
Noname manuscript No.
(will be inserted by the editor)

Simulating Strong Practical Proof Systems with
Extended Resolution

Benjamin Kiesl · Adrián Rebola-Pardo ·
Marijn J.H. Heule · Armin Biere

the date of receipt and acceptance should be inserted later

Abstract Proof systems for propositional logic provide the basis for decision
procedures that determine the satisfiability status of logical formulas. While
the well-known proof system of extended resolution—introduced by Tseitin
in the sixties—allows for the compact representation of proofs, modern SAT
solvers (i.e., tools for deciding propositional logic) are based on different proof
systems that capture practical solving techniques in an elegant way. The most
popular of these proof systems is likely DRAT, which is considered the de-facto
standard in SAT solving. Moreover, just recently, the proof system DPR has
been proposed as a generalization of DRAT that allows for short proofs with-
out the need of new variables. Since every extended-resolution proof can be
regarded as a DRAT proof and since every DRAT proof is also a DPR proof,
it was clear that both DRAT and DPR generalize extended resolution. In this
paper, we show that—from the viewpoint of proof complexity—these two sys-
tems are no stronger than extended resolution. We do so by showing that (1)
extended resolution polynomially simulates DRAT and (2) DRAT polynomi-
ally simulates DPR. We implemented our simulations as proof-transformation
tools and evaluated them to observe their behavior in practice. Finally, as
a side note, we show how Kullmann’s proof system based on blocked clauses
(another generalization of extended resolution) is related to the other systems.

This work has been supported by the National Science Foundation under grant CCF-
1910438, by the Austrian Science Fund (FWF) under project W1255-N23, by the Vienna
Science and Technology Fund (WWTF) under projects VRG11-005 and ICT15-103, and by
Microsoft Research through its PhD Scholarship Programme.

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany · TU Wien, Vi-
enna, Austria · Carnegie Mellon University, Pittsburgh, USA · Johannes Kepler University,
Linz, Austria

1

2

1 Introduction

When we look at proof systems for propositional logic, we observe an interest-
ing peculiarity: Even though extended resolution, invented by Tseitin in the
sixties [30], is known to be highly expressive, the practitioners in SAT solving
have come up with different proof systems on which they base their solvers.
The most important of these proof systems is likely DRAT [35], which can be
considered the de-facto standard in SAT solving: Not only are the solvers in the
annual SAT competitions required to produce DRAT proofs but also the proofs
of long-standing mathematical problems, including the Boolean Erdős Discrep-
ancy Conjecture [21] and the Boolean Pythagorean Triples Problem [11], were
provided in DRAT.

One reason for the use of DRAT is that it can compactly represent many of
the techniques used by modern SAT solvers. Moreover, due to its close relation-
ship to unit propagation—which is a core part of modern SAT solvers—the cor-
rectness of DRAT proofs can be checked efficiently, leading to the development
of formally verified DRAT proof checkers. Spinning the idea of propagation-
based proof systems even further, the proof system DPR [13, 16] has been
introduced as a generalization of DRAT. DPR allows for short proofs with-
out the need for new variables, thus making it a strong candidate for practical
SAT solving. In fact, the solver SaDiCaL [15], which implements the DPR-based
satisfaction-driven clause learning (SDCL) paradigm [14], can automatically
find short proofs of the pigeon-hole principle, Tseitin formulas over expander
graphs [30], and mutilated chessboard problems [25]. All these problems are in-
famous in the proof-complexity literature for being extremely hard [9, 31, 1, 8],
thus causing usual conflict-driven clause learning (CDCL) [24, 26] solvers some
serious trouble.

While it seems clear that both DRAT and DPR provide practical advantages
over extended resolution, it has long been unclear whether these advantages
also manifest themselves in theory in the sense that they can lead to expo-
nentially shorter proofs for some formulas. In this paper, we show that they
do not. We do so by providing polynomial simulations between the mentioned
proof systems. Specifically, we give two polynomial-time procedures—the first
procedure takes as input a DRAT proof and returns as output an extended-
resolution proof of the same formula; the second procedure takes as input a
DPR proof and returns as output a DRAT proof. Together, the two procedures
can be used to transform DPR proofs into extended-resolution proofs.

Our results confirm the expected proof-complexity landscape in which all
top-tier proof systems—including extended resolution, DRAT, DPR, and ex-
tended Frege systems [32]—are essentially equivalent. Rounding off the picture,
we show how blocked-clause addition [22]—a generalization of the extension
rule from extended resolution—can be used to replace the addition of resolu-
tion asymmetric tautologies (RATs) in DRAT without introducing new vari-
ables. Our paper thus bridges the gap between proof systems from the present
and from the past.

3

To evaluate the increase in size caused by our simulations in practice, we
implemented them as proof-transformation tools and performed experiments
on a range of DRAT and DPR proofs. The experiments show that the simu-
lations incur a size increase that, though non-negligible, is relatively modest
compared to the theoretical worst case. Our transformation tools thus al-
low practitioners to transform the output of SAT solvers into a format that
might suit their applications better. Moreover, the transformation from DPR
to DRAT enables the use of formally verified DRAT proof checkers for DPR
proof checking.

The main contributions of this paper are as follows: (1) We prove that
extended resolution polynomially simulates DRAT. (2) We prove that DRAT
polynomially simulates DPR. (3) We implemented our simulations as tools.
(4) We present an empirical evaluation of our simulation tools. (5) We show
how blocked-clause addition can be used as an alternative for resolution-
asymmetric-tautology addition in DRAT.

This paper is an extended version of our IJCAR 2018 best paper [20] and
our TACAS 2018 paper [10].

2 Preliminaries

Here we present the background required for understanding this paper. We
consider propositional formulas in conjunctive normal form (CNF), which are
defined as follows. A literal is either a variable x (a positive literal) or the
negation x̄ of a variable x (a negative literal). The complementary literal l̄ of a
literal l is defined as l̄ = x̄ if l = x and l̄ = x if l = x̄. For a literal l, we denote
the variable of l by var(l). A clause is a disjunction of literals; we assume that
clauses do not contain repeated literals. A unit clause is a clause that contains
exactly one literal; a tautology contains complementary literals. A formula is
a conjunction of clauses. We view clauses as sets of literals and formulas as
sets of clauses. A clause C subsumes a clause D if C ⊆ D.

An assignment is a function from a set of variables to the truth values
1 (true) and 0 (false). An assignment is total with respect to a formula if
it assigns a truth value to every variable occurring in the formula. We often
denote assignments by the sequences of literals they satisfy. For instance, x ȳ
denotes the assignment that assigns 1 to x and 0 to y. A literal l is satis-
fied by an assignment α if l is positive and α(var(l)) = 1 or if it is negative
and α(var(l)) = 0. A literal is falsified by an assignment if its complement
is satisfied by the assignment. A clause is satisfied by an assignment α if it
contains a literal that is satisfied by α. Finally, a formula is satisfied by an
assignment α if all its clauses are satisfied by α. A formula is satisfiable if
there exists an assignment that satisfies it. Two formulas are logically equiv-
alent if they are satisfied by the same total assignments. Two formulas are
satisfiability-equivalent if they are either both satisfiable or both unsatisfiable.

Given a clause C and an assignment α, we define C |α as the clause obtained
from C by removing all literals that are falsified by α. If F is a formula, we

4

define F |α = {C |α | C ∈ F and α does not satisfy C} also denoted as F
under α. The result of applying the unit-clause rule to a formula F is the
formula F |a (i.e., the formula F |α with α = a) where (a) is a unit clause
in F . We also refer to applications of the unit-clause rule as unit-propagation
steps. The iterated application of the unit-clause rule to a formula, until no
unit clauses are left, is called unit propagation. If unit propagation on F yields
the empty clause ⊥, we say that it derives a conflict on F . For example, unit
propagation derives a conflict on F = (ā ∨ b) ∧ (b̄) ∧ (a) since F |a = (b) ∧ (b̄)
and F |ab = ⊥.

For the rest of the paper, the notion of implication via unit propagation
and the corresponding RUP clauses (short for reverse unit propagation) will
be essential [34]:

Definition 1 A clause C = (c1 ∨ · · · ∨ ck) is a RUP in a formula F if unit
propagation derives a conflict on F ∧ (c̄1)∧ · · · ∧ (c̄k). If C is a RUP in F , we
say that F implies C via unit propagation, which we denote by F `1 C.

For example, (ā ∨ c) ∧ (b̄ ∨ c̄) implies (ā ∨ b̄) via unit propagation since unit
propagation derives a conflict on (ā ∨ c) ∧ (b̄ ∨ c̄) ∧ (a) ∧ (b). Observe that if
C is a resolvent of two clauses in a formula F , or if F contains a clause D
that subsumes C, then C is a RUP in F . We also say that a formula F implies
a formula G via unit propagation, denoted by F `1 G, if F `1 C for every
C ∈ G.

