
Unfolding Boxes with Local Constraints

Long Qian �, Eric Wang �,
Bernardo Subercaseaux �, and Marijn J. H. Heule �

Carnegie Mellon University, Pittsburgh PA 15213, USA
{longq, ebwang, bsuberca, mheule}@andrew.cmu.edu

Abstract. We consider the problem of finding and enumerating poly-
ominos that can be folded into multiple non-isomorphic boxes. While
several computational approaches have been proposed, including SAT,
randomized algorithms, and decision diagrams, none has been able to
perform at scale. We argue that existing SAT encodings are hindered by
the presence of global constraints (e.g., graph connectivity or acyclicity),
which are generally hard to encode effectively and hard for solvers to
reason about. In this work, we propose a new SAT-based approach that
replaces these global constraints with simple local constraints that have
substantially better propagation properties. Our approach dramatically
improves the scalability of both computing and enumerating common
box unfoldings: (i) while previous approaches could only find common
unfoldings of two boxes up to area 88, ours easily scales beyond 150,
and (ii) while previous approaches were only able to enumerate common
unfoldings up to area 30, ours scales up to 60. This allows us to rule out
46, 54, and 58 as the smallest areas allowing a common unfolding of three
boxes, thereby refuting a conjecture of Xu et al. (2017).

Keywords: Box folding · SAT encodings · Graph connectivity · Graph
cyclicity · Local constraints.

1 Introduction

Folding two-dimensional surfaces into a three-dimensional structure is a funda-
mental problem in computational geometry, with many applications ranging from
the arts (e.g., origami) to diverse fields of engineering (e.g., packaging, protein
folding) [4]. Perhaps the simplest example, usually introduced to children, is that
of folding a 1×1×1 box (Figure 1b) from a net corresponding to a polyomino of
area 6 (Figure 1a). Interestingly, as depicted in Figure 1c, multiple nets can fold
into the same box, and the problem of enumerating all the nets that fold into a
given a×b×c box is already non-trivial (see Table 5).

An even more surprising fact, depicted in Figure 2, is that sometimes multiple
non-isomorphic boxes can be obtained from the same net, simply by folding
along different edges. These common unfoldings (also known as common develop-
ments [12]) allow for interesting engineering applications: a single two-dimensional
piece of cardboard can be used for different types of boxes, depending on the
dimensions of the object to be packed.

https://orcid.org/0000-0003-1567-3948
https://orcid.org/0009-0004-6636-4541
https://orcid.org/0000-0003-2295-1299
https://orcid.org/0000-0002-5587-8801

2 Qian et al.

(a) Standard net. (b) 1×1×1 box. (c) Non-standard net.

Fig. 1: Illustration of the non-uniqueness of nets that fold into a box.

A body of work has focused in the particular case in which the nets are
polyominos, and one can only fold along the edges of the unit squares forming the
polyomino (cf. Figure 2) [6,8,10,11,12]. Nonetheless, several important questions
remain open. To state them, let us define some notation.

For a positive integer s representing a surface area, let P (s) be the set of
all triples (a, b, c) with a ≤ b ≤ c such that s = 2(ab+ ac+ bc). In other words,
P (s) is the set of all possible integer dimensions of a box with surface area s.
For example, P (22) = {(1, 1, 5), (1, 2, 3)}, and as shown in Figure 2, it turns out
that both boxes in P (22) can be folded from the same net of area 22. For a
positive integer k, let Ψ(k) be the smallest integer s such that there is a subset
P ′ ⊆ P (s) with |P ′| = k and all boxes in P ′ have a common unfolding. The
example in Figure 2 shows that Ψ(2) ≤ 22, and it can be easily checked that no
smaller value of s works. An impressive result by Shirakawa and Uehara is that
Ψ(3) ≤ 532, as they showed a common unfolding for boxes 7×8×14, 2×4×43,
and 2×13×16. Xu et al. [12] conjectured Ψ(3) = 46, which is the smallest value
for which |P (s)| ≥ 3. For k ≥ 4, it is not even known whether Ψ(k) is finite. We
define as well the opposite quantity, ∆(k), as the smallest integer s such that
there is a subset P ′ ⊆ P (s) with |P ′| = k where no common unfolding for P ′

exists. The work of Mitani and Uehara [6] shows that ∆(2) > 38, and suggests
∆(2) > 88. On the other hand, no upper bounds for ∆(2) are known.

Fig. 2: Two non-isomorphic boxes that can be folded from the same net.

Unfolding Boxes with Local Constraints 3

(a) 3×5×9 (b) 3×3×13

Fig. 3: A common unfolding of area 174.

In this work, we show that Ψ(3) > 58, that ∆(3) = 46. We show as well that
∆(2) > 86, and using heuristics we manage to compute solutions for certain
very large areas (see Figure 3). More importantly, the SAT-based approach we
developed to prove these results showcases a more general idea that might be
applicable in a wide variety of contexts: global constraints, for which conflicts
can be detected only after long propagation chains, can be approximated by local
constraints for which conflicts are detected much earlier, leading to substantially
better performance. To illustrate the power of our approach, let us present some
brief elements in comparison with previous research. In 2011, Abel et al. [1]
enumerated all common unfoldings for boxes 1×1×5 and 1×2×3 in about 10
hours [12], whereas our approach allows a complete enumeration in 2 minutes on a
personal computer. Xu et al. [12] remarked that using the same approach for area
30 would have taken “too huge memory even on a supercomputer”, and their more
efficient ZDD-based approach took only 10 days for area 30; ours takes 10 minutes.
Moreover, Xu et al. conjectured that Ψ(3) = 46, saying “However, the number of
polygons of area 46 seems to be too huge to search”. On a supercomputer [3], our
approach took 3 hours to refute this conjecture.

