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Abstract. The Hamiltonian Cycle Problem (HCP) consists of two con-
straints: i) each vertex contributes exactly two edges to the cycle; and
ii) there is exactly one cycle. The former can be encoded naturally and
compactly, while the encodings of the latter either lack arc consistency
or require an exponential number of clauses. We present a new, small
encoding for HCP based on the Chinese remainder theorem. We demon-
strate the effectiveness of the encoding on challenging HCP instances.

1 Introduction

Satisfiability (SAT) solvers have become very powerful tools to solve many hard
combinatorial problems in a broad range of applications. However, the quality of
the encoding can have a significant impact on the effectiveness of a SAT solver,
in particular for problems with complicated constraints.

One problem class for which the encoding plays a crucial role in solver per-
formance is the Hamiltonian Cycle Problem (HCP) [14], an NP-complete prob-
lem that has been studied from theoretical and practical viewpoints [2,3,6,13].
Given a graph, HCP asks whether there exists a cycle that visits all vertices of
the graph exactly once. One graph with and one without a Hamiltonian cycle
are shown in Figure 1. On a high level, HCP requires two constraints: a degree
constraint stating that each vertex contributes exactly two edges to the cycle and
an exactly-one-cycle constraint. The degree constraint can be compactly encoded
with arc consistency [4], a property that is important for efficient solving.

Effectively dealing with the exactly-one-cycle constraint is more challenging.
Several encodings have been proposed use ©(|V|?) clauses. Determining the ex-
istence of a Hamiltonian cycle is easy for small graphs (< 100 vertices). For
larger graphs, O(|V|3)-sized encodings result in a huge formula that are hard to
solve [9-11]. The challenge is to come up with a compact encoding that can also
be solved efficiently. Our encoding will be quasilinear in the number of edges.

One way to avoid the costliness of the exactly-one-cycle constraint is to use
incremental SAT [1,12]. In this setting, the initial formula only consists of the
degree constraint. If the SAT solver produces a solution that represents multiple
cycles, then a clause is added that blocks the shortest cycle. This is repeated
until either a Hamiltonian cycle is found or if the formula becomes unsatisfiable,
showing that no such cycle exists.
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Fig. 1. The left graph has a Hamiltonian cycle (bold), while the right one does not.

Recently two new HCP encodings have been proposed. Both encodings assign
a binary index to each vertex using k = [log, |V'|] variables per vertex. The first
one is based on linear-feedback shift registers (LFSR) [5,8]. LFSR loops through
the numbers {1,...,2¥ — 1} by shifting a binary number by one position to the
left and puts the parity of some bits in the vacated position. This facilitates a
compact SAT encoding. The second encoding uses a binary adder that loops
through the numbers {0,...,2*¥ — 1} in ascending order and returns to 0 after
2k 1 [14]. The binary adder encoding requires auxiliary variables, more clauses,
and/or longer clauses compared to LFSR. Yet, the binary adder is more effective
as it facilitates quick refutation of some subcycles, e.g., cycles of odd length.

In this paper, we present the Chinese remainder encoding that aims to com-
bine the best of the incremental SAT, binary adder, and LFSR approaches. From
the incremental approach, we borrow the observation that only some subcycles
need to be blocked. From the binary adder approach we borrow techniques to
easily refute some subcycles. Finally, from the LFSR approach we borrow the
compact encoding with short clauses without auxiliary variables.

We implemented the binary adder, LSFR, and the Chinese remainder en-
codings (and corresponding decoding tools), and evaluated their effectiveness
on graphs from the Flinders HCP challenge [7]. This is a suite of 1001 graphs
with HCP instances of varying difficulty. The experimental results show that the
Chinese remainder encoding beats the other two on most large graphs.

2 Preliminaries

Boolean Satisfiability: We consider formulas in conjunctive normal form
(CNF), defined as follows. A literal is either a variable x or the negation T
of a variable z. For a literal I, var(l) denotes the variable of I. A clause is a
disjunction of literals and a formula is a conjunction of clauses. An assignment
is a function from a set of variables to the truth values 1 (true) and 0 (false). A
formula is satisfiable if there exists an assignment that satisfies it and is unsat-
isfiable otherwise.