We define proof systems and polynomial simulations following Cook and
Reckhow [6]:

Definition 2 A proof system for propositional formulas in CNF is a sur-
jective polynomial-time-computable function f : Σ∗ → F where Σ is some
alphabet and F is the set of all unsatisfiable formulas.

A proof system can thus be seen as a proof-checking function f that takes a
proof candidate P (which is a string over Σ) together with an unsatisfiable
formula F and checks in polynomial time if P is a correct proof of F . The
requirement that f is surjective means that there must exist a proof for every
unsatisfiable formula. We sometimes use the word proof system in a more
colloquial way to denote the rules that define what constitutes a correct proof
of a certain type. The size of a proof is the number of symbols occurring in it.

Definition 3 A proof system f1 : Σ∗1 → F polynomially simulates a proof
system f2 : Σ∗2 → F if there exists a polynomial-time-computable function
g : Σ∗2 → Σ∗1 such that f1(g(x)) = f2(x).

In other words, f1 polynomially simulates f2 if there exists a polynomial-time-
computable function that transforms f2-proofs into f1-proofs. We next present
the proof systems extended resolution, DRAT, and DPR.

5

3 Extended Resolution (ER), DRAT, and DPR

We model proofs of a formula F as sequences C1, . . . , Cm, Im+1, . . . , In, where
C1, . . . , Cm are clauses of F and Im+1, . . . , In are instructions as defined in
the following. There are three different kinds of instructions: addition, deletion,
and extension. An addition is either a pair 〈a, C〉 or a triple 〈a, C, ω〉 where C is
a clause and ω is an assignment; a deletion is a pair 〈d, C〉 where C is a clause;
and an extension (also called a definition introduction) is a pair 〈e, ϕ〉 where ϕ
is a definition of the form x↔ p∨(c1∧· · ·∧ck) with x being a variable that does
not occur in any earlier instructions of the proof and p, c1, . . . , ck being literals
whose variables are pairwise distinct. The CNF conversion of such a definition
is the clause set cnf(ϕ) = {(x∨p̄), (x∨c̄1∨· · ·∨c̄k), (x̄∨p∨c1), . . . , (x̄∨p∨ck)};
in the particular case k = 0 we have cnf(ϕ) = {(x ∨ p̄), (x)}. The sequence
C1, . . . , Cm, Im+1, . . . , In gives rise to formulas F0, F1, . . . , Fn as follows:

Fi =

{C1, . . . , Ci} if i ≤ m
Fi−1 ∪ {C} if i > m and Ii is of the form 〈a, C〉 or 〈a, C, ω〉
Fi−1 \ {C} if i > m and Ii is of the form 〈d, C〉
Fi−1 ∪ cnf(ϕ) if i > m and Ii is of the form 〈e, ϕ〉

We call Fi the accumulated formula corresponding to the i-th instruction.
Based on this, we can now define the details of extended resolution and DRAT.
In both proof systems, a correct proof of a formula F must derive the empty
clause ⊥, i.e., ⊥ ∈ Fn. They differ only in the instructions they permit.

3.1 Extended Resolution

Extended resolution combines resolution with the extension rule: A sequence
C1, . . . , Cm, Im+1, . . . , In is a correct extended-resolution proof of a formula
F if every instruction Ii ∈ Im+1, . . . , In is either (1) an addition 〈a, (C ∨D)〉
where (C ∨D) is the resolvent (C ∨ p)⊗p (D ∨ p̄) of two clauses (C ∨ p) and
(D ∨ p̄) occurring in Fi−1, or (2) an extension 〈e, ϕ〉. When Tseitin originally
introduced the extension rule [30], he only allowed definitions of the form
x ↔ (ā ∨ b̄) where a and b are variables. These definitions correspond to the
clauses (x∨ a), (x∨ b), and (x̄∨ ā∨ b̄). However, more general definitions can
be derived from these basic definitions in a simple but tedious way. Because
of this, more general extension rules are common in the literature, some even
allowing definitions x↔ ψ where ψ is an arbitrary propositional formula over
previous variables (cf. [5, 9, 29]).

3.2 DRAT

A sequence C1, . . . , Cm, Im+1, . . . , In is a correct DRAT proof of a formula F if
every instruction Ii ∈ Im+1, . . . , In is either (1) a deletion 〈d, C〉 where C is an

6

arbitrary clause, or (2) an addition 〈a, C〉 where C is a RAT or a RUP in Fi−1;
we have already introduced RUPs in Definition 1 on page 4. A RAT is then
simply a clause for which all resolvents upon one of its literals are RUPs [18]:

Definition 4 A clause (C ∨ p) is a resolution asymmetric tautology (RAT)
on p in a formula F if for every clause (D ∨ p̄) ∈ F , the resolvent (C ∨D) is
implied by F via unit propagation.

Example 1 Consider the formula F = (p̄ ∨ ā) ∧ (p̄ ∨ b) ∧ (b ∨ c) ∧ (c̄ ∨ a) and
the clause C = (a ∨ p). There are two resolvents of C upon p: The resolvent
(a ∨ ā), obtained by resolving with (p̄ ∨ ā), is a tautology and thus trivially a
RUP in F ; the resolvent (a ∨ b), obtained by resolving with (p̄ ∨ b), is a RUP
in F since unit propagation derives a conflict on F ∧ (ā) ∧ (b̄). It follows that
C is a RAT on p in F . ut

As shown in [18], if a clause C is a RAT on p in a formula F , then F and F ∧C
are satisfiability-equivalent. The idea behind the proof is that every satisfy-
ing assignment of F that does not satisfy C can be turned into a satisfying
assignment of F ∧ C by making the literal p true.

Observe that if C is a non-empty RUP in F , it is a RAT in F on any literal
p ∈ C (the empty clause ⊥ cannot be a RAT as it contains no literals). In
the rest of the paper, we thus call a clause a proper RAT if it is a RAT on
some literal p but not a RUP. The addition of definition clauses, as with the
extension rule, is a special case of blocked-clause addition [17] (see Section 5),
which itself is a particular case of RAT addition. We thus regard DRAT as a
generalization of extended resolution.

3.3 DPR

A sequence C1, . . . , Cm, Im+1, . . . , In is a correct DPR proof of a formula F
if every instruction Ii ∈ Im+1, . . . , In is either (1) a deletion 〈d, C〉 where C
is an arbitrary clause, or (2) an addition 〈a, C〉 where C is a RUP in Fi−1,
or (3) an addition 〈a, C, ω〉 where C is propagation-redundant with respect to
Fi−1 and ω; we define propagation-redundancy in the following, it is based on
the notion of precluded assignments:

Definition 5 Given an assignment α = a1 . . . ak, the clause (ā1 ∨ · · · ∨ āk) is
the clause that precludes α.

With this we can now define propagation-redundancy [16]:

Definition 6 Let F be a formula, C a clause, α the assignment precluded
by C, and ω an assignment that satisfies C. Then, C is propagation redundant
(PR) with respect to F and ω if F |α `1 F |ω.

We call ω the witness for the propagation-redundancy of C.

7

. . . RAT . . .

. . . Def RUP . . . RUP Del . . . Del . . .

Fig. 1. We transform a RAT addition into a definition introduction (Def),
followed by RUP additions and clause deletions (Del).

Example 2 Let F = (x ∨ y) ∧ (x̄ ∨ y) ∧ (x̄ ∨ z), C = (x), and let ω = x z.
Then, C precludes the assignment α = x̄, and ω satisfies C. Now, consider
the formulas F |α = (y) and F |ω = (y). Clearly, F |α `1 F |ω, and so C is
propagation redundant with respect to F and witness ω.

If C is a RAT on p in a formula F , then C is propagation-redundant with
respect to F and some witness ω [16]. Hence, DPR can be seen as a general-
ization of DRAT. Moreover, if a DPR proof contains no deletions, we call it a
PR proof. Likewise, DRAT proofs without deletions are RAT proofs.

We now proceed to showing that extended resolution polynomially simu-
lates DRAT. After this, we show that DRAT polynomially simulates DPR.

4 Simulating DRAT with Extended Resolution

We perform the transformation of a DRAT proof into an extended-resolution
proof in four stages. In the first stage, we use the extension rule together with
RUP addition and clause deletion to eliminate all additions of proper RATs.
In the second stage, we get rid of all clause deletions. In the third stage, we
then replace all RUP additions by resolution inferences and subsumed-clause
additions. Finally, in the fourth stage, we also eliminate the subsumed-clause
additions to obtain a correct extended-resolution proof.