Code. Our code and the instructions to reproduce our results are publicly
available at https://github.com/LongQianQL/CADE30-BoxUnfoldings.

Organization. In Section 2, we give a high-level overview of our approach.
Then, Section 3 introduces necessary properties that box unfoldings must satisfy,
and that guide our encoding. In Section 4, we detail the differences with previous
SAT encodings for a spanning tree (a natural subproblem for finding unfoldings)
as we use local constraints that approximate both connectivity and acyclicty.
Then, in Section 5, we show how to encode that a folding net, which our encoding
keeps implicit, maps to two different boxes. In Section 6 we show how we break
rotational symmetries of the problem. Section 8 discusses related work, and in
particular, the limitations of previous SAT encodings. In Section 7 we present
our experimental results.

https://github.com/LongQianQL/CADE30-BoxUnfoldings

4 Qian et al.

(a) A 1× 1× 3 box with cut edges. (b) The corresponding folding net.

Fig. 4: The correspondence between cuts in a box and its folding nets.

2 Overview of our approach

The first step toward finding common unfoldings of multiple boxes is finding
unfoldings of a single box. As in previous work (e.g., [4,10,12]), we frame the
search for unfoldings of a given box B in terms of a search for “cut edges” in B
(see Figure 4) which after being physically cut, would allow to unfold the box
into a flat net without overlaps. For instance, if one were to cut the blue edges of
the 1×1×3 box depicted in Figure 4a, and then proceed to unfold1 the box, the
result would be the net depicted in Figure 4b. More precisely, any net N that
folds into a box B through a sequence γ1, . . . , γk of folding motions in space can
be obtained by cutting a subset of the edges of the unit-squares that compose
the different faces of B, and then reversing the folding motions as γ−1

k , . . . , γ−1
1

to obtain the net N .
Note, however, that not all sets of cut edges are “valid”, in the sense of allowing

for an unfolding of the box into a flat net. For example, one can easily see that
cutting a single edge of a box never allows for an unfolding, and furthermore
in Section 3 we will describe a simple argument showing one needs at least 4 cut
edges to unfold a box. Similarly, another requirement for a set of cut edges to
be valid is not contain cycles; cutting along a cycle would separate the box into
disconnected pieces!

Nonetheless, provided an efficient method to find valid sets of cut edges for a
box B, we can search for common unfoldings of multiple boxes. Indeed, to find
a net N that folds into different boxes B1, . . . , Bm, we need to find a valid set
Ci of cut edges in each box Bi such that the different sets Ci are “compatible”,
which intuitively means that for each pair Bi, Bj , the unit squares of Bi can be
mapped to those of Bj so that two adjacent squares in Bi without their common
edge cut map to two adjacent squares in Bj without their common edge cut. The
details of this mapping presented in Section 5.

Now, to illustrate our general methodology, let us present a concrete result
and a high-level sketch of how we obtain it.

Theorem 1. No set of three non-isomorphic boxes of area 58 or less has a
common unfolding. In other words, Ψ(3) > 58.
1 A precise mathematical definition of folding/unfolding turns out to be pretty intricate,

using the entirety of Chapter 11 in the book of Demaine and O’Rourke [4]. We will
thus mostly stick to intuition.

Unfolding Boxes with Local Constraints 5

Proof (Methodology). Let us consider the particular case of ruling out area 46,
since the other areas are analogous. The set of non-isomorphic box-dimensions
for area 46 is P (46) = {(1, 1, 11), (1, 2, 7), (1, 3, 5)}. Any common unfolding of the
corresponding boxes is, in particular, a common unfolding of boxes B1 := 1×1×11
and B2 := 1×2×7, so we focus first on constructing the set S of all common
unfoldings of these two boxes, where each common unfolding can be represented
as a pair (C1, C2), where C1 (resp. C2) is the set of edges to cut in B1 (resp. B2).
However, instead of computing S exactly, we compute a superset S′ ⊇ S, that
contains all common unfoldings of B1 and B2, but also potentially pairs (C1, C2)
where the sets of cut edges do not necessarily allow to unfold the boxes into a
common net. The set S′ is obtained by enumerating all satisfying assignments
of a CNF formula Φ(B1, B2), whose constraints will be detailed throughout
the paper. Then, for each pair (C1, C2) ∈ S′, we do another SAT call to check
whether it is possible to unfold box B3 := 1×3×5 in a way that is compatible
with (C1, C2). Since none of the |S′| calls is satisfiable, we can conclude that no
common unfolding of B1, B2, B3 exists. ⊓⊔

While a SAT encoding for the problem of finding common unfoldings of
two (or more) boxes was already presented by Tadaki and Amano [10], our
approach represents a significant improvement in allowing to search and enumerate
common unfoldings for significantly larger dimensions. At a high-level, the key
improvements of our encoding are:

1. When encoding the unfolding of a single box, that is, whether a set of cut
edges is “valid”, we do not explicitly encode the net as [10], but rather
properties that the set of cut edges must satisfy, and moreover, our encoding
of these properties is a very efficient under-approximation, that replaces global
constraints (i.e., the connectivity constraint of [10]) with local constraints.

2. When encoding a 2-box common unfolding, we do not use a net as inter-
mediary, and instead encode the existence of a direct mapping between the
unit-squares of box B1 and those of B2, that “preserves” the cut edges.

3. We exploit the symmetry of the boxes to reduce the search space. For example,
in a 1×1×11 there are several rotational symmetries that we break.

Before we detail the improvements, let us describe what it means for a set of cut
edges to be “valid”, or more precisely, some necessary conditions for it.

3 Valid sets of cut edges

Let us first briefly describe 4 well-known (cf. [4, Ch. 21], [6]) necessary properties
for a set of cut edges to be valid for a box B:

P1. Connectivity: The graph induced by the cut edges (taking the set of their
endpoints as vertices) must be connected.