A unit clause is a clause that contains only one literal. The result of applying
the unit-clause rule to a formula F’ is the formula F’ without all clauses containing
the unit literal and without all occurrences of the negated unit literal. The
iterated application of the unit-clause rule to a formula, until no unit clauses are
left, is called unit propagation. If unit propagation on a formula F' yields the
empty clause, we say that it derived a conflict on F'.
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Linear-Feedback Shift Register: An LFSR [5] is a register that in each step
shifts all bits by one position to the left and replaces the vacated position by
the result of an XOR, operation of some of the bits. Given the right XOR, an
LFSR visits all bit-vectors of a given length except the all-zero bit-vector. The
shift and the XOR operations can be compactly encoded using clauses.

Ezxample 1. An example 16-bit LFSR fills the vacant bit by z11 ®z13® 14 P16,
resulting in 2'6 — 1 = 65, 535 states. The figure below illustates this LFSR with
state 10010111001011001. The next state is 00101110010110011.

16 14 13 11 1
[tfofofsfofefe]sfofofejofsfrjojo]s

S

3 Encodings

In this section, we focus on encodings that have been reasonably effective for
HCP in the past. This excludes unary-based encodings [14]. We first discuss an
encoding for the degree constraint and afterwards two encodings for the exactly-
one-cycle constraint. To improve readability, we show the constraints using the
logical connectives A (and), V (or), — (implies), +> (equivalence), and <4 (xor).

3.1 Degree Constraint

All of the encodings share the same variables and clauses to enforce that exactly
two edges from each vertex are in the cycle, thereby ensuring that each vertex
is in exactly one cycle. Given an undirected graph G = (V, F), we introduce two
variables e; ; and e;; for each edge (i,j) € E. In the case that G is a directed
graph, only e; ; is used for arcs from ¢ to j and only e; ; is used for arcs from j to i.
The degree constraint is encoded by enforcing that for each vertex v € V exactly
one of the literals e; , is true (one incoming edge) and exactly one of the literals
€y,; is true (one outgoing edge). Each ExactlyOne constraint is partitioned into
an AtLeastOne constraint (i.e., a clause) and an AtMostOne constraint.

HCP is typically only hard for graphs with low degree. For graphs with
high degree, we expect dedicated heuristics to outperform SAT solving. The
constraint AtMostOne(z1,...,x,) can therefore simply be encoded using the
pairwise encoding (%; V T;) for 1 < i < j < n. However, some graphs in the
Flinders HCP challenge set are dense. To avoid a blow-up in size due to the
pairwise encoding, we only use the pairwise encoding for AtMostOne constraints
of 4 or less inputs. Larger AtMostOne constraints are split recursively as follows:

AtMostOne(xy, . . ., X,) := AtMostOne(x1, X2, X3, ¥) A AtMostOne(y, x4, . . . , Xpn)
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3.2 Binary Adder

Given a graph G = (V, E), the binary adder encoding assigns a unique index
from the range {0,1,...,|V| — 1} to each vertex in the graph. Each vertex has
two neighbors, of which one is the successor (+1 (mod |V])), while the other is
its predecessor (—1 (mod |V])). If edge variable e, , is true, then the successor
property is enforced, i.e., u is assigned ¢ and v is assigned ¢ + 1 (mod [V]). The
clauses that enforce the successor property also enforce the predecessor property.

We will use parts of the binary encoding in the Chinese remainder encoding.
For consistency we therefore use the naming of the bit-vectors. The it bit of the
bit-vector of vertex v is denoted by the Boolean variable vg: with i € {1,...,k}.

Ezample 2. Consider a graph with 7 vertices, thus k = [log, 7] = 3. For vertex
v, the variables vo, v4, and vg denote the least, middle, and most significant bit,
respectively. For an edge variable e, ,, we add the clauses represented by:

(Cuw Nz) — (ug < vg) (€uw N2) — (ug > vg)
(eu,v A u2> — (U4 ¥ v4) (eu,v /\64) — (US > vg)
(w0 AUz Aug) — (us 5 vg)

Cu,v — (U2 <7L> UQ)

No auxiliary variables are introduced in our implementation, resulting in
O(k?) clauses per edge variable. Using auxiliary variables can reduce the number
of clauses to O(k) per edge variables, but this is only effective for large k.

