Representations for Automated Reasoning

Ruben Martins

Carnegie
 Mellon University

http://www.cs.cmu.edu/~mheule/15816-f22/
Automated Reasoning and Satisfiability
September 7, 2022

Basic Constraints

Solver Input

Representing Integers

Cardinality Constraints

Lazy Encodings

Basic Constraints

Solver Input

Representing Integers

Cardinality Constraints

Lazy Encodings

AtLeastOne

Given a set of Boolean variables x_{1}, \ldots, x_{n}, how to encode

$$
\operatorname{AtLEASTONE}\left(x_{1}, \ldots, x_{n}\right)
$$

into SAT?
Hint: This is easy...

AtLeastOne

Given a set of Boolean variables x_{1}, \ldots, x_{n}, how to encode

$$
\operatorname{AtLEASTONE}\left(x_{1}, \ldots, x_{n}\right)
$$

into SAT?
Hint: This is easy...

$$
\left(x_{1} \vee x_{2} \vee \cdots \vee x_{n}\right)
$$

Exclusive OR (1)

Given a set of Boolean variables x_{1}, \ldots, x_{n}, how to encode

$$
\operatorname{XOR}\left(x_{1}, \ldots, x_{n}\right)
$$

into SAT?

Exclusive OR (1)

Given a set of Boolean variables x_{1}, \ldots, x_{n}, how to encode

$$
\operatorname{XOR}\left(x_{1}, \ldots, x_{n}\right)
$$

into SAT?
$\operatorname{XOR}\left(x_{1}, \ldots, x_{n}\right)$ is true when an odd number of x_{i} is assigned to true. Consider the case with two literals:

x_{1}	x_{2}	$\operatorname{XOR}\left(x_{1}, x_{2}\right)$
0	0	0
0	1	1
1	0	1
1	1	0

Exclusive OR (1)

Given a set of Boolean variables x_{1}, \ldots, x_{n}, how to encode

$$
\operatorname{XOR}\left(x_{1}, \ldots, x_{n}\right)
$$

into SAT?
$\operatorname{XOR}\left(x_{1}, \ldots, x_{n}\right)$ is true when an odd number of x_{i} is assigned to true. Consider the case with two literals:

x_{1}	x_{2}	$\operatorname{XOR}\left(x_{1}, x_{2}\right)$
0	0	0
0	1	1
1	0	1
1	1	0

$\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right)$

Exclusive OR (2)

Given a set of Boolean variables x_{1}, \ldots, x_{n}, how to encode

$$
\operatorname{XOR}\left(x_{1}, \ldots, x_{n}\right)
$$

into SAT?
The direct encoding requires 2^{n-1} clauses of length n :

$$
\bigwedge_{\text {even } \# \neg}\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \cdots \vee \bar{x}_{n}\right)
$$

Exclusive OR (2)

Given a set of Boolean variables x_{1}, \ldots, x_{n}, how to encode

$$
\operatorname{XOR}\left(x_{1}, \ldots, x_{n}\right)
$$

into SAT?
The direct encoding requires 2^{n-1} clauses of length n :

$$
\bigwedge_{\text {even } \# \rightarrow}\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \cdots \vee \bar{x}_{n}\right)
$$

$$
\begin{aligned}
\operatorname{XOR}\left(x_{1}, x_{2}, x_{3}\right)= & \left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge \\
& \left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)
\end{aligned}
$$

Exclusive OR (2)

Given a set of Boolean variables x_{1}, \ldots, x_{n}, how to encode

$$
\operatorname{XOR}\left(x_{1}, \ldots, x_{n}\right)
$$

into SAT?
The direct encoding requires $2^{\text {n-1 }}$ clauses of length n :

$$
\bigwedge_{\text {even } \#\urcorner}\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \cdots \vee \bar{x}_{n}\right)
$$

$$
\operatorname{XOR}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge
$$

$$
\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)
$$

Question: How many solutions does this formula have?

Exclusive OR (2)

Given a set of Boolean variables x_{1}, \ldots, x_{n}, how to encode

$$
\operatorname{XOR}\left(x_{1}, \ldots, x_{n}\right)
$$

into SAT?
The direct encoding requires $2^{\text {n-1 }}$ clauses of length n :

$$
\bigwedge_{\text {even } \#\urcorner}\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \cdots \vee \bar{x}_{n}\right)
$$

$$
\operatorname{XOR}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge
$$

$$
\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)
$$

Question: How many solutions does this formula have? 4

Exclusive OR (2)

Given a set of Boolean variables x_{1}, \ldots, x_{n}, how to encode

$$
\operatorname{XOR}\left(x_{1}, \ldots, x_{n}\right)
$$

into SAT?
The direct encoding requires $2^{\text {n-1 }}$ clauses of length n :

$$
\bigwedge_{\text {even } \#\urcorner}\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \cdots \vee \bar{x}_{n}\right)
$$

Can we encode large XORs with fewer clauses?

Exclusive OR (2)

Given a set of Boolean variables x_{1}, \ldots, x_{n}, how to encode

$$
\operatorname{XOR}\left(x_{1}, \ldots, x_{n}\right)
$$

into SAT?
The direct encoding requires 2^{n-1} clauses of length n :

$$
\bigwedge_{\text {even } \# \checkmark}\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \cdots \vee \bar{x}_{n}\right)
$$

Can we encode large XORs with fewer clauses?
Make it compact: $\operatorname{XOR}\left(x_{1}, x_{2}, y\right) \wedge \operatorname{XOR}\left(\bar{y}, x_{3}, \ldots, x_{n}\right)$
Tradeoff: increase the number of variables but decreases the number of clauses!

AtMostOne: Pairwise Encoding

Given a set of Boolean variables x_{1}, \ldots, x_{n}, how to encode

$$
\text { AtMostOne }\left(x_{1}, \ldots, x_{n}\right)
$$ into SAT?

AtMostOne: Pairwise Encoding

Given a set of Boolean variables x_{1}, \ldots, x_{n}, how to encode

$$
\text { AtMostOne }\left(x_{1}, \ldots, x_{n}\right)
$$

into SAT?
The direct encoding requires $n(n-1) / 2$ binary clauses:

$$
\bigwedge_{1 \leq i<j \leq n}\left(\bar{x}_{i} \vee \bar{x}_{j}\right)
$$

AtMostOne: Pairwise Encoding

Given a set of Boolean variables x_{1}, \ldots, x_{n}, how to encode

$$
\text { AtMostOne }\left(x_{1}, \ldots, x_{n}\right)
$$

into SAT?
The direct encoding requires $n(n-1) / 2$ binary clauses:

$$
\bigwedge_{1 \leq i<j \leq n}\left(\bar{x}_{i} \vee \bar{x}_{j}\right)
$$

Is it possible to use fewer clauses?