P2. Cut corners: The graph induced by the cut edges must touch all the 8
corners of the box B.

P3. Acyclicity: The graph induced by the cut edges must be acyclic.

6 Qian et al.

P4. Necessity: For every set of four unit-squares {s1, s2, s3, s4} that forms a
2×2 square on B, it cannot be the case that exactly one edge between these
unit-squares is cut, as such cuts are not necessary [6, Lemma 1].

We suggest the reader inspects Figure 4a to check that these constraints are
satisfied, and to try to obtain some insight into their necessity. Intuitively, P1
is justified by the fact that the cut edges unfold into the boundary of the net,
as exemplified in Figure 4, and that boundary is connected. P2, on the other
hand, can be justified by noting that every non-cut edge connecting adjacent
unit-squares s1, s2 in a box B will remain an edge connecting two adjacent squares
in the net N that folds into B. Thus, if none of the three edges incident to a
corner are cut, then the three squares incident to that corner will remain adjacent
in the net N , which is a contradiction since in a polyomino there cannot be three
pairwise adjacent squares, as illustrated in Figure 5. P3 is justified by the fact
that if the graph induced by the cut edges contained a cycle C, then the unit
squares inside C would be disconnected from the rest when unfolding the box
B. Finally, P4 is intuitively justified by noticing that if exactly one such edge is
cut, then this edge can always be “glued” back without affecting the underlying
unfolding, a rigorous proof of P4 can also be found in earlier works [6, Lemma 1].

To represent whether an edge {s1, s2} is cut or not, we can simply use a
boolean variable es1,s2 that is true if and only if {s1, s2} is not cut. Then, P2
can be trivially encoded by 8 clauses of the form (es1,s2 ∨ es1,s3 ∨ es2,s3), where
s1, s2, s3 are the three adjacent squares on a corner of the box. Similarly, for each
2×2 square {s1, s2, s3, s4} on B (with {s1, s4} non-adjacent), P4 can be encoded
by 4 clauses of the form (es1,s2 ∧ es1,s3 ∧ es2,s4 → es3,s4) The difficulty, however,
arises when encoding properties P1 and P3, which are “non-local” properties, and
despite a body of research, remain challenging to encode without resulting in
either a large number of clauses or poor propagation properties [5,13].

Our approach replaces these constraints by a set of local constraints that
intuitively pursue a similar goal as P1 and P3: ensuring that the graph of cut
edges has sufficiently many edges (P1) without having too many (P3). Concretely:

1. To force cutting a significant number of edges, we leverage the work of Tadaki
and Amano [10], and assign orientations to each square of the box, which
then allows for enforcing consistency constraints between adjacent squares
whose common edge is not cut. To satisfy those constraints, a significant
number of edges must be cut.

Fig. 5: Illustration of the necessity of the cut-corners property.

Unfolding Boxes with Local Constraints 7

2. In contrast to the encoding in [10], which forbid cutting too many edges by
enforcing the connectivity of the resulting 2D net, explicit in their encoding,
we use a fully novel idea: assigning orientations to the edges of the box, and
then forbidding a small number of local directed patterns that every valid
unfolding can avoid, but most disconnected nets contain. Intuitively, since
disconnected nets correspond to cycles of cut edges, our encoding attempts
to prevent such cycles.

4 Local constraints

As described in Section 3, our goal is to impose constraints that ensure that
sufficiently many, but not too many, variables es1,s2 (representing that the edge
{s1, s2} is not cut) are set to true. We achieve these goals independently: we
enforce cutting edges using “square-orientation constraints” in a similar (albeit
with important differences) way to Tadaki and Amano [10], and use a fully novel
approach, based on “edge directions” to forbid too many edges from being cut.

4.1 Square orientations

Inspired by [10], we think of each square in a box B as having an “orientation”,
that intuitively represents whether, on an unfolding of the net, the square would
be rotated by 0◦, 90◦, 180◦, or 270◦. As Figure 6a indicates, each square is labeled
with a dot, which then induces an orientation value on the square once it is
unfolded onto the 2D plane. Naturally, this requires a labeling of squares on the
box with such dots. Any consistent labeling will work. We adopt the convention
that the dot is labeled at the corner that is diagonally the furthest away from
the origin when the box is placed in the positive octant. Equivalently, one can
directly extend the labeling shown in Figure 6b to general boxes. Once such a
labeling has been fixed, it is clear that any unfolding of the box will induce an
orientation assignment o : B → {1, 2, 3, 4}.

Importantly, any orientation assignment o : B → {1, 2, 3, 4} induced by a
valid unfolding will necessarily preserve “relative orientations” between connected

0 1

2 3

(a) Square orientations (b) Box labels.
(c) Induced orientations on
net, rgreen(blue) = 3.

Fig. 6: Square orientations, labels, and relative orientations.

8 Qian et al.

squares. For a pair of connected squares s1, s2, define the relative orientation of
s2 with respect to s1, rs1(s2), to be the orientation of s2 if s1 was rotated to have
orientation 0 (Figure 6c). Note that rs1(s2) only depends on the canonical labeling
chosen for the box, and in particular does not depend on potential unfoldings.
Since unfolding is an orientation-preserving geometric transformation, for any
edge e = {s1, s2} that is not cut, the relative orientations between s1, s2 must
remain invariant. Thereby necessarily implying o(s2) = o(s1) + rs1(s2) (and vice
versa), where addition is carried out in Z4. In fact, these are the only constraints
that we enforce in our encoding for square orientations. The constraints are:

– Variables os,d for s ∈ B, d ∈ {1, 2, 3, 4} encoding a function o : B → {1, 2, 3, 4}
representing the orientation values. For this to be a well-defined function, we
have the following constraints for all s ∈ B.