It is important to observe that this encoding is able to quickly refute certain
subcycles. For example, if an assignment to the edge variables forms a subcycle
of odd length, then assigning ve (of any vertex v in that cycle) to true or false
results in a conflict by unit propagation. Thus with two conflicts the cycle can
be refuted. In a similar way, one can additionally refute all cycles of length 2
(mod 4) by the four assignments to the variables vo and wvs. This is the key
property that will be used in the Chinese remainder encoding.

3.3 Linear-Feedback Shift Register

Haythorpe and Johnson propose to use LFSR to enforce the exactly-one-cycle
constraint in HCP [8]. This encoding has several aspects that are similar to the
binary adder encoding. It uses bit-vectors of length k = [logy(|]V| 4+ 1)] for each
vertex. One vertex is assigned the bit-vector with all-zeros except for the least
significant bit. The bit-vectors of adjacent vertices are forced to be the next and
previous state of a k-bit LFSR.

We use the following variable naming: Given a k-bit LFSR, let n = 2F — 1.
For each i € {1,...,k}, position ¢ in the bit-vector of vertex v is denoted by vy, ;.
We block the all-zero bit-vector, by adding (U1 V -+ V Uy k) for each v € V.

Ezample 3. Consider a T-vertex graph, thus k = [log,(741)] = 3. A 3-bit LFSR
filling the vacant bit by xo @ x3 has 7 states. The bit-vector variables of vertex
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v are v7.1, V7,2, and v7 3. For an edge variable e, ,, we add the clauses:

Cup —7 (07,1 e (U7,2 o U7,3)
Cup —7 (U7,2 A u7,1)
Cup —7 (U7,3 e U7,2)

For most small k, there exists a k-bit LFSR of 2¥ — 1 states that uses just a
single XOR of 2 bits. For such an LFSR, the encoding uses 2k —2 ternary clauses
and 4 clauses of length 4, as in the above example. An encoding based on LFSR
is thus compact with short clauses and without auxiliary variables. We will use
this property in the Chinese remainder encoding.

In contrast to the binary adder encoding, the LFSR encoding cannot quickly
refute some subcycles. If an assignment to the edge variables forms a subcycle,
then one needs 2% — 1 conflicts (i.e., all states of a k-bit LFSR) to refute it. This
helps explain why the LFSR encoding is less effective in practice.

4 Chinese Remainder Encoding

The challenge in coming up with an effective SAT encoding for HCP lies in
enabling the solver to quickly refute an assignment for which the edge variables
represent a subcycle. The encodings described in the previous section may require
many conflict clauses to a refute a subcycle. Our encoding tries to reduce that
number, while keeping the encoding compact. We aim to get the best of three
worlds (incremental SAT, binary adder, and LFSR).

From the incremental SAT approach, we borrow the partial encoding of the
exactly-one-cycle constraint. One vertex is special in the encoding and indicates
where the Hamiltonian cycle “starts”. This vertex is denoted by s. The encod-
ing picks the first vertex (based on its index) of smallest degree as s, because
reasoning from a vertex with a small degree is considered effective to find a
Hamiltonian cycle. Recall that the degree constraint ensures that every vertex
is in exactly one cycle. We use a parameter m and additionally enforce that any
cycle that does not include s must have length 0 (mod m). Moreover, the cycle
that includes s must have length |V| (mod m). The expectation is that one can
frequently use m < |V, while still managing to find a Hamiltonian cycle with
high probability as it will be difficult to satisfy the constraints for multiple cycles
if m is large. Using m < |V| reduces the size of the encoding, which improves
solver performance.

Next, we combine ideas of the binary adder and the LFSR encodings. Instead
of enforcing cycle lengths to be 0 (mod m) or |V| (mod m), we factorize m into
m = my; X mg X --- X mg such that m; = p;*® with prime p; and positive
integer k;. Furthermore the m,; are pairwise coprime, i.e., for each pair m; and
m; holds that p;, # p;. We enforce that each subcycle has length 0 (mod m;).
By the Chinese remainder theorem, we know that the cycles will be of length 0
(mod m) or |V| (mod m), respectively. In case k; > 1 for some m;, the Chinese
remainder encoding constructs a p;-ary counter (but with LESRs for p; > 2).
This is shown in Example 2 for m = 8, thus p = 2 and k£ = 3.
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For the prime factors of 2 in m, we use the binary adder encoding, while for
the primes of the form 2* — 1, such as 3 and 7, we use LFSR. This, of course,
excludes several primes. For such a prime p, we use a scheme similar to the
binary adder, but having 0 as the successor of p — 1. Furthermore, we block all
assignments representing indices p to 2¥ — 1 with k = [log, p].