AtMostOne: Linear Encoding

Given a set of Boolean variables x_{1}, \ldots, x_{n}, how to encode AtMostOne $\left(x_{1}, \ldots, x_{n}\right)$ into SAT using a linear number of binary clauses?

AtMostOne: Linear Encoding

Given a set of Boolean variables x_{1}, \ldots, x_{n}, how to encode

$$
\text { AtMostOne }\left(x_{1}, \ldots, x_{n}\right)
$$

into SAT using a linear number of binary clauses?
By splitting the constraint using additional variables. Apply the direct encoding if $n \leq 4$ otherwise replace AtMostOne $\left(x_{1}, \ldots, x_{n}\right)$ by

AtMostOne $\left(x_{1}, x_{2}, x_{3}, y\right) \wedge \operatorname{AtMostOne}\left(\bar{y}, x_{4}, \ldots, x_{n}\right)$ resulting in $3 n-6$ clauses and $(n-3) / 2$ new variables

AtMostOne: Equivalence

How to show that two encodings of $\operatorname{AtMost\operatorname {One}(x_{1},x_{2})\text {are}}$ equivalent?
If we have a circuit representation of each encoding then we can use a miter circuit to show that for the same inputs, the output variables are equivalent:

AtMostOne: Equivalence

Are these two encoding of $\operatorname{AtMostOne}\left(x_{1}, x_{2}\right)$ equivalent?

φ_{1} (direct encoding)	φ_{2} (split encoding)
$\bar{x}_{1} \vee \bar{x}_{2}$	$\bar{x}_{1} \vee \mathrm{y}$
	$\bar{y} \vee \bar{x}_{2}$

Question: Is φ_{1} equivalent to φ_{2} ?
Note: $\varphi_{1} \leftrightarrow \varphi_{2}$ is valid if $\neg \varphi_{1} \wedge \varphi_{2}$ and $\varphi_{1} \wedge \neg \varphi_{2}$ are unsatisfiable.

AtMostOne: Equivalence

Are these two encoding of $\operatorname{AtMostOnE}\left(x_{1}, x_{2}\right)$ equivalent?

φ_{1} (direct encoding)	φ_{2} (split encoding)
$\bar{x}_{1} \vee \bar{x}_{2}$	$\bar{x}_{1} \vee y$
	$\bar{y} \vee \bar{x}_{2}$

Is $\neg \varphi_{1} \wedge \varphi_{2}$ unsatisfiable?
Note: $\neg \varphi_{1} \equiv \chi_{1} \wedge x_{2}$

AtMostOne: Equivalence

Are these two encoding of $\operatorname{AtMostOnE}\left(x_{1}, x_{2}\right)$ equivalent?

φ_{1} (direct encoding)	φ_{2} (split encoding)
$\bar{x}_{1} \vee \bar{x}_{2}$	$\bar{x}_{1} \vee \mathrm{y}$
	$\bar{y} \vee \bar{x}_{2}$

Is $\neg \varphi_{1} \wedge \varphi_{2}$ unsatisfiable? yes!
Note: $\neg \varphi_{1} \equiv \chi_{1} \wedge x_{2}$

AtMostOne: Equivalence

Are these two encoding of $\operatorname{AtMostOne}\left(x_{1}, x_{2}\right)$ equivalent?

φ_{1} (direct encoding)	φ_{2} (split encoding)
$\bar{x}_{1} \vee \bar{x}_{2}$	$\bar{x}_{1} \vee \mathrm{y}$
	$\bar{y} \vee \bar{x}_{2}$

Is $\varphi_{1} \wedge \neg \varphi_{2}$ unsatisfiable?
Note: $\neg \varphi_{2} \equiv\left(x_{1} \vee y\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{y} \vee x_{2}\right)$

AtMostOne: Equivalence

Are these two encoding of $\operatorname{AtMostOne}\left(x_{1}, x_{2}\right)$ equivalent?

φ_{1} (direct encoding)	φ_{2} (split encoding)
$\bar{x}_{1} \vee \bar{x}_{2}$	$\bar{x}_{1} \vee \mathrm{y}$
	$\bar{y} \vee \bar{x}_{2}$

Is $\varphi_{1} \wedge \neg \varphi_{2}$ unsatisfiable? no!
Note: $\neg \varphi_{2} \equiv\left(x_{1} \vee y\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{y} \vee x_{2}\right)$

AtMostOne: Equivalence

Are these two encoding of $\operatorname{AtMOstOnE}\left(x_{1}, x_{2}\right)$ equivalent?

φ_{1} (direct encoding)	φ_{2} (split encoding)
$\bar{x}_{1} \vee \bar{x}_{2}$	$\bar{x}_{1} \vee y$
	$\bar{y} \vee \bar{x}_{2}$

φ_{1} and φ_{2} are equisatisfiable:

- φ_{1} is satisfiable iff φ_{2} is satisfiable.

Note: Equisatisfiability is weaker than equivalence but useful if all we want we want to do is determine satisfiability.

Basic Constraints

Solver Input

Representing Integers

Cardinality Constraints

Lazy Encodings

Solver Input: DIMACS format

c famous problem (in CNF)
p cnf 69
140
250
360
-1-2 0
-1-3 0
-2 -3 0
-4-5 0
-4 -6 0
-5 -6 0

Solver Input: DIMACS format

c pigeon hole problem
p cnf 69
140
\# pigeon[1]@hole[1] \vee pigeon[1]@hole[2]
$250 \quad \#$ pigeon[2]@hole[1] \vee pigeon[2]@hole[2]
360
-1 -2 0
-1 -3 0
-2 -3 0
-4 -5 0
-4 -6 0
$-5-60$
\# pigeon[3]@hole[1] \vee pigeon[3]@hole[2]
\# \neg pigeon[1]@hole[1] $\vee \neg$ pigeon[2]@hole[1]
\# \neg pigeon[1]@hole[1] $\vee \neg$ pigeon[3]@hole[1]
\# \neg pigeon[2]@hole[1] $\vee \neg$ pigeon[3]@hole[1]
\# \neg pigeon[1]@hole[2] $\vee \neg$ pigeon[2]@hole[2]
\# \neg pigeon[1]@hole[2] $\vee \neg$ pigeon[3]@hole[2]
\# ᄀpigeon[2]@hole[2] $\vee \neg$ pigeon[3]@hole[2]

Solver Input: Tseitin Transformation (1)

- SAT solvers take as input a formula in CNF
- What is the complexity of transformation any formula φ in CNF?