4∑
d=1

os,d = 1

– For each edge e = {s1, s2} in B that is not cut (i.e. es1,s2 is true), it must
be the case that o(s2) = o(s1) + rs1(s2) (and vice versa). This is encoded as
follows for every d ∈ {1, 2, 3, 4}.(

es1,s2 ∧ os1,d → os2,rs1 (s2)+d

)
∧
(
es1,s2 ∧ os2,d → os1,rs2 (s1)+d

)
4.2 Edge directions

Let GB be the graph with the squares of box B as vertices, and where neighboring
squares have a graph edge if and only if their common geometrical edge is not
cut. Recall now that forbidding cycles of cut edges is equivalent to making the
graph GB connected, which is our goal. The SAT encoding in [10] encodes graph
connectivity by choosing one vertex s⋆ ∈ V (GB) as the source of a Breadth First
Search (BFS), and then encoding that every vertex is reached by that BFS.

Concretely, variables tv,k represent that vertex v is reached on step k or
earlier of the BFS, with k ranging up to |V (GB)| − 1 in the worst case. Then,
the encoding consists of:

– The source vertex s⋆ is reached at step 0, enforced by unit clause ts⋆,0.
– Each vertex is reached at some step, enforced by the formula

∧
v∈V (GB)

|V (GB)|−1∨
k=0

tv,k.

– Let N(v) denote the set of four neighbors of v ∈ V (GB). A vertex v is reached
at step at most k if and only if one of its neighbors (or itself) was reached at
step at most k − 1:

|V (GB)|−1∧
k=1

∧
v∈V (GB)

tv,k ↔
∨

u∈N(v)

(tu,k−1 ∧ eu,v)

 .

Unfolding Boxes with Local Constraints 9

(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Fig. 7: The set F of forbidden subgraphs. The blue edges represent that the graph
belongs to F regardless of the orientation of its blue edges. For the forbidden
patterns 7g to 7j, the white node must not be present in the graph. Blocking the
patterns 7a to 7b requires one binary clause per pattern. Blocking the patterns 7c
to 7f requires two ternary clauses. Finally, blocking the patterns 7g to 7j requires
two ternary clauses. The ternary clauses make use of the observation that it is
impossible to preserve exactly 3 of the 4 edges.

As a result, the number of variables and clauses in their encoding is quadratic
in |V (GB)|, the number of squares of the box. It is possible to upper-bound k ≤ T
for some T ≤ |V (GB)| − 1 to improve performance at the cost of potentially
missing solutions, thus such bounds cannot be used if one wants to enumerate all
solutions. Table 1 illustrates this for a typical sub-problem (Section 6) between
boxes 1×1×7, 1×3×3.

We approximate connectivity using a constant number of clauses per square.
First, for each neighboring pair of squares (s1, s2), we create two variables, ds1,s2
and ds2,s1 representing that the preserved edge {s1, s2} will be directed from s1
toward s2 (or from s2 toward s1, respectively). We have clauses (ds1,s2 ∨ ds2,s1)
to prevent both directions per preserved edge. If an edge {s1, s2} is preserved, it
has at least one direction, this is enforced by (es1,s2 → ds1,s2 ∨ ds2,s1). Finally, if
the edge {s1, s2} has a direction, it is necessarily preserved. This is enforced by
ds1,s2 → es1,s2 and ds2,s1 → es1,s2 .

Now, we encode that a special vertex s⋆ is a unique sink by enforcing that (i)
it has outdegree 0 according to the edge directions, so

∧
u∈N(s⋆) ds⋆,u, and (ii)

every other vertex has outdegree at least 1:∧
v∈V (GB)\{s⋆}

∨
u∈N(v)

dv,u

Note that for us, s⋆ is a “sink”, instead of a “source”. To approximate further
that our edge directions correspond to a reverse BFS from s⋆, we forbid all
local patterns depicted in Figure 7 as subgraphs. Since this forbids a constant
number of possibilities around each vertex, it totals O(|V (GB)|) clauses. While
this is insufficient in theory to guarantee connectivity, it almost always results
in connected nets in practice. We prove in the extended arXiv version of this

10 Qian et al.

paper [7] that these constraints are sound, meaning that every valid unfolding
must satisfy them.

Table 1: Runtimes with BFS/forbidding local patterns at |V (GB)| = 30.

T = 15 T = 16 T = 17 T = 18 T = 19 T = 20 Local patterns

79.66 s 240.53 s 385.56 s 504.43 s 947.83 s 1823.88 s 36.51 s

5 Common unfoldings of two boxes

An important feature of our approach is the implicit representation of nets
via their corresponding cut edges, in contrast to explicitly representing them as
subsets of the 2D plane. Utilizing such implicit representations, the search for a net
N that folds into different boxes B1, · · · , Bm naturally reduces down to the search
for cut edges C1, · · · , Cm that are “compatible”. Importantly, such constraints are
intrinsic to the boxes and cut edges (Bi, Ci) and do not concern the explicit 2D
representation of nets. This allows for much more compact and efficient encodings
compared to earlier work [10], which uses explicit representations.

Figure 8 shows how the search for a common net can be done explicitly
by enforcing equivalence on the resulting 2D unfoldings, which is costly and
introduces additional auxiliary variables. In contrast, we achieve this by encoding
an equivalence mapping M : B2 → B1 directly on the level of boxes, and thereby
alleviating the need to consider the nets explicitly.

Figure 9 depicts the constraints imposed on M : B2 → B1. If a square s′1 ∈ B2

is mapped to s1 ∈ B1 and the edge e = {s1, s2} is not cut, then it must necessarily
be the case that the corresponding neighbor of s′1, in this case s′2, maps to s2

Net 1 Net 2

M

Explicit equivalence

Fig. 8: Equivalence of nets of boxes 1×2×7 and 1×1×11, explicitly via nets (red)
and implicitly via cut edges (M).