4.1 Eliminating Additions of Proper RATs

Given a DRAT proof C1, . . . , Cm, Im+1, . . . , In, we iterate over the instructions
Im+1, . . . , In and replace every addition Ii = 〈a, (p ∨ C)〉 of a clause (p ∨ C)
that is a proper RAT on p in the accumulated formula Fi−1 by a sequence
πi of instructions. As illustrated in Fig. 1, such a sequence πi consists of
a single definition introduction followed first by several RUP additions and
then by several clause deletions. In the case where Ii is not the addition of a
proper RAT, we simply let πi be Ii. At the end of this iterative process, we
obtain a sequence C1, . . . , Cm, πm+1, . . . , πn, where every πi is a sequence of
instructions corresponding to the instruction Ii from the original proof. The
sequence C1, . . . , Cm, πm+1, . . . , πn contains no additions of proper RATs, but
instead contains definition introductions.

8

Each iteration of this process performs the following transformation, where
Ii is an addition instruction of a clause C = (p∨ c1 ∨ · · · ∨ ck) which is a RAT
on literal p in the accumulated formula Fi−1 before Ii.

C1, . . . , Cm, πm+1, . . . , πi−1,Ii , Ii+1, . . . , In

C1, . . . , Cm, πm+1, . . . , πi−1,πi, I
′
i+1, . . . , I

′
n

We first use the extension rule to introduce a clause (x ∨ c1 ∨ · · · ∨ ck) as well
as some other definition clauses, where x is a new variable in the sense that it
is not used anywhere else in the proof. Note that (x∨ c1∨· · ·∨ ck) differs from
C only on the literal p, which is replaced by the variable x. We then use RUP
additions and clause deletions to replace all occurrences of p in Fi−1 by x. Our
procedure guarantees that the formula accumulated after πi in the resulting
sequence is exactly Fi[x/p], obtained from Fi = Fi−1 ∪ {C} (the accumulated
formula after Ii in the original proof) by simultaneously replacing occurrences
of p by x and occurrences of p̄ by x̄.

As a consequence, the correctness of the whole proof is preserved by simply
renaming p to x, and p̄ to x̄, in all later instructions, resulting in the instruc-
tions I ′i+1, . . . , I

′
n. It is thus clear that the size of the accumulated formula

after πi in the new proof is the same as that of Fi in the original proof; this
property will be crucial for the complexity analysis in Section 4.5. We now
explain in detail how the sequence πi is obtained, and provide an example to
illustrate the procedure.

(1) Use the extension rule to introduce the definition x↔ p∨ (c̄1∧· · ·∧ c̄k).
This adds the clause set {(x ∨ c1 ∨ · · · ∨ ck), (x ∨ p̄), (x̄ ∨ p ∨ c̄1), . . . ,
(x̄ ∨ p ∨ c̄k)}. The first clause will be our replacement of the RAT
(p∨ c1∨· · ·∨ ck). This is similar to the definitions introduced to express
conditional overwrites in propositional logic in [28], and intuitively fol-
lows the correctness proof of RAT clause addition from [18]: given any
interpretation satisfying Fi−1, we can construct another interpretation
satisfying Fi by conditionally changing the truth value of p, precisely
as given by the definition of x. The rest of the transformation simply
replaces occurrences of p by x.

(2) Replace the literal p in all clauses of Fi−1 by the new variable x:

(a) Add for every clause (D ∨ p) ∈ Fi−1 the clause (D ∨ x). This is a
RUP addition since (D ∨ x) is a resolvent of (D ∨ p) and (x ∨ p̄).

(b) Add for every clause (D ∨ p̄) ∈ Fi−1 the clause (D ∨ x̄). To show
that this is a correct RUP addition, we show that unit propagation
derives a conflict on Fi−1 ∧ D̄ ∧ (x), where D̄ is the conjunction of
the negated literals of D. As C is a RAT on p in Fi−1, we know that
the resolvent (c1 ∨ · · · ∨ ck ∨D) of C and (D ∨ p̄) is a RUP in Fi−1.
Now, by propagating the unit clauses of D̄, we derive (p̄) because the
clause (D ∨ p̄) is in Fi−1. After this, we propagate x and p̄ to derive
all the unit clauses (c̄1), . . . , (c̄k) from the clauses (x̄ ∨ p ∨ c̄j) with

9

j ∈ 1, . . . , k. But then we have derived the negations of all literals in
the resolvent (c1 ∨ · · · ∨ ck ∨D), and since this resolvent is a RUP in
Fi−1, unit propagation must eventually derive a conflict.

(c) Delete all clauses containing p or p̄, including those added in step 1.
Note that this does not delete the clause (x ∨ c1 ∨ · · · ∨ ck).

Example 3 Say we are given a proof C1, . . . , Cm, Im+1, . . . , Ii, . . . , In and we
want to eliminate the addition Ii = 〈a, C〉 where C = (p∨a) is a proper RAT on
p in the accumulated formula Fi−1 = {(p̄∨b), (a∨b∨c), (c̄∨d), (d̄), (ā∨p)}.
Observe that C is a RAT on p because the resolvent (a ∨ b), obtained by
resolving C with (p̄ ∨ b) upon p, is a RUP in Fi−1.

We first use the extension rule to add the definition x ↔ (p ∨ ā). This
adds the clauses (x ∨ a), (x ∨ p̄), and (x̄ ∨ p ∨ ā). Next, we need to replace
the literal p in Fi−1 by x. To do so, we first resolve (x ∨ p̄) with (ā ∨ p) to
derive (ā ∨ x). Then, we introduce the RUP (x̄ ∨ b) for the existing clause
(p̄ ∨ b). (It can be easily seen that the clause (x̄ ∨ b) is a RUP in the accu-
mulated formula Fi−1 ∪ {(x̄ ∨ p ∨ ā), (x ∨ p̄), (x ∨ a)}: By propagating (b̄),
we derive (p̄) from (p̄ ∨ b). After this, the propagation of (x) and (p̄) derives
(ā) from (x̄ ∨ p ∨ ā). But then further propagation will eventually lead to
a conflict because (a ∨ b), which is the resolvent of (p ∨ a) and (p̄ ∨ b), is
a RUP in Fi−1.) Finally, we delete all clauses containing p or p̄. We thus ob-
tain the proof C1, . . . , Cm, Im+1, . . . , Ii−1, πi, . . . , In where πi is the instruction
sequence 〈e, x ↔ (p ∨ ā)〉, 〈a, (ā ∨ x)〉, 〈a, (x̄ ∨ b)〉, 〈d, (p̄ ∨ b)〉, 〈d, (ā ∨ p)〉,
〈d, (x̄ ∨ p ∨ ā)〉, 〈d, (x ∨ p̄)〉. After the last instruction of πi, we get the accu-
mulated formula {(x̄∨ b), (a∨ b∨ c), (c̄∨ d), (d̄), (ā∨ x), (x∨ a)}, which is
precisely Fi[x/p]. We then just need to replace p by x and p̄ by x̄ in Ii+1, . . . , In
to obtain a correct proof C1, . . . , Cm, Im+1, . . . , Ii−1, πi, I

′
i+1, . . . , I

′
n. ut

4.2 Eliminating Clause Deletions

At this point, our proof is a sequence of (1) clauses from the original formula,
(2) definition introductions, (3) RUP additions, and (4) clause deletions. Since
no additions of proper RATs remain in the proof, the elimination of a deletion
instruction does not affect the correctness of other proof instructions: The
addition of RUPs depends only on the existence of clauses in the accumulated
formula but not on their non-existence (if C is a RUP in F , it is a RUP in every
superset of F). Also the extension rule is not affected by additional clauses.
By simply eliminating all deletions, we thus end up with a correct proof. Note
that this would not work if proper RAT additions were still present, because
they depend on the non-existence of certain clauses (a clause C is a RAT in a
formula F only if F contains no resolvents with C that are not RUPs).

10

. . . RUP . . .

. . . Res . . . Res Sub . . .

Fig. 2. We transform a RUP addition into a sequence of resolution steps (Res)
followed by a single subsumed-clause addition (Sub).

1 Cn+1 ← Dn+1

2 for i = n, . . . , 1 do

3 if āi ∈ Ci+1 then Ci ← Di ⊗ai Ci+1

4 else Ci ← Ci+1

Algorithm 1. Given a RUP C, the algorithm derives a clause C1 ⊆ C.

4.3 Eliminating RUP Additions

Similar to the first stage of our simulation, we again iterate over the proof from
the beginning. In this stage, we replace all additions of RUPs that are neither
resolvents nor subsumed clauses. In the following, we show how the addition
of such a RUP can be transformed into a sequence of resolution steps followed
by a single subsumed-clause addition. This is illustrated in Fig. 2. We note
that this has already been explained on a high level in the literature [33, 27].