Solver Input: Tseitin Transformation (1)

- SAT solvers take as input a formula in CNF
- What is the complexity of transformation any formula φ in CNF?

In some cases, converting a formula to CNF can have an exponential explosion on the size of the formula.
If we convert $\left(x_{1} \wedge y_{1}\right) \vee\left(x_{2} \wedge y_{2}\right) \vee \ldots \vee\left(x_{n} \wedge y_{n}\right)$ using De Morgan's laws and distributive law to CNF:
$\left(x_{1} \vee x_{2} \vee \ldots \vee x_{n}\right) \wedge\left(y_{1} \vee x_{2} \ldots \vee x_{n}\right) \wedge \ldots \wedge\left(y_{1} \vee y_{2} \vee \ldots \vee y_{n}\right)$

- How can we avoid the exponential blowup? In this case, the equivalent formula would have 2^{n} clauses!

Solver Input: Tseitin Transformation (1)

- SAT solvers take as input a formula in CNF
- What is the complexity of transformation any formula φ in CNF?
- Tseitin's transformation converts a formula φ into an equisatisfiable CNF formula that is linear in the size of φ !
- Key idea: introduce auxiliary variables to represent the output of subformulas, and constrain those variables using CNF clauses!

Solver Input: Tseitin Transformation (2)

$$
p \rightarrow(q \wedge r)
$$

Solver Input: Tseitin Transformation (2)

$$
p \rightarrow(q \wedge r)
$$

1. Introduce a fresh
variable for every non-atomic subformula

Solver Input: Tseitin Transformation (2)

$$
p \rightarrow(q \wedge r)
$$

1. Introduce a fresh
variable for every

$$
\mathrm{t}_{1} \leftrightarrow \mathrm{p} \rightarrow \mathrm{t}_{2}
$$ non-atomic subformula

Solver Input: Tseitin Transformation (2)

$$
p \rightarrow(q \wedge r)
$$

1. Introduce a fresh
variable for every non-atomic subformula
$\mathrm{t}_{1} \leftrightarrow \mathrm{p} \rightarrow \mathrm{t}_{2}$
$\mathrm{t}_{2} \leftrightarrow \mathrm{q} \wedge \mathrm{r}$

Solver Input: Tseitin Transformation (2)

$$
p \rightarrow(q \wedge r)
$$

1. Introduce a fresh
variable for every non-atomic subformula
$\mathrm{t}_{1} \leftrightarrow \mathrm{p} \rightarrow \mathrm{t}_{2}$
$\mathrm{t}_{2} \leftrightarrow \mathrm{q} \wedge \mathrm{r}$
2. Convert each equivalence into CNF

Solver Input: Tseitin Transformation (2)

$$
p \rightarrow(q \wedge r)
$$

1. Introduce a fresh
variable for every non-atomic subformula

$$
\begin{aligned}
& \mathrm{t}_{1} \leftrightarrow \mathrm{p} \rightarrow \mathrm{t}_{2} \\
& \mathrm{t}_{2} \leftrightarrow \mathrm{q} \wedge \mathrm{r}
\end{aligned}
$$

2. Convert each equivalence into CNF

Solver Input: Tseitin Transformation (2)

$$
p \rightarrow(q \wedge r)
$$

1. Introduce a fresh
variable for every non-atomic subformula

$$
\begin{aligned}
& \mathrm{t}_{1} \leftrightarrow \mathrm{p} \rightarrow \mathrm{t}_{2} \\
& \mathrm{t}_{2} \leftrightarrow \mathrm{q} \wedge \mathrm{r}
\end{aligned}
$$

2. Convert each equivalence into CNF

Solver Input: Tseitin Transformation (2)

$$
p \rightarrow(q \wedge r)
$$

1. Introduce a fresh
variable for every non-atomic subformula

$$
\begin{aligned}
& \mathrm{t}_{1} \leftrightarrow \mathrm{p} \rightarrow \mathrm{t}_{2} \\
& \mathrm{t}_{2} \leftrightarrow \mathrm{q} \wedge \mathrm{r}
\end{aligned}
$$

2. Convert each equivalence into CNF
3. Assert the conjunction of t_{1} and the
CNF-converted
equivalences

Solver Input: Tseitin Transformation (2)

$$
p \rightarrow(q \wedge r)
$$

1. Introduce a fresh
variable for every non-atomic subformula

$$
\begin{aligned}
& \mathrm{t}_{1} \leftrightarrow \mathrm{p} \rightarrow \mathrm{t}_{2} \\
& \mathrm{t}_{2} \leftrightarrow \mathrm{q} \wedge \mathrm{r}
\end{aligned}
$$

2. Convert each equivalence into CNF

$$
\begin{aligned}
& F_{1}:\left(t_{1} \vee p\right) \wedge\left(t_{1} \vee \bar{t}_{2}\right) \wedge\left(\bar{t}_{1} \vee \bar{p} \vee t_{2}\right) \\
& F_{2}:\left(\bar{t}_{2} \vee q\right) \wedge\left(\bar{t}_{2} \vee r\right) \wedge\left(t_{2} \vee \bar{q} \vee \bar{r}\right)
\end{aligned}
$$

3. Assert the conjunction of t_{1} and the
CNF-converted
equivalences

Solver Input: Tseitin Transformation (2)

$$
p \rightarrow(q \wedge r)
$$

1. Introduce a fresh
variable for every non-atomic subformula

$$
\begin{aligned}
& \mathrm{t}_{1} \leftrightarrow \mathrm{p} \rightarrow \mathrm{t}_{2} \\
& \mathrm{t}_{2} \leftrightarrow \mathrm{q} \wedge \mathrm{r}
\end{aligned}
$$