Ezample 4. For the prime 5, we can encode the cycle0 -1 —+2—-3—-4—0
using three variables for each vertex. For a specific vertex v, they are denoted by
Us,1, Us,2, and vs 3. We prevent that variables are assigned to values corresponding
to 5, 6, or 7 by adding the binary clauses (T51 V Us3) A (Us 2 V Ts3) for v € V.
For an edge variable e, ,, we add the ten clauses represented by:

Cu,v — (v5,1 e (ﬂ5,1 /\ﬂ5,3))
euw — (U2 ¢ (Us1 45 Us,2))
euw — (V53 ¢ (Us1 AUs2))

The main constraint in this encoding enforces that if an edge variable e, ,
is true, then v is the successor of u based on the binary adder or LFSR. This is
enforced for all edge variables apart from the ones of the form e, s, i.e., the final
edge that creates the cycle starting with s. Instead, if an edge variable e, ;s is
true, then all variables u,, ; of u must be assigned in such a way that it enforces
|V| =1 (mod p;). Note that for the primes that are encoded using LFSR, the
assignment would be the |V[** (mod p;) state of the LFSR with the bit-vector
1 being the first state.

Finally, we apply the following symmetry-breaking clauses: (€s, V €, ) for
u > v for some total ordering of the vertices. We use the vertex number in the
input file. This ensures that every Hamiltonian cycle is represented by a unique
assignment to the variables.

5 Results

We implemented an encoding tool, called HCP-encode!, that takes as input a
graph and an integer m. Using the techniques described in the earlier sections, it
enforces that all cycles, apart from the one that includes the initial vertex, must
have length 0 (mod m). We solved all resulting formulas with the default settings
of CADICAL SAT solver, version 1.4. We selected two subsets of the Flinders
HCP challenge: 1) graphs that were used in the 2019 XCSP competition; and 2)
some larger graphs that resulted in rather high runtimes during our experiments.

Table 1 shows statistics of the graphs in our benchmark suite and the run-
times for the binary adder encoding and the LSFR encoding. The graphs used
in the 2019 XCSP competition are shown on top, the larger ones below them.
The results confirm earlier work that the binary adder encoding is more effective

! The encoding and decoding tools together with the graphs are available on GitHub
at https://github.com/marijnheule/ChineseRemainderEncoding.
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Table 1. Statistics of the selected Flinders HCP challenge graphs and the CADICAL
runtime in seconds on the binary adder encoding and the LFSR encoding.

graph #  |V] |E| adder (2F)  LSFR (2% —1)

48 338 776 47.22 > 3600
162 909 206571 171.23 180.24
171 996 1495 10.12 20.05
197 1188 1783 10.89 84.75
223 1386 2268 272.46 80.01
237 1476 2215 13.65 22.45
249 1558 2338 19.69 150.70
252 1572 2359 13.71 86.07
254 1582 2374 36.31 127.35
255 1584 2799 48.98 40.60
424 2466 4240 > 3600 > 3600
446 2557 4368 > 3600 > 3600
470 2740 4509 2500.61 > 3600
491 2844 4267 173.46 245.92
506 2964 4447 78.29 244.48
522 3060 4591 84.51 611.46
526 3108 4663 160.73 544.97
529 3132 4699 69.69 275.13

Table 2. Runtime statistics in seconds of the selected Flinders HCP challenge graphs
using CADICAL and various values for the cycle length. The symbols v and X denote
whether the satisfying assignment represents a single or multiple cycles, respectively.