Unfolding Boxes with Local Constraints 11

s1

s2

s′1

s′2
M(s′2) = s2

M(s′1) = s1
ρ(s1) = 1{s1, s2} on B1. {s′1, s′2} on B2.

s′2 in the same 2D-direction as s2.

Fig. 9: Constraints on M with relative change in orientation ρ.

and the edge e = {s′1, s′2} is not cut in box 2. Furthermore, notice that s′2 is the
unique neighbor of s′1 in the same direction as s2, and can be computed from
o(s′1)− o(s1), the relative change in orientations. These constraints are encoded
as follows.

– Mapping variables ms,s′ for s′ ∈ B2, s ∈ B1 that encode a bijection M : B2 →
B1. For each s′ ∈ B2 we have the constraint∑

s∈B1

ms,s′ = 1

– Auxiliary variables ρs,d for s ∈ B1, d ∈ {1, 2, 3, 4} that encode a function
ρ : B1 → [4] indicating the change in orientation between s and the unique
s′ ∈ B2 where M(s′) = s. I.e. o(s′) = o(s) + ρ(s) holds. This is encoded via
the following where s′ ∈ B2, s ∈ B1 and d, r ∈ {1, 2, 3, 4}.

ms,s′ ∧ os′,d+r ∧ os,d → ρs,r

– Constraints that enforce the preservation of relative positions as shown in
Figure 9. Let {s1, s2} be an edge in B1, s′1 ∈ B2 and d, r ∈ {1, 2, 3, 4} be such
that ρ(s1) = r and d indicates the 2D-direction of s2. Let s′2 be the unique
neighbor of s′1 in the same direction as s2. The constraints are:

ms1,s′1
∧ ρs1,r ∧ es1,s2 → ms2,s′2

ms1,s′1
∧ ρs1,r ∧ es1,s2 → es′1,s′2

ms1,s′1
∧ ρs1,r ∧ es′1,s′2 → es1,s2

where the latter two constraints encode that the edge e = {s1, s2} is cut if
and only if e′ = {s′1, s′2} is cut. Only the first type of constraint is necessary.
The other two types help with performance.

– Finally, we write EQUIVB1,B2
to denote the overall encoding for equivalence

obtained by taking the conjunction of all constraints above. Equivalence of
more than 2 boxes can easily be encoded by enforcing EQUIVB1,Bn

for all
n ≥ 2.

12 Qian et al.

6 Symmetry breaking

Geometrically, if a box B unfolds into a net N , then the symmetries of B can
certainly be unfolded into the same net N . To efficiently enumerate all unfoldings,
it is important to avoid the computation of repeated solutions by breaking these
symmetries. In this section, we describe how symmetry breaking is carried out
and show experimentally that this greatly improves the performance.

As a first step, notice that a geometric (2D) rotation of a net only affects
the orientations of squares and preserves the edges. Indeed, constraints on the
orientation of squares introduced in Section 4 only enforce relative equality,
and therefore if o : B → {1, 2, 3, 4} gives a satisfying assignment of orientations,
then a constant shift (e.g. o′(s) = o(s) + 1 for all s) will also be satisfying and
corresponds to a 2D rotation of the underlying net. Thus, we may without loss
of generality pick a distinguished square ŝ ∈ B and enforce o(ŝ) = 0 with a unit
clause.

To further break symmetries when searching for common unfoldings (of two
boxes B1, B2), consider the image of pairs of squares under the equivalence
mapping M (Section 5) of a common unfolding. First, fix a pair of squares
(s1, s2) on B1. Since M is a bijection, some pair of squares (s′1, s′2) on B2 satisfies
(M(s′1),M(s′2)) = (s1, s2), as illustrated in Figure 10. If Q ∈ Sym(B2) is a
symmetry of B2, then certainly the same unfolding can be carried out on Q(B2)
(as Q is a symmetry), inducing a common unfolding between Q(B2) and B1

where the pair (Q−1(s′1), Q
−1(s′2)) now maps to (s1, s2). Therefore, if P2 denotes

the set of all pairs of B2 up to symmetry, then the search for common unfoldings
can be reduced to the cases (M(s′1),M(s′2)) = (s1, s2) for every pair (s′1, s′2) ∈ P2.
Furthermore, if (s1, s2) are chosen on B1 such that s1 is in the orbit of s2 under
symmetries of B1, then it suffices to consider the pairs in P2 as unordered, thereby
reducing the number of cases by a factor of 2. Table 2 depicts the number of
such pairs relative to the total number of pairs

(Area
2

)
. As shown, the number of

pairs up to symmetry is relatively small compared to the number of all pairs.
Finally, when the dimensions of B1 is of the form 1×1×n, we always pick the

pair (s1, s2) to be the 1×1 faces. In addition to them being symmetric, B1 has
full rotational symmetry about these faces and therefore the orientation of s1

M

Fig. 10: Image of pairs of squares under M , mapping the (black, red) pair on B2

to the (black, red) pair on B1.

Unfolding Boxes with Local Constraints 13

Table 2: Number of pairs
Area Dimensions #Pairs Total%

22 1×1×5 1×2×3 45 9.74%
30 1×1×7 1×3×3 47 5.40%
34 1×1×8 1×2×5 97 8.64%
38 1×1×9 1×3×4 120 8.53%
42 1×1×10 2×3×3 77 4.47%
46 1×1×11 1×2×7 169 8.16%
54 1×1×13 1×3×6 231 8.07%
58 1×1×14 1×2×9 261 7.89%

can be altered by applying such rotations without rotating the underlying net.
Consequently, this implies that we may always assume without loss of generality
that o(s1) = 0, in addition to fixing the orientation of a square s′1 ∈ B2. To
summarize, when enumerating common unfoldings between two boxes B1, B2,
the following symmetry-breaking procedure is carried out.