2. Convert each equivalence into CNF

$$
\begin{aligned}
& F_{1}:\left(t_{1} \vee p\right) \wedge\left(t_{1} \vee \bar{t}_{2}\right) \wedge\left(\bar{t}_{1} \vee \bar{p} \vee t_{2}\right) \\
& F_{2}:\left(\bar{t}_{2} \vee q\right) \wedge\left(\bar{t}_{2} \vee r\right) \wedge\left(t_{2} \vee \bar{q} \vee \bar{r}\right)
\end{aligned}
$$

of t_{1} and the
CNF-converted
$\mathrm{t}_{1} \wedge \mathrm{~F}_{1} \wedge \mathrm{~F}_{2}$
equivalences

Solver Input: Tseitin Transformation (3)

Tree representation of the Tseitin Transformation:

Solver Input: Tseitin Transformation (3)

Tree representation of the Tseitin Transformation:

Solver Input: Tseitin Transformation (3)

Tree representation of the Tseitin Transformation:

Solver Input: Tseitin Transformation (3)

Tree representation of the Tseitin Transformation:

$$
p \rightarrow(q \wedge r) \equiv \mathrm{t}_{1} \wedge \operatorname{CNF}\left(\mathrm{~F}_{1}^{\prime}\right) \wedge \operatorname{CNF}\left(\mathrm{F}_{2}^{\prime}\right)
$$

Solver Input: Tseitin Transformation (4)

$F:(p \wedge q) \vee \neg(\neg p \wedge(q \vee \neg r))$

Solver Input: Tseitin Transformation (4)

$F:(p \wedge q) \vee \neg(\neg p \wedge(q \vee \neg r))$

Solver Input: Tseitin Transformation (4)

$$
\begin{aligned}
& \mathrm{F}:(\mathrm{p} \wedge \mathrm{q}) \vee \neg(\neg \mathrm{p} \wedge(\mathrm{q} \vee \neg \mathrm{r})) \\
& \mathrm{F}_{1}^{\prime}: \mathrm{t}_{1} \leftrightarrow \mathrm{t}_{2} \vee \mathrm{t}_{3} \\
& \mathrm{~F}_{2}^{\prime}: \mathrm{t}_{2} \leftrightarrow p \wedge \mathrm{q} \\
& \mathrm{~F}_{3}^{\prime}: \mathrm{t}_{3} \leftrightarrow \neg \mathrm{t}_{4} \\
& \mathrm{~F}_{4}^{\prime}: \mathrm{t}_{4} \leftrightarrow \mathrm{t}_{5} \wedge \mathrm{t}_{6} \\
& \mathrm{~F}_{5}^{\prime}: \mathrm{t}_{5} \leftrightarrow \neg \mathrm{p} \\
& \mathrm{~F}_{6}^{\prime}: \mathrm{t}_{6} \leftrightarrow \mathrm{q} \vee \mathrm{t}_{7} \\
& \mathrm{~F}_{7}^{\prime}: \mathrm{t}_{7} \leftrightarrow \neg \mathrm{r} \\
& \mathrm{~F} \equiv \mathrm{t}_{1} \wedge \mathrm{CNF}\left(\mathrm{~F}_{1}^{\prime}\right) \wedge \ldots \wedge \operatorname{CNF}\left(\mathrm{F}_{7}^{\prime}\right)
\end{aligned}
$$

Solver Input: Tseitin Transformation (5)

- Using automated tools to encode to CNF: limboole: http://fmv.jku.at/limboole

Solver Input: Tseitin Transformation (5)

- Using automated tools to encode to CNF: limboole: http://fmv.jku.at/limboole
- Tseitin's encoding may add many redundant variables/clauses!
- Using limboole for the pigeon hole problem ($n=3$) creates a formula with 40 variables and 98 clauses
- After unit propagation the formula has 12 variables and 28 clauses
- Original CNF formula only has 6 variables and 9 clauses

Basic Constraints

Solver Input

Representing Integers

Cardinality Constraints

Lazy Encodings

Representing Integers: Direct Encoding

- Each number i is represented by a Boolean variable: d_{i}
- At least one number is true: $d_{0} \vee \cdots \vee d_{n}$
- At most one number is true: $\bigwedge_{i<j} \overline{\mathrm{~d}}_{\mathrm{i}} \vee \overline{\mathrm{d}}_{\mathrm{j}}$
- Expressing in a clause that an integer has a specific value v requires one literal.
- For example, "if the number is 1 , then do x ", is encoded as $\bar{d}_{1} \vee x$.
- Typically effective when reasoning about a small range of integers.

Representing Integers: Order Encoding

Order encoding:

- Variables represent that a number is larger or equal: $\mathrm{o}_{\geq i}$
- Requires a linear number of binary clauses: $o_{\geq i} \vee \bar{o}_{\geq i+1}$
- Expressing in a clause that an integer has a specific value ν requires two literals.
- For example, "if the number is 1 , then do x ", is encoded as $\bar{\sigma}_{\geq 1} \vee \mathrm{o}_{\geq 2} \vee x$.
- Allows the solver to reason (and produce clauses) that cover multiple cases.

Representing Integers: Binary Encoding

Binary encoding:

- Use $\left\lceil\log _{2} n\right\rceil$ auxiliary variables b_{i} to represent n in binary
- All non-occurring numbers $\leq 2^{\left[\log _{2} n\right\rceil}$ need to be blocked. For example, if we have the numbers 0,1 , and 2 , then the number 3 needs to be blocked: $\left(\neg \mathrm{b}_{0} \vee \neg \mathrm{~b}_{1}\right)$
- Expressing in a clause that an integer has a specific value v requires $\left\lceil\log _{2} n\right\rceil$ literals.
- For example, "if the number is 1 , then do x ", is encoded as $\neg \mathrm{b}_{0} \vee \mathrm{~b}_{1} \vee \mathrm{x}$.
- Typically effective when reasoning about a large range of integers.

Basic Constraints

Solver Input
 Representing Integers

Cardinality Constraints

Lazy Encodings

How to encode cardinality constraints?

Recall AtMostOne constraints:

- Direct encoding for AtMostOne constraints:
- AtMostOne: $x_{1}+x_{2}+x_{3}+x_{4} \leq 1$
- Clauses:

$$
\left.\begin{array}{c}
\left(x_{1} \rightarrow \bar{x}_{2}\right) \\
\left(x_{1} \rightarrow \bar{x}_{3}\right) \\
\left(x_{1} \rightarrow \bar{x}_{4}\right) \\
\ldots
\end{array}\right\} \begin{gathered}
\bar{x}_{1} \vee \bar{x}_{2} \\
\bar{x}_{1} \vee \bar{x}_{3} \\
\bar{x}_{1} \vee \bar{x}_{4} \\
\cdots \\
\hline
\end{gathered}
$$

- Complexity: $\mathcal{O}\left(\mathrm{n}^{2}\right)$ clauses

How to encode cardinality constraints?