Let us first observe that, given a correct proof containing only RUP addi-
tions and definition introductions, the RUP additions of tautological clauses
can be directly eliminated. To see this, simply observe that definition intro-
ductions are never affected by the presence of tautologies. Furthermore, if a
clause C is a RUP in F , and F contains a tautology (a ∨ ā ∨ D), the latter
never becomes a unit clause in F |α under any assignment α; therefore, C is
also a RUP in the formula resulting from removing tautologies from F . In the
following, we thus consider only proofs without tautological clauses.

If a non-tautological clause C is a RUP in a formula F , we know that
unit propagation derives a conflict on F ∧ C̄ where C̄ is the conjunction of the
negated literals in C. This is equivalent to saying that unit propagation derives
a conflict on F |C̄, viewing C̄ as the assignment that satisfies C̄. Hence, there
exists a (possibly empty) sequence of literals a1, . . . , an such that the unit
clause (ai) occurs in F |C̄a1 . . . ai−1 for each 1 ≤ i ≤ n, and the empty clause
⊥ occurs in F |C̄a1 . . . an. Intuitively, (ai) is the unit clause propagated at the
i-th propagation step after all unit clauses in C̄ have been propagated. These
unit clauses and the empty clause stem from clauses D1, . . . , Dn+1 ∈ F with
the following properties: (I) the clause Di |C̄a1 . . . ai−1 is the unit clause (ai)
for 1 ≤ i ≤ n, (II) Di is not satisfied by C̄a1 . . . ai−1 for 1 ≤ i ≤ n + 1, and
(III) the clause Dn+1 |C̄a1 . . . an is the empty clause.

Algorithm 1 uses the clauses D1, . . . , Dn+1 as follows: It starts with the last
clause, Dn+1, and step-by-step resolves it with the clauses Dn, . . . , D1 until it

11

obtains a clause C1 that subsumes C. Using C1, we can then derive C with
a subsumed-clause addition. Note that the algorithm performs n iterations
and that the clauses D1, . . . , Dn+1 ∈ F can be found by performing unit
propagation on F∧(c̄1)∧· · ·∧(c̄k), where C = (c1∨· · ·∨ck). As unit propagation
is known to run in polynomial time, Algorithm 1 thus also runs in polynomial
time with respect to F ∧ C. Example 4 illustrates the algorithm.

Example 4 Consider the clause C = (a∨b) and F = D1∧D2∧D3∧D4 where:

D1 = (a ∨ c) D2 = (a ∨ c̄ ∨ d) D3 = (d̄ ∨ e) D4 = (d̄ ∨ ē)

The clause C is a RUP in F because unit propagation derives a conflict on
F ∧ (ā) ∧ (b̄), or equivalently, it derives a conflict on F |āb̄. To illustrate this,
we perform the unit propagation:

D1 |āb̄ = (c) D2 |āb̄c = (d) D3 |āb̄cd = (e) D4 |āb̄cde = ⊥

Our algorithm now performs resolution steps as follows:

D1︷ ︸︸ ︷
a ∨ c

D2︷ ︸︸ ︷
a ∨ c̄ ∨ d

D3︷ ︸︸ ︷
d̄ ∨ e

D4︷ ︸︸ ︷
d̄ ∨ ē

d̄
a ∨ c̄

a︸︷︷︸
C1

As we can see, the resulting clause C1 = (a) subsumes C = (a ∨ b). ut

Lemma 1 If a formula F implies a non-tautological clause C via unit prop-
agation, then the clause C1, computed by Algorithm 1, subsumes C.

Proof We show by induction that, for every 1 ≤ i ≤ n + 1, the clause Ci

computed by Algorithm 1 satisfies Ci |C̄a1 . . . ai−1 = ⊥. The claim then follows
from C1 |C̄ = ⊥, which is equivalent to C1 ⊆ C.

Base case (i = n+ 1): Follows from Cn+1 = Dn+1 and property (III).

Induction step (1 ≤ i ≤ n): Assume the claim holds for i+1. Then, we have
Ci+1 |C̄a1 . . . ai = ⊥, and from property (I) we know Di |C̄a1 . . . ai−1 = (ai).
Now, if āi /∈ Ci+1, then Ci+1 |C̄a1 . . . ai−1 = ⊥. In this case, the algorithm sets
Ci = Ci+1 and so the claim holds for i. In contrast, if Ci+1 contains āi, then
the algorithm sets Ci = Di ⊗ai Ci+1. But then, as Ci contains only literals of
Di and Ci+1 except for ai and āi, the claim also follows for i. ut

The following statement, which is a variant of Theorem 2 in [27] as well as of
the Theorem of Lee [23], is a consequence of Lemma 1; it allows us to repeatedly
eliminate all additions of RUPs that are not resolvents or subsumed clauses.

Theorem 2 If a formula F implies a non-tautological clause C via unit prop-
agation using n propagation steps, then we can derive C from F via at most
n resolution steps followed by one subsumed-clause addition.

12

4.4 Eliminating Subsumed-Clause Additions

At this point, every instruction is either a definition introduction or it adds
a resolvent or a subsumed clause. Since the extension rule does not depend
on previous clauses, we can reorder the instructions of our proof so that all
definition introductions occur before all addition instructions.

Now, by a well-known method (e.g., [2]) we can eliminate all subsumed-
clause additions from the latter part of our proof. The procedure works by
recursively labeling every clause in the proof with a subclause. These labels
give a resolution proof, possibly with unnecessary inferences. The labeling
proceeds as follows:

1. We label every leaf clause by itself.
2. For each resolvent of two clauses (C1 ∨ x) and (C2 ∨ x̄), which are labeled

by D1 and D2 respectively, we label the resolvent by D1 if x /∈ D1; by D2 if
x̄ /∈ D2; and by the resolvent of D1 and D2 upon x if x ∈ D1 and x̄ ∈ D2.

3. For each subsumption inference from a clause C that is labeled by D, we
label the subsumed clause by D.

It is straightforward to check that the labels define a resolution derivation
without subsumed-clause additions; in fact, a refutation, as the only subclause
of ⊥ is ⊥ itself. The resulting derivation may contain redundant parts such as
unused subderivations, but these do not affect our analysis and can be removed
easily. After eliminating all subsumed-clause additions, we finally obtain an
extended-resolution proof.

Example 5 The proof tree below includes subsumed-clause additions 1 and 2.
The clauses in the proof that are strict supersets of their labels are afterwards
dropped from the proof (for instance, (a∨ b̄) is dropped because {b̄} ⊂ {a, b̄}):

a ∨ b [a ∨ b]
b̄ [b̄]

1
a ∨ b̄ [b̄]

a [a]

ā ∨ c [ā ∨ c]
d [d]

2
c̄ ∨ d [d]

ā ∨ d [d] ā ∨ d̄ [ā ∨ d̄]

ā [ā]

⊥ [⊥]

After dropping clauses, the result is the following proof:

a ∨ b b̄
a

d ā ∨ d̄
ā

⊥

4.5 Complexity of the Simulation

We show now that our simulation only involves a polynomial blow-up. To sim-
plify the presentation, we use the number of literals (with repetitions) in a
proof P as the measure for its size, denoted by ‖P‖. After we have shown that

13

the size of the resulting extended-resolution proof is polynomial compared to
the original DRAT proof, it should be clear that the computation of the simu-
lation is also polynomial, given the simplicity of the used techniques (the only
stage where this might not be straightforward is stage 2, for which we discussed
in Section 4.3 why it runs in polynomial time). Let the original DRAT proof be
P = C1, . . . , Cm, Im+1, . . . , In. Note first that for every m+1 ≤ i ≤ n, the size
‖Ii‖ of the instruction Ii, and the size ‖Fi‖ of the accumulated formula Fi are
both bounded by O(‖P‖). Note also that the elimination of clause deletions
and subsumed-clause additions shrinks the proof. Hence, out of the four stages
in the simulation, we only need to consider the first stage (elimination of RAT
additions) and the third stage (elimination of RUP additions) to obtain an
upper bound on the proof size.

Elimination of RAT additions. For the following, remark that for i ∈ m +
1, . . . , n, the size of the accumulated formula after the i-th proof fragment πi
(obtained by transforming the instruction Ii) in the new proof is the same
as that of Fi in the original DRAT proof (we explained this on page 8). For
the elimination of a single RAT addition of a clause (p ∨ c1 ∨ · · · ∨ ck), we
first add the definition x ↔ p ∨ (c̄1 ∧ · · · ∧ c̄k). This step is clearly O(‖P‖).
After this, we add for each clause (D ∨ p) ∈ Fi−1 the clause (D ∨ x), and we
add for each clause (D ∨ p̄) ∈ Fi−1 the clause (D ∨ x̄). This leads to at most
O(‖Fi−1‖) = O(‖P‖) new literals. Finally, we delete all clauses containing p
or p̄. These deletions together are again of size at most O(‖Fi−1‖) = O(‖P‖).
Overall, the size of the proof generated by eliminating a single RAT addition
is thus bounded by 3 × O(‖P‖) = O(‖P‖). Finally, as we perform at most n
such RAT eliminations and since n = O(‖P‖), the size of the resulting proof
after eliminating all RATs is bounded by O(‖P‖2).