1. Fix a pair of squares (s1, s2) on B1 that belong to the same equivalence class
under symmetry.

2. If B1 is of the form 1×1×n, choose (s1, s2) to be the 1×1 faces and enforce
o(s1) = 0 using a unit clause.

3. Let P2 be the set of (unordered) pairs of squares on B2 unique up to symmetry.
For each pair (s′1, s

′
2) ∈ P2, encode M(s′1) = s1,M(s′2) = s2, o(s

′
1) = 0 using

3 unit clauses.
4. Solve the corresponding sub-problem for each pair (s′1, s

′
2) ∈ P2. Note that

since each sub-problem is independent, they can be run in parallel.

7 Experimental results

Using the encodings given in Sections 4 and 5 without symmetry-breaking, we
were able to compute unfoldings between all pairs of boxes with equal area up
to 86 (Table 3), thereby establishing ∆(2) > 86. As indicated in Table 3, most
of such unfoldings with high area were previously unknown. The first missing

Fig. 11: Overlapping net (left) and touching net (right) of 1×1×11.

14 Qian et al.

Table 3: Existence of common unfoldings.

Area Dimensions First

22 1×1×5 1×2×3 [6]
30 1×1×7 1×3×3 [6]
34 1×1×8 1×2×5 [6]
38 1×1×9 1×3×4 [6]
40 1×2×6 2×2×4 [10]
42 1×1×10 2×3×3 ✓
46 1×1×11 1×3×5 [6]
46 1×1×11 1×2×7 ✓
46 1×2×7 1×3×5 [6]
48 1×4×4 2×2×5 ✓
54 1×1×13 3×3×3 [6]
54 1×1×13 1×3×6 [6]
54 1×3×6 3×3×3 [6]
58 1×1×14 1×2×9 ✓
58 1×1×14 1×4×5 [6]
58 1×2×9 1×4×5 ✓
62 1×1×15 1×3×7 ✓
62 1×1×15 2×3×5 ✓
62 1×3×7 2×3×5 [6]
64 1×2×10 2×2×7 [6]
64 1×2×10 2×4×4 ✓
64 2×2×7 2×4×4 [6]
66 1×1×16 3×3×4 ✓
70 1×1×17 1×2×11 ✓
70 1×1×17 1×3×8 ✓
70 1×1×17 1×5×5 [6]
70 1×2×11 1×3×8 [6]
70 1×2×11 1×5×5 ✓
70 1×3×8 1×5×5 ✓
72 2×2×8 2×3×6 ✓
76 1×2×12 2×4×5 ✓

Area Dimensions First

78 1×1×19 1×3×9 ✓
78 1×1×19 1×4×7 ✓
78 1×1×19 3×3×5 ✓
78 1×3×9 1×4×7 ✓
78 1×3×9 3×3×5 ✓
78 1×4×7 3×3×5 ✓
80 2×2×9 3×4×4 ✓
82 1×1×20 1×2×13 ✓
82 1×1×20 1×5×6 ✓
82 1×1×20 2×3×7 ✓
82 1×2×13 1×5×6 ✓
82 1×2×13 2×3×7 ✓
82 1×5×6 2×3×7 ✓
86 1×1×21 1×3×10 ✓
86 1×2×14 1×4×8 ✓
86 1×2×14 2×4×6 ✓
88 1×4×8 2×2×10 [6]
88 1×4×8 2×4×6 ✓
88 2×2×10 2×4×6 [6]
90 2×5×5 3×3×6 ✓
94 1×5×7 3×4×5 ✓
94 1×3×11 3×4×5 ✓
94 1×3×11 1×5×7 ✓
96 1×6×6 2×2×11 ✓
96 1×6×6 4×4×4 ✓
100 1×2×16 2×4×7 ✓
102 2×3×9 3×3×7 ✓
102 1×3×12 2×3×9 ✓
104 2×2×12 2×5×6 ✓
106 1×1×26 1×2×17 ✓
106 1×2×17 1×5×8 ✓

Area Dimensions First

108 1×4×10 3×4×6 ✓
110 1×3×13 1×6×7 ✓
110 1×3×13 3×5×5 ✓
112 2×2×13 2×4×8 ✓
112 2×3×10 4×4×5 ✓
112 1×2×18 4×4×5 ✓
118 1×4×11 1×5×9 ✓
118 1×3×14 1×5×9 ✓
118 1×4×11 2×5×7 ✓
118 1×3×14 2×5×7 ✓
120 2×2×14 2×6×6 ✓
124 1×6×8 2×4×9 ✓
126 1×3×15 3×5×6 ✓
126 1×7×7 3×5×6 ✓
126 1×7×7 3×3×9 ✓
126 3×3×9 3×5×6 ✓
128 1×4×12 4×4×6 ✓
128 2×2×15 4×4×6 ✓
132 2×3×12 2×5×8 ✓
136 2×4×10 2×6×7 ✓
136 2×6×7 3×4×8 ✓
138 1×4×13 1×6×9 ✓
138 1×6×9 3×3×10 ✓
142 1×5×11 1×7×8 ✓
142 2×3×13 3×5×7 ✓
142 1×5×11 2×3×13 ✓
142 1×7×8 2×3×13 ✓
142 1×5×11 3×5×7 ✓
144 2×2×17 3×6×6 ✓
148 1×4×14 4×5×6 ✓
174 3×3×13 3×5×9 ✓

entry is the pair 1×2×14, 2×2×10 at area 88. It is worth noting that common
unfoldings can always be scaled up by subdividing squares, e.g. a common
unfolding of 1×1×5, 1×2×3 directly implies the existence of a common unfolding
for 2×2×10, 2×4×6 by dividing each square into 4 sub-squares [6].