AtMostK constraints:

- Naive encoding for AtMostK constraints:
- Cardinality constraint: $x_{1}+x_{2}+x_{3}+x_{4} \leq 2$
- Clauses:

$$
\left.\begin{array}{c}
\left(x_{1} \wedge x_{2} \rightarrow \bar{x}_{3}\right) \\
\left(x_{1} \wedge x_{2} \rightarrow \bar{x}_{4}\right) \\
\left(x_{2} \wedge x_{3} \rightarrow \bar{x}_{4}\right) \\
\ldots
\end{array}\right\} \begin{gathered}
\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right) \\
\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{4}\right) \\
\left(\bar{x}_{2} \vee \bar{x}_{3} \vee \bar{x}_{4}\right) \\
\cdots
\end{gathered}
$$

- Complexity: $\mathcal{O}\left(\mathrm{n}^{k}\right)$ clauses
- What properties should these encodings have?

How to encode cardinality constraints?

AtMostK constraints:

- Naive encoding for AtMostK constraints:
- Cardinality constraint: $x_{1}+x_{2}+x_{3}+x_{4} \leq 2$
- Clauses:

$$
\left.\begin{array}{c}
\left(x_{1} \wedge x_{2} \rightarrow \bar{x}_{3}\right) \\
\left(x_{1} \wedge x_{2} \rightarrow \bar{x}_{4}\right) \\
\left(x_{2} \wedge x_{3} \rightarrow \bar{x}_{4}\right) \\
\ldots
\end{array}\right\} \begin{gathered}
\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right) \\
\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{4}\right) \\
\left(\bar{x}_{2} \vee \bar{x}_{3} \vee \bar{x}_{4}\right) \\
\cdots
\end{gathered}
$$

- Complexity: $\mathcal{O}\left(\mathrm{n}^{k}\right)$ clauses
- What properties should these encodings have? Number of variables? Number of clauses? Other?

Consistency and Arc-Consistency (1)

- Let us consider an encoding of a constraint C such that there is a correspondence between assignments of the variables in C with Boolean assignments of the variables in the encoding
- The encoding is consistent if whenever M is partial assignment inconsistent wrt C (i.e., cannot be extended to a solution of C), unit propagation leads to conflict

Consistency and Arc-Consistency (1)

- Let us consider an encoding of a constraint C such that there is a correspondence between assignments of the variables in C with Boolean assignments of the variables in the encoding
- The encoding is consistent if whenever M is partial assignment inconsistent wrt C (i.e., cannot be extended to a solution of C), unit propagation leads to conflict
- The encoding is arc-consistent if

1. it is consistent, and
2. unit propagation discards arc-inconsistent values (values that cannot be assigned)

- These are good properties for encodings: SAT solvers are very good at unit propagation!

Consistency and Arc-Consistency (2)

In the case of the AtMostOne constraint
$x_{1}+x_{2}+\ldots+x_{n} \leq 1$:

- Consistency \equiv if there are two variables x_{i} assigned to true then unit propagation should give a conflict
- Arc-consistency \equiv Consistency + if there is one x_{i} assigned to true then all others x_{j} should be assigned to false by unit propagation

Cardinality Constraints: Sinz encoding (1)

Can we build an encoding that is arc-consistent and uses a polynomial number of variables/clauses for at-most-k constraints?

Cardinality Constraints: Sinz encoding (1)

Can we build an encoding that is arc-consistent and uses a polynomial number of variables/clauses for at-most-k constraints?

Yes! By adding $\mathrm{O}(\mathrm{n} \cdot \mathrm{k})$ auxiliary variables we only need $\mathrm{O}(\mathrm{n} \cdot \mathrm{k})$ clauses!

Cardinality Constraints: Sinz encoding (2)

$$
x_{1}+x_{2}+x_{3} \leq 2
$$

Cardinality Constraints: Sinz encoding (2)

$x_{1}+x_{2}+x_{3} \leq 2$
Note: this is easy to encode but we will use it to give intuition. How would you encode this with a single clause?

Cardinality Constraints: Sinz encoding (2)

$x_{1}+x_{2}+x_{3} \leq 2$
Note: this is easy to encode but we will use it to give intuition. How would you encode this with a single clause?
$\neg\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \equiv\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)$

Cardinality Constraints: Sinz encoding (2)

$$
x_{1}+x_{2}+x_{3} \leq 2
$$

x_{1}	x_{2}	x_{3}
$s_{1,1}$	$s_{2,1}$	$s_{3,1}$
-	$s_{2,2}$	$s_{3,2}$
-	-	$s_{3,3}$

- $s_{i, j} \equiv$ At least j variables x_{1}, \ldots, x_{i} are assigned 1

Cardinality Constraints: Sinz encoding (2)

$$
x_{1}+x_{2}+x_{3} \leq 2
$$

x_{1}	x_{2}	x_{3}
$s_{1,1}$	$s_{2,1}$	$s_{3,1}$
-	$s_{2,2}$	$s_{3,2}$
-	-	$s_{3,3}$

$\rightarrow \mathrm{x}_{1} \rightarrow ? ? ?$

Cardinality Constraints: Sinz encoding (2)

$$
x_{1}+x_{2}+x_{3} \leq 2
$$

x_{1}	x_{2}	x_{3}
$s_{1,1}$	$s_{2,1}$	$s_{3,1}$
-	$s_{2,2}$	$s_{3,2}$
-	-	$s_{3,3}$

$\rightarrow \mathrm{x}_{1} \rightarrow \mathrm{~s}_{1,1}$
$\rightarrow x_{2} \rightarrow s_{2,1}$
$-x_{3} \rightarrow s_{3,1}$

Cardinality Constraints: Sinz encoding (2)

$$
x_{1}+x_{2}+x_{3} \leq 2
$$

x_{1}	x_{2}	x_{3}
$s_{1,1}$	$s_{2,1}$	$s_{3,1}$
-	$s_{2,2}$	$s_{3,2}$
-	-	$s_{3,3}$