graph # 2 6 12 60 105 420

48 0.10 X 6.14 X 10.02 X 45.20 X 84.33 v/ 73.63 /
162 53.62 X 3496 v 3212/ 39.43 v/ 35.75 v/ 40.11 v/
171 0.01 x 2.37 X 2.92 / 12.76 v/ 4.89 v 5.86 v
197 0.02 X 0.83 X 7.16 v/ 6.77 / 8.87 / 14.62 v/
223 0.02 x 1.77 X 11.65 X 22.14 / 15.93 / 70.67 v/
237 0.04 x 2.19 X 7.81/ 12.64 v 6.90 X 16.80 v
249 0.19 X 0.81 v/ 4.52 / 4.36 v/ 3.01 v/ 7.29 /
252 0.02 x 1.76 X 25.33 / 14.62 v/ 9.66 v/ 32.73 /
254 0.33 X 2.95 v/ 0.76 / 311 v/ 242 v/ 4.09 v/
255 1.27 X 2.56 X 5.17 X 14.31 X 8.36 X 9.03 v/
424 9.81 X 665.18 x 340.11 x  307.71 X 49411 v/ 488.70 /

446 13.24 X 334.62 X 169.52 X  380.47 X 573.38 / 722.23 /
470 17.08 X 166.16 X  152.31 X  933.36 X 501.91 X  840.89 /

491 0.06 X 22.04 X 7.47 / 34.45 / 123.36 v 135.22 v/
506 0.11 X 31.75 X 19.24 / 33.48 28.73 / 63.20 v/
522 0.63 X 5.66 X 32.95 v 13340 v/ 30.40 / 67.03 v/
526 0.05 X 24.16 X 71.67 v 34.37 / 34.69 X 158.69 v

529 0.40 x 17.90 X 60.19 v 48.09 v 42.33 / 365.58 v




8 M. J. H. Heule

compared to LSFR on these challenge graphs [14]: only once did LSFR outper-
form the binary adder. However, we observed shorter runtime in our experi-
ments with the binary adder encoding and LSFR compared to recent work [14].
These experiments differ in two ways. First, we use a more recent and possibly
a stronger SAT solver for these instances. Second, our implementation does not
include preprocessing techniques. It is not clear whether preprocessing helps or
hurts performance on these instances. Note that the binary adder and LFSR
encodings timed out after an hour for some of the larger graphs.

Table 2 shows the results of our Chinese remainder encoding for various values
of the cycle length. We selected cycle lengths that have only small primes in their
factorization. The largest cycle length used in the experiments is 420, a number
that is divisible by 4, 5, 6, and 7. The table shows the runtime and whether the
solution produced by the solver represented a single cycle. The shortest runtime
resulting in a single cycle are shown in bold. In general, the larger the cycle,
the longer the runtime and the more likely that the result is a single cycle. In
particular, for all graphs a cycle length of 0 (mod 2) resulted in multiple cycles,
while a cycle length of 0 (mod 420) resulted in a single cycle, i.e., a Hamiltonian
cycle. In some cases, a smaller cycle length resulted in a single cycle, while a
larger cycle length resulted in multiple cycles (see graphs #237 and #526).

The Chinese remainder encoding with cycle length 420 outperformed the bi-
nary adder encoding for most graphs. Also, none of the experiments with cycle
length 420 timed out. Using a smaller cycle length can frequently reduce the run-
time, although that increases the probability of multiple cycles. In practice one
could run the Chinese remainder encoding for various cycle lengths in parallel.

6 Conclusions

We presented the Chinese remainder encoding for HCP, which combines elements
from the incremental SAT, binary adder, and LFSR approaches. Experimental
results on graphs from the Flinders HCP challenge show that the Chinese re-
mainder encoding generally outperforms the alternatives when using a cycle
length that can be factored into multiple small primes. In the experiments we
used a cycle length of 420 = 22 x 3 x 5 x 7. The Chinese remainder encoding
is equivalent to the binary adder encoding when the cycle length is the smallest
power of 2 that is larger than the number of vertices, so it can be seen as a
generalization of the binary adder.

We only experimented with a single SAT call for each encoding. The effective-
ness of a small cycle length, in particular m = 12, indicates that an incremental
SAT approach using that encoding could be effective. Recent work showed that
the pure incremental SAT approach is not effective for large graphs [14], but
blocking some cycles with our encoding could be helpful. Also, we plan to ex-
plore the best combination of cycle lengths in a parallel solving approach.
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