With the symmetry-breaking procedure described in Section 6, we were able to
completely enumerate all solutions for the pairs of boxes shown in Table 4. Local
computations were conducted using a standard laptop, computations labeled with
“cluster” were conducted on a supercomputer [3] running 64 SAT solvers in parallel.
Solutions were obtained by enumerating all solutions for each fixed pair of squares
on the second box (Section 6), using an allsat variant of CaDiCaL [2], available
at https://github.com/jreeves3/allsat-cadical. Through these computations, we

https://github.com/jreeves3/allsat-cadical

Unfolding Boxes with Local Constraints 15

Table 4: Exhaustive enumeration of solutions. The columns labeled |S|, |T |, and
|O| show the number of simple, touching, and overlapping solutions, respectively.

Area Dimensions #SAT Unique |S| |T | |O| Time First

22 1×1×5 1×2×3 3 942 2 303 2 263 27 13 2 mins (local) [1]
30 1×1×7 1×3×3 1 790 1 080 1 070 10 0 10 mins (local) [12]
34 1×1×8 1×2×5 131 054 35 700 35 675 22 3 1 hour (local) ✓
38 1×1×9 1× 3×4 5 854 4 509 4 469 36 4 6 hrs (local) ✓
42 1×1×10 2× 3×3 128 558 111 948 111 387 559 2 1 day (local) ✓
46 1×1×11 1×2×7 16 928 15 236 14 971 16 249 3 hrs (PSC) ✓
54 1×1×13 1×3×6 56 087 51 884 51 836 48 0 1 day (PSC) ✓
58 1×1×14 1×2×9 2 150 373 551 935 551 923 7 5 2 days (PSC) ✓

Table 5: Exhaustive enumeration of 1×1×n nets
Dimensions #SAT Unique |S| |T | |O| Time

1×1×1 384 11 11 0 0 0.05 s
1×1×2 12 124 723 723 0 0 1.79 s
1×1×3 240 304 15 061 14 978 79 4 77.78 s
1×1×4 3 708 380 231 310 228 547 2 603 160 9 hrs

found unfoldings with diameter close to the surface area (we include examples in
the extended arXiv version [7]) making it difficult to compute using a BFS-style
encoding for connectivity.

In addition to standard nets (simply connected, no overlaps), our encoding is
also capable of finding non-standard unfoldings, which we classify into “touching”
and “overlapping”. Both are nets in the sense that one can obtain them by
unfolding a box, however they are non-standard as the resulting shape is not
simply-connected. The gray square in the overlapping net shown in Figure 11 is
an overlapping green and yellow square. Touching nets can always fold into the
original box if cuts were allowed, e.g. the touching net shown in Figure 11 can
fold into 1×1×11 if a cut is made along the red edge.

Beyond common unfoldings, we also enumerated all nets for boxes of the form
1×1×n for n ≤ 4 (Table 5). To the best of our knowledge, the number of such
nets was previously unknown except for n = 1. Such computations were carried
out locally on a standard laptop.

8 Related work

The algorithmic search for common unfoldings of non-isomorphic boxes has been
investigated in many earlier works [1,6,8,10,11,12] using various techniques. One
body of work is the complete enumeration of all unfoldings [1,12], computing
all possible unfoldings between two boxes. The best previous result was due to

16 Qian et al.

[12], providing a complete enumeration of all unfoldings at area 30. Our efficient
approach allows us to completely enumerate all unfoldings up to surface area 58,
providing complete enumerations for many pairs of boxes that were previously
unknown (Table 4). Furthermore, solutions of area 22 were enumerated by [1]
taking 10 hours, whereas our approach takes 2 minutes. Solutions of area 30 were
enumerated by [12] taking 10 days using a computer with 128 GB memory, our
approach only takes 10 minutes using a standard laptop.

We were also able to find many new common unfoldings between boxes that
were previously unknown. The best lower-bound for ∆(2) from earlier works was
40 and already at area 42 it was not known if boxes of dimensions 1×1×10, 2×3×3
admit a common unfolding. Using our approach, we compute all possible common
unfoldings between all boxes up to surface area 86, more than doubling the
previous best bound.

The use of SAT solvers to find common unfoldings has also been explored
in earlier work [10], our approach has two fundamental improvements over
the previous approach. The first being the use of implicit equivalences which
alleviates the need to consider nets as subsets of the 2D plane (Section 5). This
significantly improves the efficiency of the encodings by eliminating the auxiliary
variables needed to represent the nets in 2D. Secondly, the use of local constraints
(Section 4) allows us to efficiently detect connectedness in the cut edges of boxes,
and furthermore this does not place an a priori restriction on the radius of
the underlying net. Thereby allowing us to completely enumerate all solutions
between boxes and establishing Ψ(3) > 58 rather than only finding solutions with
a bounded radius. One can theoretically enumerate all solutions by using the
surface area as the upper-bound, but this is too costly on performance [10].

9 Concluding remarks

We have presented a new SAT-based approach for finding and enumerating
polyominos that can be folded into multiple non-isomorphic boxes, outperforming
previous approaches. We have introduced a technique that could be applicable to
searching for other combinatorial objects: approximating constraints that are hard
to encode, or result in large numbers of clauses, with simpler local constraints,
and then discard the solutions that do not satisfy the original constraints.

Further supporting the correctness of our encoding, we were able to reproduce
the common unfolding of 3 boxes at area 532 [8] as shown in Figure 12. This was
obtained by specifying the cut edges for one of the boxes (2×13×16) with unit
clauses and using a SAT solver to solve for the remaining variables.