$-\mathrm{s}_{1,1} \rightarrow ? ? ?$

Cardinality Constraints: Sinz encoding (2)

$$
x_{1}+x_{2}+x_{3} \leq 2
$$

x_{1}	x_{2}	x_{3}
$s_{1,1}$	$s_{2,1}$	$s_{3,1}$
-	$s_{2,2}$	$s_{3,2}$
-	-	$s_{3,3}$

$\rightarrow s_{1,1} \rightarrow s_{2,1}$
$-\mathrm{s}_{2,1} \rightarrow \mathrm{~s}_{3,1}$
$-s_{2,2} \rightarrow s_{3,2}$

Cardinality Constraints: Sinz encoding (2)

$$
x_{1}+x_{2}+x_{3} \leq 2
$$

x_{1}	x_{2}	x_{3}
$\mathrm{~s}_{1,1}$	$\mathrm{~s}_{2,1}$	$\mathrm{~s}_{3,1}$
-	$\mathrm{s}_{2,2}$	$\mathrm{~s}_{3,2}$
-	-	$\mathrm{s}_{3,3}$

$$
\nabla\left(x_{2} \wedge s_{1,1}\right) \rightarrow ? ? ?
$$

Cardinality Constraints: Sinz encoding (2)

$$
x_{1}+x_{2}+x_{3} \leq 2
$$

x_{1}	x_{2}	x_{3}
$s_{1,1}$	$s_{2,1}$	$s_{3,1}$
-	$s_{2,2}$	$s_{3,2}$
-	-	$s_{3,3}$

$\rightarrow\left(x_{2} \wedge s_{1,1}\right) \rightarrow s_{2,2}$

- $\left(x_{3} \wedge s_{2,1}\right) \rightarrow s_{3,2}$
- $\left(x_{3} \wedge s_{2,2}\right) \rightarrow s_{3,3}$

Cardinality Constraints: Sinz encoding (2)

$$
x_{1}+x_{2}+x_{3} \leq 2
$$

x_{1}	x_{2}	x_{3}
$s_{1,1}$	$s_{2,1}$	$s_{3,1}$
-	$s_{2,2}$	$s_{3,2}$
-	-	$s_{3,3}$

- What are we missing?
- We need to enforce that at most two x_{i} are assigned to 1 . How can we do this?

Cardinality Constraints: Sinz encoding (2)

$$
x_{1}+x_{2}+x_{3} \leq 2
$$

x_{1}	x_{2}	x_{3}
$s_{1,1}$	$s_{2,1}$	$s_{3,1}$
-	$s_{2,2}$	$s_{3,2}$
-	-	$s_{3,3}$

- What are we missing?
- We need to enforce that at most two x_{i} are assigned to 1 . How can we do this?
- $\bar{s}_{3,3}$

Cardinality Constraints: Sinz encoding (2)

$$
\left.\begin{array}{l}
x_{1}+x_{2}+x_{3} \leq 2 \\
\text { p cnf } 910 \\
-1440 \\
-250 \\
-370 \\
-450 \\
-570 \\
-680 \\
-280 \\
-4
\end{array}\right)
$$

Cardinality Constraints: Sinz encoding (2)

$$
\begin{array}{lr}
x_{1}+x_{2}+x_{3} \leq 2 & \\
\text { pcnf } 910 & \\
-140 & \# \bar{x}_{1} \vee s_{1,1} \\
-250 & \# \bar{x}_{2} \vee s_{2,1} \\
-370 & \# \bar{x}_{3} \vee s_{3,1} \\
-450 & \# \bar{s}_{1,2} \vee s_{2,1} \\
-570 & \# \bar{s}_{2,1} \vee s_{3,1} \\
-680 & \# \bar{s}_{2,2} \vee s_{3,2} \\
-2-460 & \# \bar{x}_{2} \vee \bar{s}_{1,1} \vee s_{2,2} \\
-3-580 & \# \bar{x}_{3} \vee \bar{s}_{2,1} \vee s_{3,2} \\
-3-690 & \# \bar{x}_{3} \vee \bar{s}_{2,2} \vee s_{3,3} \\
-90 & \# s_{3,3}
\end{array}
$$

If $x_{1}=1$ and $x_{2}=1$ then by unit propagation we have $x_{3}=0$.

Cardinality Constraints: Sinz encoding (2)

$$
\begin{array}{lr}
x_{1}+x_{2}+x_{3} \leq 2 & \\
\text { pcnf } 910 & \\
-140 & \# \bar{x}_{1} \vee s_{1,1} \\
-250 & \# \bar{x}_{2} \vee s_{2,1} \\
-370 & \# \bar{x}_{3} \vee s_{3,1} \\
-450 & \# \bar{s}_{1,2} \vee s_{2,1} \\
-570 & \# \bar{s}_{2,1} \vee s_{3,1} \\
-680 & \# \bar{s}_{2,2} \vee s_{3,2} \\
-2-460 & \# \bar{x}_{2} \vee \bar{s}_{1,1} \vee s_{2,2} \\
-3-580 & \# \bar{x}_{3} \vee \bar{s}_{2,1} \vee s_{3,2} \\
-3-690 & \# \bar{x}_{3} \vee \bar{s}_{2,2} \vee s_{3,3} \\
-90 & \# s_{3,3}
\end{array}
$$

If $x_{1}=1$ and $x_{2}=2$ then by unit propagation we have $x_{3}=0$.

Cardinality Constraints: Sinz encoding (2)

$$
\begin{array}{lr}
x_{1}+x_{2}+x_{3} \leq 2 & \\
\text { pcnf } 910 & \\
-140 & \# \bar{x}_{1} \vee s_{1,1} \\
-250 & \# \bar{x}_{2} \vee s_{2,1} \\
-370 & \# \bar{x}_{3} \vee s_{3,1} \\
-450 & \# \bar{s}_{1,2} \vee s_{2,1} \\
-570 & \# \bar{s}_{2,1} \vee s_{3,1} \\
-680 & \# \bar{s}_{2,2} \vee s_{3,2} \\
-2-460 & \# \bar{x}_{2} \vee \bar{s}_{1,1} \vee s_{2,2} \\
-3-580 & \# \bar{x}_{3} \vee \bar{s}_{2,1} \vee s_{3,2} \\
-3-690 & \# \bar{x}_{3} \vee \bar{s}_{2,2} \vee s_{3,3} \\
-90 & \# s_{3,3}
\end{array}
$$

If $x_{1}=1$ and $x_{2}=2$ then by unit propagation we have $x_{3}=0$.