Elimination of RUP additions. Before we eliminate RUPs, we have a proof
whose size is O(‖P‖2). We thus eliminate at most O(‖P‖2) RUP additions. It
remains to determine a bound for the size of the proof instructions obtained by
eliminating a single RUP addition. Theorem 2 tells us that if C is a RUP that
is implied via unit propagation using k propagation steps, we can derive C
with at most k resolution steps followed by a single subsumed-clause addition.
Clearly, the number of unit-propagation steps is bounded by the number of
variables occurring in the proof (every variable can be propagated at most
once). Now, the number of variables in the original proof P is clearly bounded
by ‖P‖ and since the elimination of RAT additions has introduced at most
one new variable for every RAT, we have O(‖P‖) variables. Hence, a single
RUP elimination leads to at most O(‖P‖) instructions. As the size of a single
instruction is bounded by O(‖P‖) (a clause can contain at most two literals
per variable), every RUP elimination results in a proof of size O(‖P‖2). We
conclude that the size of the resulting extended-resolution proof is O(‖P‖4).

Note that our analysis is very conservative. For instance, representing resol-
vents implicitly (just pointing to their two parent clauses) instead of repre-

14

DPR [13] DRAT [35, 18] ER [30]

[10]

Fig. 3. A dashed line from X to Y means that X simulates Y polynomially.
A solid line from X to Y means that every Y proof can be regarded as an X
proof.

senting them explicitly shrinks the resulting extended-resolution proof signif-
icantly. As we will see in Section 7, the increase in size on practical DRAT
proofs is way smaller than the theoretical bound we obtain here. Combining
our result with the recent result that DRAT polynomially simulates DPR (a
generalization of DRAT) [10], we obtain the complexity landscape depicted in
Fig. 3.

5 Replacing RAT Addition With Blocked-Clause Addition

In our polynomial simulation, we needed to introduce a new variable for ev-
ery proper RAT addition. This cannot be avoided because extended resolution
without new variables is just ordinary resolution, and ordinary resolution is
exponentially weaker than both DRAT and extended resolution [9]. We now
show how blocked-clause addition, introduced by Kullmann [22] as a general-
ization of the extension rule from extended resolution, can be used to replace
RAT addition without introducing new variables. This shows that a simple
generalization of the extension rule is essentially as powerful as RAT addition,
even when no new variables are introduced. Informally, a clause is blocked if
all resolvents upon one of its literals are tautologies [22]:

Definition 7 A clause C is blocked by a literal p ∈ C in a formula F if all
resolvents of C upon p with clauses in F are tautologies.

Example 6 Consider the formula F = (p̄ ∨ b̄) ∧ (p̄ ∨ ā) ∧ (p ∨ c) ∧ (a ∨ c) and
the clause (a ∨ b ∨ p). There are two resolvents of (a ∨ b ∨ p) upon p: The
clause (a∨ b∨ b̄), obtained by resolving with (p̄∨ b̄), and the clause (a∨ b∨ ā),
obtained by resolving with (p̄∨ā). As both resolvents are tautologies, (a∨b∨p)
is blocked by p in F . ut

Blocked clauses are thus more restricted than RATs: While the RAT property
only requires all the resolvents to be implied via unit propagation, blocked
clauses require them to be tautologies, which are trivially implied via unit
propagation. Hence, every blocked clause is also a RAT but not vice versa.

We follow an iterative procedure similar to the one presented in Section 4.
Suppose C = (c1∨· · ·∨ck∨p) is a proper RAT on p in a formula F . To replace
the addition of C to F , we first turn C into a blocked clause by replacing the
resolution partners that do not lead to tautological resolvents. We then add
the clause with blocked-clause addition and afterwards derive all the original

15

resolution partners again. As illustrated in Fig. 4, this leads to a sequence con-
sisting of RUP additions, clause deletions, and a single blocked-clause addition.
Specifically, we perform the following steps:

(1) For every (D ∨ p̄) ∈ Fi−1 whose resolvent R = (c1 ∨ · · · ∨ ck ∨D) with
C upon p is not a tautology, add R with RUP addition. The resolvent
R is guaranteed to be a RUP because C is a RAT on p in Fi−1.

(2) For every (D ∨ p̄) ∈ Fi−1 whose resolvent with C upon p is not a
tautology, replace (D ∨ p̄) by the set Dp = {(c̄j ∨D ∨ p̄) | 1 ≤ j ≤ k}.
Since all the clauses in Dp are subsumed by (D ∨ p̄), this replacement
results in a sequence of deletions and RUP additions. Note that in case
C is a unit clause, the set Dp is empty and so all resolution partners
are deleted.

(3) Add C with blocked-clause addition. This is a correct addition because
after step 2, every clause that contains p̄ contains a literal c̄j with cj ∈ C.
Hence, by resolving such a clause with C we obtain a tautology.

(4) Use RUP addition to add all the clauses (D ∨ p̄), which we replaced
in step 2, again. The addition of such a clause (D ∨ p̄) is a correct
RUP addition: If C is a unit clause, we have added R = D, which
subsumes (D ∨ p̄), in step 1. If C is not a unit clause, then Dp ∪ {R}
implies (D∨ p̄) via unit propagation: By propagating p and the negated
literals of D, we derive the unit clauses (c̄1), . . . , (c̄k) from the clauses
in Dp = {(c̄j ∨ D ∨ p̄) | 1 ≤ j ≤ k}. But these unit clauses lead to a
conflict with the clause (c1 ∨ · · · ∨ ck), which we derive by propagating
the negated literals of D on R = (c1 ∨ · · · ∨ ck ∨D).

(5) Delete all the RUPs added in step 1 and the clause sets Dp added in
step 2.

Example 7 Consider F = {(p̄), (a ∨ b ∨ c), (c̄ ∨ d), (d̄), (ā ∨ e), (b̄ ∨ e)} and
the clause C = (a∨b∨p). The clause C is not blocked but it is a RAT on p in F ,
meaning that F implies the resolvent (a∨b) of C and (p̄) via unit propagation.
To turn C into a blocked clause, we first add (a ∨ b) with RUP addition. We
next replace (p̄) by the clauses (p̄∨ ā) and (p̄∨ b̄) (both clauses are subsumed
by (p̄) and thus they are RUPs). Now (p̄∨ ā) and (p̄∨ b̄) contain literals whose
complements occur in C. We can thus add C with blocked-clause addition.

. . . RAT . . .

. . . RUP . . . RUP Del . . . Del BC RUP . . . RUP Del . . . Del . . .

Fig. 4. We transform a RAT addition into a sequence consisting of RUP ad-
ditions, clause deletions (Del), and a single blocked-clause addition (BC).

16

After this, we use RUP addition to add the original resolution partner (p̄)
again: This is a correct RUP addition because (a ∨ b), (p̄ ∨ ā), and (p̄ ∨ b̄)
together imply (p̄) via unit propagation (to see this, observe that making p
true forces ā and b̄ to be true which leads to a conflict with (a ∨ b)). This
step is actually the reason why we derived (a ∨ b) in the beginning. Finally,
we delete the intermediate clauses (a ∨ b), (p̄ ∨ ā), and (p̄ ∨ b̄) to obtain the
formula F ∪ {C}. ut

6 Simulating DPR by DRAT

We show how a DPR proof C1, . . . , Cm, Im+1, . . . , In can be transformed into
a DRAT proof. The main idea is similar to the idea behind eliminating proper
RAT additions in the simulation of DRAT with extended resolution: We iter-
ate over the instructions Im+1, . . . , In and replace every instruction Ii by a
sequence πi of instructions that are allowed in DRAT, i.e., additions of RATs
or RUPs and deletions:

C1, . . . , Cm, πm+1, . . . , πi−1,Ii , Ii+1, . . . , In

C1, . . . , Cm, πm+1, . . . , πi−1,πi, I
′
i+1, . . . , I

′
n

We define the transformation in such a way that the accumulated formula
Fi after proof step Ii in the original PR proof is the same as the accumulated
formula after the proof steps πi in the resulting DRAT proof. Because of this,
deletions in the DPR proof can simply be copied to the DRAT proof. The
interesting remaining case is to transform addition instructions for PR clauses.