The quest for the smallest area allowing a common unfolding of three boxes
remains open, and part of our future work. Another promising direction is to
formally verify our work, in the line of [9], given how intricate the encoding is
and the delicate arguments for its completeness. We suspect that a particularly
challenging aspect of that verification will be to formally define (un)foldings (cf.
Demaine and O’Rourke [4, Ch. 15]).

Unfolding Boxes with Local Constraints 17

(a) 2×13×16 (b) 2×4×43 (c) 7×8×14

Fig. 12: Common unfolding of 3 boxes at area 532 [8].

Acknowledgements. We thank Joseph Reeves for implementing solution enumer-
ation in CaDiCaL, which was crucial to performing the experiments. This work was
supported by the U. S. National Science Foundation under grant DMS-2434625.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

18 Qian et al.

References

1. Abel, Z., Demaine, E.D., Demaine, M.L., Matsui, H., Rote, G., Uehara, R.: Com-
mon developments of several different orthogonal boxes. In: Proceedings of the
23rd Annual Canadian Conference on Computational Geometry, Toronto, Ontario,
Canada, August 10-12, 2011 (2011), http://www.cccg.ca/proceedings/2011/papers/
paper49.pdf

2. Biere, A., Faller, T., Fazekas, K., Fleury, M., Froleyks, N., Pollitt, F.: CaDiCaL 2.0.
In: Gurfinkel, A., Ganesh, V. (eds.) Computer Aided Verification - 36th International
Conference, CAV 2024, Montreal, QC, Canada, July 24-27, 2024, Proceedings, Part
I. Lecture Notes in Computer Science, vol. 14681, pp. 133–152. Springer (2024).
https://doi.org/10.1007/978-3-031-65627-9_7

3. Brown, S.T., Buitrago, P., Hanna, E., Sanielevici, S., Scibek, R., Nystrom, N.A.:
Bridges-2: A Platform for Rapidly-Evolving and Data Intensive Research. In:
Practice and Experience in Advanced Research Computing. PEARC ’21, Association
for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/
3437359.3465593

4. Demaine, E., O’Rourke, J.: Geometric Folding Algorithms: Linkages, Origami,
Polyhedra. Cambridge University Press (2007)

5. Gebser, M., Janhunen, T., Rintanen, J.: SAT Modulo Graphs: Acyclicity. In:
Fermé, E., Leite, J. (eds.) Logics in Artificial Intelligence. pp. 137–151. Springer
International Publishing, Cham (2014)

6. Mitani, J., Uehara, R.: Polygons folding to plural incongruent orthogonal boxes. In:
The 20th Canadian Conference on Computational Geometry (CCCG’08) (2008)

7. Qian, L., Wang, E., Subercaseaux, B., Heule, M.J.H.: Unfolding boxes with local
constraints (2025), https://arxiv.org/abs/2506.01079

8. Shirakawa, T., Uehara, R.: Common developments of three different orthogonal
boxes. In: The 24th Canadian Conference on Computational Geometry (CCCG’12)
(2012)

9. Subercaseaux, B., Nawrocki, W., Gallicchio, J., Codel, C., Carneiro, M., Heule,
M.J.H.: Formal Verification of the Empty Hexagon Number. In: 15th International
Conference on Interactive Theorem Proving (ITP 2024). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 309, pp. 35:1–35:19. Dagstuhl, Germany
(2024). https://doi.org/10.4230/LIPIcs.ITP.2024.35

10. Tadaki, R., Amano, K.: Search for developments of a box having multiple ways of
folding by SAT solver (2020), https://arxiv.org/abs/2005.02645

11. Uehara, R.: A survey and recent results about common developments of two or more
boxes. In: Origami 6: proceedings of the sixth international meeting on origami
science, mathematics, and education (2015)

12. Xu, D., Horiyama, T., Shirakawa, T., Uehara, R.: Common developments of three
incongruent boxes of area 30. Computational Geometry 64, 1–12 (2017). https:
//doi.org/10.1016/j.comgeo.2017.03.001

13. Zhou, N.F., Wang, R., Yap, R.H.C.: A Comparison of SAT Encodings for Acyclicity
of Directed Graphs. In: 26th International Conference on Theory and Applications of
Satisfiability Testing (SAT 2023). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 271, pp. 30:1–30:9. Dagstuhl, Germany (2023). https://doi.org/10.
4230/LIPIcs.SAT.2023.30

http://www.cccg.ca/proceedings/2011/papers/paper49.pdf
http://www.cccg.ca/proceedings/2011/papers/paper49.pdf
https://doi.org/10.1007/978-3-031-65627-9_7
https://doi.org/10.1007/978-3-031-65627-9_7
https://doi.org/10.1145/3437359.3465593
https://doi.org/10.1145/3437359.3465593
https://doi.org/10.1145/3437359.3465593
https://doi.org/10.1145/3437359.3465593
https://arxiv.org/abs/2506.01079
https://doi.org/10.4230/LIPIcs.ITP.2024.35
https://doi.org/10.4230/LIPIcs.ITP.2024.35
https://arxiv.org/abs/2005.02645
https://doi.org/10.1016/j.comgeo.2017.03.001
https://doi.org/10.1016/j.comgeo.2017.03.001
https://doi.org/10.1016/j.comgeo.2017.03.001
https://doi.org/10.1016/j.comgeo.2017.03.001
https://doi.org/10.4230/LIPIcs.SAT.2023.30
https://doi.org/10.4230/LIPIcs.SAT.2023.30
https://doi.org/10.4230/LIPIcs.SAT.2023.30
https://doi.org/10.4230/LIPIcs.SAT.2023.30

	Unfolding Boxes with Local Constraints