Cardinality Constraints: Sinz encoding (3)

Encoding for the general case $x_{1}+\ldots+x_{n} \leq k$:

$$
\left.\begin{array}{l}
\left(\bar{x}_{1} \vee s_{1,1}\right) \\
\left(\bar{s}_{1, j}\right) \quad \text { for } 1<j \leq k \\
\left(\bar{x}_{i} \vee s_{i, 1}\right) \\
\left(\bar{s}_{i-1,1} \vee s_{i, 1}\right) \\
\left(\bar{s}_{i} \vee \bar{s}_{i-1, k}\right)
\end{array}\right\} \quad \text { for } 1<i<n \quad \begin{aligned}
& \\
& \left(\bar{x}_{i} \vee \bar{s}_{i-1, j-1} \vee s_{i, j}\right) \quad \\
& \left(\bar{s}_{i-1, j} \vee s_{i, j}\right) \\
& \left(\bar{x}_{n} \vee \bar{s}_{n-1, k}\right)
\end{aligned} \quad \text { for } 1<\mathfrak{i}<n \text { and } 1<j \leq k
$$

More details in paper: "Towards an Optimal CNF Encoding of Boolean Cardinality Constraints", CP2005

- This version considers extra auxiliary variables that can be removed (e.g., sum at χ_{1} is never greater than 1)

Cardinality Constraints: Totalizer encoding (1)

What is another example of an at-most-k encoding for $l_{1}+\ldots l_{5} \leq k$?

Totalizer encoding is based on a tree structure and also only needs $\mathrm{O}(\mathrm{n} \cdot \mathrm{k})$ clauses/variables.

Cardinality Constraints: Totalizer encoding (2)

- Use auxiliary variables to count the sum of the subtree:
- $\mathrm{f}_{1} \equiv \mathrm{l}_{4}+\mathrm{l}_{5}=1$
- $\mathrm{f}_{2} \equiv \mathrm{l}_{4}+\mathrm{l}_{5}=2$
- Note that only f_{1} or f_{2} will be assigned to 1 .

Cardinality Constraints: Totalizer encoding (3)

- Use auxiliary variables to count the sum of the subtree:
- $\mathrm{b}_{1} \equiv \mathrm{l}_{3}+\mathrm{f}_{1}+2 \times \mathrm{f}_{2}=1$
$-\mathrm{b}_{2} \equiv \mathrm{l}_{3}+\mathrm{f}_{1}+2 \times \mathrm{f}_{2}=2$
$-\mathrm{b}_{3} \equiv \mathrm{l}_{3}+\mathrm{f}_{1}+2 \times \mathrm{f}_{2}=3$

Cardinality Constraints: Totalizer encoding (4)

Any parent node P, counting up to n_{P}, has two children L and R counting up to n_{L} and n_{R} respectively s.t. $n_{L}+n_{R}=n_{p}$.

Further reading

More details about cardinality encodings can be found in:

- Sinz's encoding:

Carsten Sinz. Towards an Optimal CNF Encoding of Boolean Cardinality Constraints. CP 2005. pp. 827-831 http://www.carstensinz.de/papers/CP-2005.pdf

- Totalizer encoding:

Olivier Bailleux, Yacine Boufkhad. Efficient CNF Encoding of Boolean Cardinality Constraints. CP 2003. pp. 108-122 https://tinyurl.com/y6ph76au

- Modulo Totalizer encoding:

Toru Ogawa, Yangyang Liu, Ryuzo Hasegawa, Miyuki Koshimura, Hiroshi Fujita. Modulo Based CNF Encoding of Cardinality Constraints and Its Application to MaxSAT Solvers. ICTAI 2013. pp. 9-17 https://ieeexplore.ieee.org/document/6735224

- Cardinality networks:

Roberto Asin, Robert Nieuwenhuis, Albert Oliveras, Enric
Rodriguez-Carbonell. Cardinality Networks and Their Applications.
SAT 2009. pp. 167-180 https://tinyurl.com/yxwrxzxo

Other encodings

Many other encodings exist for cardinality constraints! Majority are based on circuits!
Example: Sorting Networks use $\mathrm{O}\left(\mathrm{n} \log ^{2} k\right)$ variables and clauses

We can also generalize to linear constraints with integer coefficients called pseudo-Boolean constraints:
$a_{1} x_{1}+\ldots+a_{n} x_{n} \leq k$

Other encodings

Many other encodings exist for cardinality constraints! Majority are based on circuits!
Example: Sorting Networks use $\mathrm{O}\left(\mathrm{n} \log ^{2} k\right)$ variables and clauses

We can also generalize to linear constraints with integer coefficients called pseudo-Boolean constraints: $a_{1} x_{1}+\ldots+a_{n} x_{n} \leq k$

Question: Can we generalize Sinz's encoding to pseudo-Boolean constraints?

Other encodings

Many other encodings exist for cardinality constraints! Majority are based on circuits!
Example: Sorting Networks use $\mathrm{O}\left(\mathrm{n} \log ^{2} k\right)$ variables and clauses

We can also generalize to linear constraints with integer coefficients called pseudo-Boolean constraints: $a_{1} x_{1}+\ldots+a_{n} x_{n} \leq k$

Question: Can we generalize Sinz's encoding to pseudo-Boolean constraints? Yes! We just need to consider the coefficient when writing the sum constraints.

Other encodings

Many other encodings exist for cardinality constraints! Majority are based on circuits!
Example: Sorting Networks use $\mathrm{O}\left(\mathrm{n} \log ^{2} \mathrm{k}\right)$ variables and clauses

We can also generalize to linear constraints with integer coefficients called pseudo-Boolean constraints: $a_{1} x_{1}+\ldots+a_{n} x_{n} \leq k$

Question: Can we generalize Sinz's encoding to pseudo-Boolean constraints? Yes! We just need to consider the coefficient when writing the sum constraints.

More efficient encodings: Binary merger encoding only requires $O\left(n^{2} \log ^{2}(n) \log \left(w_{\text {max }}\right)\right)$ clauses and maintains arc-consistency!

Basic Constraints

Solver Input

Representing Integers

Cardinality Constraints

Lazy Encodings

Hamiltonian Cycles: Two Constraints

Hamiltonian Cycle Problem (HCP):
Does there exists a cycle that visits all vertices exactly once?

Hamiltonian Cycles: Two Constraints

Hamiltonian Cycle Problem (HCP):
Does there exists a cycle that visits all vertices exactly once?