6.1 Transforming a Single PR Addition

We want to transform a PR addition step of the form 〈a, Ci, ωi〉, where Ci is
propagation-redundant with respect to Fi−1 (the accumulated formula before
the addition of Ci) and ωi. On a high level, we do the following: We first take
a fresh variable x (i.e., a variable not occurring in the rest of the proof). Then,
we perform a sequence of DRAT steps that turn the accumulated formula Fi−1
into a formula F ′i−1 such that (Ci ∨ x) becomes a RAT in F ′i−1. After adding
(Ci∨x) to F ′i−1, we then perform a sequence of DRAT steps that transform F ′i−1
to Fi−1 and that replace (Ci∨x) by Ci. We thus end up with the accumulated
formula Fi. Note that since x is fresh, we could immediately add (Ci ∨ x) as a
RAT (as there are no resolvents upon x), but this would make it hard to turn
(Ci ∨ x) into Ci.

To simplify notation, we denote Fi−1 by F , Ci by C, and ωi by ω. We
also assume that var(C) ⊆ var(F), otherwise we could simply add C by a
single RAT addition since there would be no resolvents upon the literals whose
variables are in var(C)\var(F). We perform the transformation in five phases:

17

(1) Add extended copies of clauses that are touched but not satisfied by ω. We
say that an assignment α touches a clause D if var(α) ∩ var(D) 6= ∅.
We extend F by adding the clauses {(x̄ ∨D |ω) | D ∈ F and D |ω ⊂ D}.
Notice that D |ω ⊂ D is false if ω satisfies D. As the literal x does not
occur in F , all clauses (x̄ ∨D |ω) are RATs on x̄ in F (since there are no
resolvents upon x̄). We denote the resulting formula by G (1).

(2) Weaken involved clauses. We call a clause involved if it contains literals
that are falsified by ω as well as literals that are satisfied by ω. We weaken
every involved clause E ∈ F by replacing it with (x ∨ E). Since every
weakening step can be performed by a RUP addition (subsumed clauses
are RUPs) followed by a deletion, this leads to valid DRAT steps. We denote
the resulting formula by G (2).
This phase only preserves satisfiability as the formula is weakened, while
the other phases preserve both satisfiability and unsatisfiability. In order
to preserve both satisfiability and unsatisfiability, one can add the clauses
corresponding to the implication x→ ω before weakening the clauses from
E to (x ∨ E) and after the weakening remove the clauses corresponding
to the implication. Adding the implication clauses can be achieved by
RAT addition as these clauses have RAT on literal x̄. The removal of these
clauses can be achieved by RAT deletion as they have RAT on the other
literal after the weakening.

(3) Add the weakened propagation-redundant clause. We add the clause (C∨x)
to G (2), resulting in G (3). To prove that (C ∨ x) is a RAT on x in G (2), we
need to show that for every clause (x̄ ∨D) ∈ G (2), the resolvent (C ∨D)
of (C ∨ x) and (x̄ ∨D) is implied by G (2) via unit propagation: The only
clauses in G (2) that contain the literal x̄ are the ones we added in the
first phase, which are of the form (x̄ ∨ D |ω) where D ∈ F ; hence the
corresponding resolvent that we must show from G (2) via unit propaga-
tion is (C ∨ D |ω). Let α be the assignment precluded by C. Since C is
propagation-redundant with respect to F and witness ω, we know that
F |α `1 D |ω since D ∈ F . This is equivalent to F `1 (C ∨ D |ω). Now,
all clauses of F are also contained in G (2), except for clauses of the form
(x ∨ E)—added in phase (2)—for which F contains the corresponding
clauses of the form E. However, since propagation of the negated literals
of D on G (2) can derive the unit clause x̄, we have that F `1 (C ∨D |ω)
implies G (2) `1 (C ∨D |ω).

(4) Strengthen all weakened clauses. We remove all occurrences of the literal
x from clauses in G (3). With this we reverse the second phase by strength-
ening the clauses (E ∨ x) to E and strengthen (C ∨ x) to C. First, we
introduce the clauses corresponding to the implication x → ω, i.e., the
clauses {(x̄ ∨ l) | ω(l) = 1}. Let us show that these clauses are RATs on l
in G (3) after making a couple of observations. First, any clause (x̄∨D |ω)
introduced in step 1 does not contain the literal l̄ with l ∈ ω. Second, any

18

clause E ∈ F containing l̄ and satisfied by ω is replaced by the clause
(x∨E) in step 2. Hence, the only clauses that can contain l̄ are (i) clauses
D ∈ F which are not satisfied by ω, (ii) clauses of the form (x ∨ E) with
l̄ ∈ E (as introduced in step 2), and (iii) the clause (C ∨ x) introduced in
step 3. For a clause D as in the first case, the clause (x̄ ∨D |ω) is intro-
duced in step 1; the resolvent (x̄∨ l)⊗D is then subsumed by (x̄∨D |ω),
which occurs in G (3) because of step 1. Resolvents with clauses of either
the form (x ∨ E) in the second case, or the form (C ∨ x) in the third
case, are tautologies as they contain x and x̄. After this, we strengthen all
clauses (x ∨ E) ∈ G (3), including (C ∨ x), to E as follows: Observe that
all clauses (x ∨ E) ∈ G (3) are satisfied by ω and therefore there exists a
clause (x̄∨ l) with l ∈ E. We can thus derive E from (x∨E) by resolving
with this clause. We denote the resulting formula by G (4).

(5) Remove clauses that contain x̄. We remove the clauses {(x̄∨ l) | ω(l) = 1}
of the implication x → ω as well as the clauses of the form (x̄ ∨D) that
were added in the first phase. We denote the resulting formula by G (5).

6.2 Complexity of the Simulation

We now analyze the worst-case complexity of transforming a PR proof of the
form C1, . . . , Cm, 〈a, Cm+1, ωm+1〉, . . . , 〈a, Cn, ωn〉 into a DRAT proof of the
form C1, . . . , Cm, πm+1, . . . , πn. The number of DRAT steps that are required
to simulate a single PR addition step depends on the size of the accumulated
formula at the respective proof step. For what follows, |Fn| = n denoted the
number of clauses in Fn and let V = |var(Fn)| be the number of variables in
Fn. Since a PR proof does not delete clauses, we have |Fi| = |Fi−1| + 1 and
|var(Fi)| ≥ |var(Fi−1)| and thus |Fi| ≤ n and |var(Fi)| ≤ V for 1 ≤ i ≤ n. In
the analysis, we ignore clause deletion since the number of clause deletions is
bounded by the number of added clauses. Notice that since PR proofs don’t
contain deletion steps, no original clauses are deleted in the resulting DRAT
proof.

In phase (1) of the conversion algorithm, copies of clauses that are reduced
but not satisfied by ωi are added, while in phase (2) clauses are weakened
which are reduced and satisfied by ωi. Since a clause is either satisfied, not
satisfied, or untouched by ωi, the sum of the number of copies and weakened
clauses is at most |Fi| ≤ n. Phase (3) adds a single clause. Phase (4) adds
the clauses for the implication x → ωi (at most V steps) and strengthens all
weakened clauses (at most n steps). Phase (5) only deletes clauses. Thus the
total number of clause additions for all phases in the conversion of a single PR
step is bounded by V + 2n+ 1.

There are fewer than n additions in the PR proof and for each addition
we apply the conversion algorithm. Hence the total number of clause addition
steps in the DRAT proof is at most nV + 2n2 + n. Since V ≤ n for any

19

interesting PR proof1, the number of steps in the resulting DRAT proof is in
O(n2). From this it should be clear that the simulation can be performed in
polynomial time.

6.3 Optimizations

Our simulation procedure was designed to result in compact DRAT proofs
using only one new variable, while focusing on converting any DPR derivation
into a DRAT derivation. The procedure can be further optimized to reduce the
size of the resulting DRAT proof.

Witness minimization. In some situations, only a subset of the involved clauses
needs to be weakened (phase 2) and strengthened (phase 4). Weakening of in-
volved clauses is required to make sure that the clauses of the form (x̄ ∨ l),
where ω satisfies l, are RATs on l in G (3) in phase (4) of the simulation algo-
rithm. However, some of the clauses (x̄∨l) may be implied via unit propagation
by others (and do not require to be a RATs on l). This situation occurs when
a subset ω′ of the witness ω implies ω via unit propagation. We thus minimize
ω by searching for the smallest witness ω′ ⊆ ω such that ω′ implies ω via unit
propagation, i.e., F |ω′ `1 (l1)∧· · ·∧(ln) for ω = l1 . . . ln. Only clauses reduced
by ω′ and satisfied by ω need to be weakened in phase (2) and strengthened
in (4).

