLCs. Our reencoding consistently helps solve UNSAT formulas while
making SAT formulas slower to solve. The impact of the reencoding is not as significant
as on formulas containing only ULCs, especially when looking at alignable formulas. XLC
reencoding solved two more UNSAT instances (134 vs. 132) but one fewer SAT instance (118
vs. 119), with a modest reduction in average UNSAT solving time (PAR2 reduced from 723
to 525), and a slight increase in average SAT solving time (PAR2 increased from 318 to 397).

Although the improvement is small compared with reencoding the ULCs in alignable
formulas, reencoding XLCs still provides an overall performance gain. Moreover, the perform-
ance is consistent across alignable, independent, and unalignable formulas. Reencoding XLCs
always helps solve a couple more UNSAT formulas, even on independent and unalignable
formulas. This was not the case when reencoding the formulas with only ULCs, as our
reencoding generally slightly hurts performance on non-alignable formulas.

5.6 Benefited Benchmark Families

We briefly describe some specific families of alignable formulas that our method for reencoding
ULCs drastically improves solver performance on.
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Table 4 Performance of XLC reencoding

Alignable (305) Independent (187) Unalignable (333)
# Solved Avg. PAR2 # Solved Avg. PAR2 # Solved Avg. PAR2

SAT UNS SAT UNS SAT UNS SAT UNS SAT UNS SAT UNS
Original 119 132 318 723 102 47 644 1461 144 135 263 471

XLC 118 134 397 525 100 48 762 936 143 138 343 229
VBS 120 135 207 433 105 49 270 783 145 138 155 206
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Figure 6 Performance comparison between the sequential counter and the original encoding on
formulas with at least one proper XLC. Left, the alignable formulas and right, the unalignable and
independent formulas.

Pigeonhole Pigeonhole formulas try to put n pigeons into m holes, consisting of many
ULCs (every pigeon must be in one hole). Tt is one of the famous problems that is easy
for humans and hard for SAT solvers, and reencoding ULCs really helps. For example,
both the original encoding and SBVA timed out on the formula php-018-014.shuffled,
which is a shuffled formula that tries to put 18 pigeons in 14 holes, while after reencoding
it was solved in 192 seconds. Similar speed boosts were found in related families, such as
relativized pigeonhole formulas.

Graph Coloring Another family is graph coloring, also having many ULCs (every vertex
has one color). Our method works remarkably well on them. For example, our method
solved queen14_14.col.14 [15] in 9 seconds and 1e450_15b.col.15 in 28 seconds, while
SBVA and original encoding timed out on both of them.

FPGA-routing These formulas are Field-Programmable Gate Arrays routing constraints
encoded as large SAT problems, in which satisfying assignments correspond to feasible
routing solutions. The ULCs in these formulas encode connectivity constraints to ensure
the existence of a conductive path for each two-pin connection [22]. Reencoding ULCs
shows significant performance improvement on almost all such formulas. For example,
homer19.shuffled timed out with original encoding and took SBVA 75 seconds, but
with our method, it was solved in 2 seconds.

Petri Net Concurrency Petri nets are a model for concurrent computation that
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uses places and transitions [6]. Each formula represents whether there exists a valid
partitioning of the Petri net’s places into distinct subsets (units) respecting a given
concurrency relation. The ULCs in these formulas encode that every place belongs to
a unit. Our method drastically improved solver performance on these formulas. For
example, vlsat2_30744_3925645.dimacs [3], a formula that timed out with both the
original encoding and SBVA, was solved by our method in 177 seconds.

We also noticed that the majority of unalignable formulas belong to the Graph/Subgraph
Isomorphism family. These formulas consider two random graphs and the question of whether
one is a subgraph of the other. This is encoded by searching for a permutation of one of the
graphs such that they overlap [2]. The formula contains many unalignable ULCs encoding
the permutations.

5.7 Graph coloring

Based on the strong results on graph-coloring problems, we tested whether our version of
CaDiCal enhanced with reencoding boost SAT-based graph-coloring approaches. For this
purpose, we used the CliColCom framework [16], which represents the state-of-the-art in
graph coloring and includes several techniques to improve performance for this application,
such as symmetry breaking. We ran CliColCom on the DIMACS graph coloring suite [18].
Using CaDiCal version 2.1.0 (unmodified), the framework could solve 90 benchmarks within
an hour, while using the modified CaDiCalL (same version, but with our reencoding technique)
allowed solving two more benchmarks. The additional benchmarks are: queen9_9 (solved in
116 seconds) and queen10_10 (solved in 2103 seconds). The runtime on most graphs was
similar. An exception is abb313GPIA, which was solved in 2.12 seconds using the modified
version and in 150.11 seconds using the unmodified CaDiCal. Note that this graph was not
solved with CaDiCal version 1.5.2 used in the CliColCom paper [16].

6 Related Work

Encodings of ExactlyOne constraints have been studied for over 20 years. A seminal early
work by Ansétegui and Manyé [1] already uses order variables. Our direct, sequential
counter, and order encodings correspond to their standard mapping, regular mapping, and
full regular mapping, respectively. They evaluate different encodings on mostly random
problems, including graph coloring using the Chaff and Siege solvers. The encodings with
order variables generally result in stronger performance, although Chaff is faster using the
direct encoding on sparse graphs. A later study didn’t observe significant differences in solver
performance using various encodings [23]. Our evaluation is the first to involve a massive
benchmark suite and concludes that the order variables can boost performance.

A more recent study zooms in on the effectiveness of a range of encodings on graph-
coloring problems [10]. That study shows that variants of the order encoding are the most
effective on the classical suite of graph-coloring problems [18]. Most instances of that suite
are relatively easy, as the chromatic number equals the clique number, so if you find the
largest clique, the lower bound call becomes trivial after symmetry breaking. The order
encoding is especially effective on the queen graphs and abb313GPIA, which are exactly the
graphs that can be solved using CliColCom when using our reencoding technique.

Other related works deal with reencoding formulas [13,20,21]. These works focus on
reducing the number of clauses by introducing new variables. In practice, this comes mostly
down to constructing a more compact representation of the binary clauses. In contrast, our
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reencoding may increase the number of clauses, especially in case of formulas with implicit
ExactlyOne constraints. The work by Manthey and Steinke [21] is the closest to ours as it
also targets ExactlyOne constraints, although they limit their technique to explicit ExactlyOne
constraints. Their evaluation showed little benefit of performing reencoding, which is likely
due to the small scale of the experiments and ignoring the implicit ExactlyOne constraints.

7 Conclusions

We presented a new reencoding technique for propositional formulas. While all existing work
on reencoding focuses on reducing the size of formulas, our technique increases the number of
variables and may also increase the number of clauses. The experimental results demonstrate
that our method increases the number of solved formulas from SAT Competitions, providing
concrete evidence that our reencoding method can significantly enhance solver performance
and even outperform state-of-the-art reencoding techniques on the targeted class of formulas.
Importantly, our implementation scans and recovers the target structure in a formula before
reencoding, allowing us to predict the performance of our method and determine whether to
apply it. Future work on formula structures could leverage our method to a broader range of
formulas.

We conjecture that the new variables help guide the solver. However, we could not show
that the new variables could exponentially reduce the size of the smallest resolution proof.
Answering this question is part of future work.

Our implementation of reencoding logs DRAT proofs, allowing us to formally verify the
results presented in the experimental evaluation. In some cases, DRAT proof validation was
expensive. To address this issue, CaDiCal provides LRAT proof logging for all implemented
reasoning techniques to create efficiently checkable proofs. In future work, we plan to support
LRAT proof production.
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