How do we encode this problem into SAT?

- Create Boolean variables and give them meaning
- Let $x_{i j}$ be a Boolean variable for each edge between v_{i}, v_{j} :
- $x_{i j}=1$ if this edge is used in the solution cycle
$-x_{i j}=0$ if this edge is not used in the solution cycle

Hamiltonian Cycles: Two Constraints

Hamiltonian Cycle Problem (HCP):
Does there exists a cycle that visits all vertices exactly once?

How do we encode this problem into SAT?

- Use the Boolean variables to encode the problem
- Exactly two edges per vertex
- Exactly one cycle

Hamiltonian Cycles: Two Constraints

Hamiltonian Cycle Problem (HCP):
Does there exists a cycle that visits all vertices exactly once?

Exactly two edges per vertex:

- $\sum_{(i, j) \in E} x_{i, j}=2$
- Example: $x_{v_{1}, v_{2}}+x_{v_{1}, v_{3}}+x_{v_{1}, v_{4}}+x_{v_{1}, v_{5}}=2$

Hamiltonian Cycles: Two Constraints

Hamiltonian Cycle Problem (HCP):
Does there exists a cycle that visits all vertices exactly once?

Exactly one cycle:

- How to encode?

Hamiltonian Cycles: Two Constraints

Hamiltonian Cycle Problem (HCP):
Does there exists a cycle that visits all vertices exactly once?

Exactly one cycle:

- $S \subset V, \quad 2 \leq|S| \leq n-2$
$-\sum_{i, j \in S} x_{i, j} \leq|S|-1$ (the path must leave $S \rightarrow$ no cycle)
- Example: $S=\left\{v_{1}, v_{2}, v_{4}\right\}: x_{v_{1}, v_{2}}+x_{v_{1}, v_{4}}+x_{v_{2}, v_{4}} \leq 2$

Hamiltonian Cycles: Two Constraints

Hamiltonian Cycle Problem (HCP):
Does there exists a cycle that visits all vertices exactly once?

Exactly one cycle:

- There is an exponential number of subtours and encoding connectivity constraints with this approach is often not practical!

Hamiltonian Cycle Problem (2)

Can we encode this problem using fewer constraints?

Hamiltonian Cycle Problem (2)

Can we encode this problem using fewer constraints?
Boolean variables:

- Consider a path that connects n vertices as a sequence of positions $p_{i, j}$ to denote vertex i occurs j th in the path.
- Example: $p_{1, v_{1}}=1, p_{2, v_{2}}=1, p_{3, v_{5}}=1, \ldots$

Hamiltonian Cycle Problem (2)

Constraints:

- Each vertex occurs exactly once in the path
- Example: $\mathrm{p}_{1, v_{1}}+\mathrm{p}_{2, v_{1}}+\ldots+\mathrm{p}_{7, v_{1}}=1$

Hamiltonian Cycle Problem (2)

Constraints:

- Each location in the path has exactly one vertex
- Example: $p_{1, v_{1}}+p_{1, v_{2}}+\ldots+p_{1, v_{7}}=1$

Hamiltonian Cycle Problem (2)

Constraints:

- Two vertices cannot be contiguous in the path if they are not adjacent in the graph
- Example: $\mathrm{p}_{1, v_{1}} \rightarrow \neg \mathrm{p}_{2, v_{6}}$

Hamiltonian Cycle Problem (2)

Constraints:

- Each vertex occurs exactly once in the path
- Each location in the path has exactly one vertex
- Two vertices cannot be contiguous in the path if they are not adjacent in the graph

Hamiltonian Cycle Problem (2)

Constraints:

- Each vertex occurs exactly once in the path
- Each location in the path has exactly one vertex
- Two vertices cannot be contiguous in the path if they are not adjacent in the graph
- Still not good enough to handle large graphs!

Hamiltonian Cycles: Incremental SAT

Lazy encoding: instead of encoding the connectivity constraint eagerly, encode it lazily!

Every time the solver returns a solution:

1. Check if it is connected. If it is then we found a solution.
2. Otherwise, add constraints to force connectivity of the current path. Ask for a new solution [Go to 1].

In practice, we can find a solution without adding add subtours! Even though we need to perform several SAT calls to find the solution, this is often faster than most encodings into one large SAT formula.

Hamiltonian Cycles: Better Encodings

More compact encodings exist that can handle large graphs! See for example:

- Linear-Feedback Shift Register Encoding:

Michael Haythorpe and Andrew Johnson. Change ringing and Hamiltonian cycles: The search for Erin and Stedman triples. EJGTA 7, 61-75 (2019)
https://link.springer.com/content/pdf/10.1007/
978-3-030-80223-3_15.pdf

- Chinese Remainder Encoding:

Marijn J. H. Heule. Chinese Remainder Encoding for Hamiltonian Cycles. SAT 2021. pp. 216-224
https://www.cs.cmu.edu/~mheule/publications/
HamiltonianCycle.pdf

Lazy Encodings: Beyond Propositional Logic

What if our formula looks like this?
$(p \wedge \bar{q} \vee a=f(b-c)) \wedge(g(b) \neq c \vee a-c \leq 7)$
Talks about integers, functions, sets, lists, ...

We can transform it into a SAT formula

- can only find solutions within bounds
- very inefficient, so bounds are small

Better idea: combine SAT with special solvers for theories

Lazy Encodings: Satisfiability Modulo Theories (SMT)

Equality and Uninterpreted Functions
EUF $=<\mathrm{f}, \mathrm{g}, \mathrm{h}, \ldots,=$, axioms of equality \& congruence $>$
Linear Integer Arithmetic LIA $=<0,1, \ldots,+,-,=, \leq$, axioms of arithmetic $>$ Arrays, Strings, bitvectors, datatypes, quantifiers, ...

Theories can be combined!

Lazy Encodings: SMT Solvers

- Z3 (Microsoft): https://github.com/Z3Prover/z3/wiki
- CVC4 (Stanford): http://cvc4.cs.stanford.edu/web/
- Yices (SRI): http://yices.csl.sri.com/
- Boolector (JKU Austria): https://boolector.github.io/

Next lecture we will go over SAT and SMT solvers in practice!

Representations for Automated Reasoning

Ruben Martins

Carnegie
 Mellon University

http://www.cs.cmu.edu/~mheule/15816-f22/
Automated Reasoning and Satisfiability
September 7, 2022