Avoiding copying. In some cases, which we describe in the following, we can
avoid copying the clauses that are touched but not satisfied by the witness,
meaning that we can skip phase (1) and (5) of the simulation algorithm: Let
α be the assignment precluded by the PR clause C to be added, let ω be the
witness, and let ω′ be the minimized witness as discussed above. If the following
two conditions hold, we can avoid clause copying: First, there is no literal l
that is satisfied by α but falsified by ω′.2 Second, for each literal l that is
satisfied by ω′, the unit clause (l) should be a RAT on l in the current formula
without the involved clauses under α. Although these conditions seem very
restrictive, they apply often in the PR proofs used in our empirical evaluation.
This optimization removes phases (1) and (5), and modifies (2), (3), and (4).
We denote the modified phases by phase (i), (ii), and (iii), respectively:

(i) Weaken involved clauses. We now call a clause involved if it contains
literals that are falsified by the minimized witness ω′ as well as literals
that are satisfied by the original witness ω. In this phase, we replace each
involved clause E by the clause (x ∨ E), which is a valid RUP addition.
We denote the resulting formula by G (i).

1 A formula with more variables than clauses can be reduced to a smaller satisfiability-
equivalent formula with more clauses than variables in polynomial time.

2 Recall that, by definition, there always exists a literal that is satisfied by α but falsified
by ω, hence this condition can only be true if ω was minimized to ω′.

20

(ii) Add the weakened propagation-redundant clause. Add the clause (C ∨x).
Since no clause contains the literal x̄, this is a valid RAT addition. We
denote the resulting formula by G (ii).

(iii) Strengthen all weakened clauses. We now remove all occurrences of the
literal x from clauses in G (ii). With this, we reverse the second phase (i)
by strengthening (E ∨ x) to E and strengthen (C ∨ x) to C. First, we
introduce the clauses corresponding to the implication x → ω′, i.e., the
clauses {(x̄∨ l) | ω′(l) = 1}. These clauses are RATs on l in G (ii): Assume
a clause D contains l̄, i.e., D contains a literal that is falsified by ω′.
Then, D is either satisfied by ω or not. If D is satisfied by ω, then it is
of the form (x ∨E) (introduced in phase i), and thus the resolvent with
(x̄∨ l) is a tautology. If D is not satisfied by ω, then it is implied by unit
propagation under the current formula under α because of the second
condition above. After adding these clauses, we strengthen (C ∨x) to C
and all clauses (x∨E) ∈ G (ii) to E. Observe that all clauses (x∨E) ∈ G (ii),
including (C ∨ x), are satisfied by ω and therefore there exists a clause
(x̄ ∨ l) with l ∈ E. Resolving with the clauses (x̄ ∨ l), we can therefore
remove all literals x. We denote the resulting formula, which is equal to
G ∧ C, by G (iii).

7 Experimental Evaluation

We implemented our simulation procedures as dedicated tools, called drat2er

(for the transformation from DRAT to extended resolution) and pr2drat (for
the transformation from DPR to DRAT).3 We then evaluated the simulation
tools on existing DPR proofs for the pigeon-hole formulas, two-pigeons-per-hole
formulas [3], and Tseitin formulas [30, 4]. The pigeon-hole formulas (hole*)
ask whether n+ 1 pigeons can be placed into n holes such that each hole con-
tains at most one pigeon. Similarly, the two-pigeons-per-hole formulas (tph*)
ask whether 2n+1 pigeons can be placed into n holes with at most two pigeons
per hole. Finally, the Tseitin formulas (Urquhart*) encode a parity problem
on graphs.

We selected the proofs of these formulas for two reasons. First, all three
formula families are hard for resolution, meaning that they admit only res-
olution proofs whose size is exponential with respect to the formula [9, 32].
Second, out of all DRAT proofs we are aware of, the DRAT proofs in our ex-
periments have the highest ratio of proper-RAT-to-RUP-instructions, meaning
that the transformation from DRAT to extended resolution can offer insight
into a worst-case scenario regarding existing proofs. Table 1 shows the results
of our experiments. Although the extended-resolution proofs are clearly larger
than the corresponding DRAT proofs, the blow-up is far from the theoretical

3 The tool drat2er is available at https://github.com/benjaminkiesl/drat2er and the
tool pr2drat is available at http://www.cs.cmu.edu/~mheule/pr2drat/. The formulas and
proofs are available at https://github.com/marijnheule/drat2er-proofs.

https://github.com/benjaminkiesl/drat2er
http://www.cs.cmu.edu/~mheule/pr2drat/
https://github.com/marijnheule/drat2er-proofs

21

Table 1. A size comparison of DPR, DRAT, and ER proofs of formulas that
are hard for resolution. Column headers refer to the numbers of variables
(#var), clauses (#cls), clause additions (#add), added definitions (#def), and
resolution steps (#res).

input DPR DRAT ER
formula #var #cls #add #add #def #res

hole20 420 4221 2870 26 547 18 162 282 471
hole30 930 13 981 9455 89 827 61 962 1 393 411
hole40 1640 32 841 22 140 213 107 147 562 4 344 126
hole50 2550 63 801 42 925 416 387 288 962 10 517 116
tph8 136 5457 1156 25 204 13 931 1 093 959
tph12 300 27 625 3950 127 296 68 645 11 688 956
tph16 528 87 329 9416 401 004 212 847 63 391 635
tph20 820 213 241 18 450 976 376 512 841 236 415 141
Urquhart-s5-b1 106 714 620 28 189 8320 102 293
Urquhart-s5-b2 107 742 606 32 574 9020 123 943
Urquhart-s5-b3 121 1116 692 41 230 11 404 188 875
Urquhart-s5-b4 114 888 636 37 978 10 497 171 576

Table 2. Small existing ER proofs of pigeon-hole formulas and Tseitin formu-
las.

ER by Cook [5]
formula #def #res
hole20 2660 160 151
hole30 8990 810 161
hole40 21 320 2 560 171
hole50 41 650 6 250 181

ER by EBDDRES [19]
formula #def #res

Urquhart-s5-b1 11 054 39 702
Urquhart-s5-b2 12 684 45 389
Urquhart-s5-b3 28 358 100 585
Urquhart-s5-b4 16 295 58 552

worst case. As we already selected proofs with many proper RAT instructions,
we imagine that the growth is even smaller on proofs with a modest num-
ber of RAT instructions. For a pigeon-hole formula holeX, the increase in size
is roughly the factor X. For the two-pigeons-per-hole formulas, the growth is
larger. This can be explained by the high clauses-to-variables ratio. Finally,
for the Tseitin formulas, the growth lies between a factor of 20 and 30.

As a comparison, Table 2 shows the smallest extended-resolution proofs
of the pigeon-hole formulas and of the Tseitin formulas known to us. The
proofs of the pigeon-hole formulas were manually constructed by Cook [5]
whereas the proofs of the Tseitin formulas were produced using the tool EBD-
DRES 1.2 [19]. To the best of our knowledge, there is only one tool supporting
extended resolution that was able to solve one of the selected two-pigeons-per-
hole formulas: EBDDRES 1.1 [29]. It generated an extended-resolution proof
with 2 638 385 definitions and 18 848 004 resolution steps for the formula tph8.

22

hole tph Urquhart

105

106

107

108

109

20 30 40 50 8 12 16 20 1 2 3 4

PR
DRAT
CLRAT

hole tph

0.1

1

101

102

103

20 30 40 50 8 12 16 20

pr2drat
DRAT-trim
ACL2check

Fig. 5. Certification of PR proofs using pr2drat, DRAT-trim, and the formally
verified checker ACL2check. Left the sizes of proofs in the PR, DRAT, and
CLRAT formats are shown in bytes and right the proof conversion and checking
times are in seconds. No times are shown for the Urquhart instances as all times
were less than a second.

7.1 Verified PR Proof Checking

Our tool pr2drat can be used to validate PR proofs with formally verified tools
and thereby increase the confidence in their correctness. The tool chain works
as follows: Given a formula F and an alleged PR proof PPR of F , pr2drat
converts PPR into a DRAT proof PDRAT. Afterwards, we use the DRAT-trim

tool to convert PDRAT into a CLRAT (compressed linear RAT) proof PCLRAT.
CLRAT proofs can be efficiently checked using formally verified checkers [7].
We used the verified checker ACL2check [12] to certify that PCLRAT is a valid
proof of unsatisfiability of F . Notice that the correctness of the tools pr2drat
and DRAT-trim has not been formally verified and thus they could possibly
turn an invalid proof into a valid proof or vice versa.

Figure 5 shows the results of applying this tool chain on the benchmark
suite. The pr2drat tool was able to convert each PR proof into a DRAT proof
in less than a minute, and half of the proofs in even less than a second. The
runtimes of DRAT-trim and ACL2check are one to two orders of magnitude
higher than for pr2drat. Thus, pr2drat adds little overhead to the tool chain.
The sizes of the DRAT and CLRAT proofs are comparable. However, these
proofs are different since DRAT-trim (1) removes redundant clause additions,
(2) includes hints to speedup verified checking, and (3) compresses proofs.
The effect of 1 depends on proof quality, 2 increases the size of proofs of small
hard problems by roughly a factor of four, and 3 reduces size to 30% of the
uncompressed proofs. The difference between the DRAT and CLRAT proofs
therefore indicates how much redundancy was removed: For the pigeon-hole
proofs, there is hardly any redundancy added. For the two-pigeons-per-hole
proofs, only a modest amount is added, and for the Tseitin proofs a lot of

23

redundancy is added. Notice that runtimes of the verified checker ACL2check

are comparable to the C-based checker DRAT-trim.

8 Conclusion

We showed different simulations between propositional proof systems. The first
simulation transforms DRAT proofs into extended-resolution proofs whereas
the second simulation transforms DPR proofs into DRAT proofs. Together,
these two simulations show how extended resolution is related to modern
propagation-based proof systems used in practical SAT solving. In addition,
we showed how blocked-clause addition can be used to simulate the addition
of RATs without the introduction of new variables. Our results provide us with
a better understanding of DRAT and DPR as well as of extended resolution.
We now know how extended resolution can mimic the reasoning steps of these
modern proof systems.

To evaluate the increase in size caused by our simulations, we implemented
them and performed experiments on existing DRAT and DPR proofs of hard
formulas. Even though the size increase could be considerable in theory, in
practice it is still feasible. Especially our simulation tool of DPR by DRAT
allows to certify the correctness of DPR proofs by first transforming them to
DRAT and then using formally verified proof checkers.

References

1. Alekhnovich M (2004) Mutilated chessboard problem is exponentially hard
for resolution. Theoretical Computer Science 310(1-3):513–525

2. Baaz M, Leitsch A (2011) Methods of Cut-Elimination. No. 3 in Trends
in Logic, Springer Netherlands

3. Biere A (2013) Two pigeons per hole problem. In: Proc. of SAT Competi-
tion 2013: Solver and Benchmark Descriptions, p 103

4. Chatalic P, Simon L (2000) Multi-resolution on compressed sets of clauses.
In: Proc. of the 12th IEEE Int. Conference on Tools with Artificial Intel-
ligence (ICTAI 2000), pp 2–10

5. Cook SA (1976) A short proof of the pigeon hole principle using extended
resolution. SIGACT News 8(4):28–32

6. Cook SA, Reckhow RA (1979) The relative efficiency of propositional proof
systems. The Journal of Symbolic Logic 44(1):pp. 36–50

7. Cruz-Filipe L, Heule MJH, Jr WAH, Kaufmann M, Schneider-Kamp P
(2017) Efficient certified RAT verification. In: Proc. of the 26th Int. Con-
ference on Automated Deduction (CADE-26), Springer, LNCS, vol 10395,
pp 220–236

8. Dantchev SS, Riis S (2001) “Planar” tautologies hard for resolution. In:
Proc. of the 42nd Annual Symposium on Foundations of Computer Science
(FOCS 2001), IEEE Computer Society, pp 220–229

24

9. Haken A (1985) The intractability of resolution. Theoretical Computer
Science 39:297–308

10. Heule MJH, Biere A (2018) What a difference a variable makes. In: Proc.
of the 24th Int. Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2018), Springer, LNCS, vol 10806, pp
75–92

11. Heule MJH, Kullmann O, Marek VW (2016) Solving and verifying the
Boolean Pythagorean Triples problem via Cube-and-Conquer. In: Proc.
of the 19th Int. Conference on Theory and Applications of Satisfiability
Testing (SAT 2016), Springer, Cham, LNCS, vol 9710, pp 228–245

12. Heule MJH, Hunt Jr WA, Kaufmann M, Wetzler ND (2017) Efficient, ver-
ified checking of propositional proofs. In: Proc. of the 8th Int. Conference
on Interactive Theorem Proving (ITP 2017), Springer, LNCS, vol 10499,
pp 269–284

13. Heule MJH, Kiesl B, Biere A (2017) Short proofs without new variables.
In: Proc. of the 26th Int. Conference on Automated Deduction (CADE-
26), Springer, Cham, LNCS, vol 10395, pp 130–147

14. Heule MJH, Kiesl B, Seidl M, Biere A (2017) PRuning through satis-
faction. In: Proc. of the 13th Haifa Verification Conference (HVC 2017),
Springer, LNCS, vol 10629, pp 179–194

15. Heule MJH, Kiesl B, Biere A (2019) Encoding redundancy for satisfaction-
driven clause learning. In: Proc. of the 25th Int. Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2019),
Springer, LNCS, vol 11427, pp 41–58

16. Heule MJH, Kiesl B, Biere A (2019) Strong extension-free proof systems.
Journal of Automated Reasoning

17. Järvisalo M, Biere A, Heule MJH (2010) Blocked clause elimination. In:
Proc. of the 16th Int. Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS 2010), Springer, Heidelberg,
LNCS, vol 6015, pp 129–144

18. Järvisalo M, Heule MJH, Biere A (2012) Inprocessing rules. In: Proc. of
the 6th Int. Joint Conference on Automated Reasoning (IJCAR 2012),
Springer, Heidelberg, LNCS, vol 7364, pp 355–370

19. Jussila T, Sinz C, Biere A (2006) Extended resolution proofs for symbolic
SAT solving with quantification. In: Proc. of the 9th Int. Conference on
Theory and Applications of Satisfiability Testing (SAT 2006), Springer,
LNCS, vol 4121, pp 54–60

20. Kiesl B, Rebola-Pardo A, Heule MJH (2018) Extended resolution sim-
ulates DRAT. In: Proc. of the 9th Int. Joint Conference on Automated
Reasoning (IJCAR 2018), Springer, LNCS, vol 10900, pp 516–531

21. Konev B, Lisitsa A (2015) Computer-aided proof of Erdős discrepancy
properties. Artificial Intelligence 224(C):103–118

22. Kullmann O (1999) On a generalization of extended resolution. Discrete
Applied Mathematics 96-97:149–176

23. Lee CT (1967) A completeness theorem and a computer program for find-
ing theorems derivable from given axioms. PhD thesis, University of Cal-

25

ifornia, Berkeley
24. Marques-Silva JP, Sakallah KA (1999) GRASP: A search algorithm for

propositional satisfiability. IEEE Transactions on Computers 48(5):506–
521

25. McCarthy J (1964) A tough nut for proof procedures. Memo 16, Stanford
Artificial Intelligence Project

26. Moskewicz MW, Madigan CF, Zhao Y, Zhang L, Malik S (2001) Chaff:
Engineering an efficient SAT solver. In: Proc. of the 38th Design Automa-
tion Conference (DAC 2001), ACM, pp 530–535

27. Philipp T, Rebola-Pardo A (2017) Towards a semantics of unsatisfiability
proofs with inprocessing. In: Proc. of the 21st Int. Conference on Logic
for Programming, Artificial Intelligence and Reasoning (LPAR-21), Easy-
Chair, EPiC Series in Computing, vol 46, pp 65–84

28. Rebola-Pardo A, Suda M (2018) A theory of satisfiability-preserving proofs
in SAT solving. In: Proc. of the 22nd Int. Conference on Logic for Pro-
gramming, Artificial Intelligence, and Reasoning (LPAR-22), EasyChair,
EPiC Series in Computing, vol 57, pp 583–603

29. Sinz C, Biere A (2006) Extended resolution proofs for conjoining BDDs.
In: Proc. of the 1st Int. Computer Science Symposium in Russia (CSR
2006), Springer, Heidelberg, LNCS, vol 3967, pp 600–611

30. Tseitin GS (1968) On the complexity of derivation in propositional calcu-
lus. Studies in Mathematics and Mathematical Logic 2:115–125

31. Urquhart A (1987) Hard examples for resolution. Journal of the ACM
34(1):209–219

32. Urquhart A (1995) The complexity of propositional proofs. The Bulletin
of Symbolic Logic 1(4):425–467

33. Van Gelder A (2008) Verifying RUP proofs of propositional unsatisfiabil-
ity. In: Proc. of the 10th Int. Symposium on Artificial Intelligence and
Mathematics (ISAIM 2008)

34. Van Gelder A (2012) Producing and verifying extremely large propo-
sitional refutations. Annals of Mathematics and Artificial Intelligence
65(4):329–372

35. Wetzler ND, Heule MJH, Hunt Jr WA (2014) DRAT-trim: Efficient
checking and trimming using expressive clausal proofs. In: Proc. of the
17th Int. Conference on Theory and Applications of Satisfiability Testing
(SAT 2014), Springer, Cham, LNCS, vol 8561, pp 422–429

	Introduction
	Preliminaries
	Extended Resolution (ER), DRAT, and DPR
	Simulating DRAT with Extended Resolution
	Replacing RAT Addition With Blocked-Clause Addition
	Simulating DPR by DRAT
	Experimental Evaluation
	Conclusion

