SAT and SMT Solvers in Practice

Marijn Heule and Ruben Martins

Carnegie
Mellon
University

http://www.cs.cmu.edu/~mheule/15816-£22/
https://github.com/marijnheule/sat-examples.git

Automated Reasoning and Satisfiability
September 12, 2022

SAT and SMT Solvers in Practice 1/32

http://www.cs.cmu.edu/~mheule/15816-f22/

DIMACS: SAT solver input format

The DIMACS format for SAT solvers has three types of lines:

m header: p cnf n min which n denotes the highest
variable index and m the number of clauses

m clauses: a sequence of integers ending with “0"
m comments: any line starting with “c "

Cc example

p cnf 4
(aVbVc) A 1 2-30
(@vboVe) A -1 -2 30
(bVeVd) A 2 3-40
(bVevd) A -2 -3 40
(aVeVd) A 1 3 40
(@veVvd A -1-3-40
(@vbVvd) -1 2 40

SAT and SMT Solvers in Practice 2/32

DIMACS: SAT solver output format

The solution line of a SAT solver starts with “s ":
m s SATISFIABLE: The formula is satisfiable
m s UNSATISFIABLE: The formula is unsatisfiable
m s UNKNOWN: The solver cannot determine satisfiability

In case the formula is satisfiable, the solver emits a certificate:
m lines starting with “v "
m a list of integers ending with 0

meg. v-1240

In case the formula is unsatisfiable, then most solvers support
emitting a proof of unsatisfiability to a separate file

SAT and SMT Solvers in Practice 3/32

CaDiCal: download and install

Most SAT solvers are implemented in C/C++

CaDiCal is one of the strongest SAT solvers. As the name
suggests it is based on CDCL. Recommended for Linux and
macOS users.

obtain CaDiCalL:

m git clone
https://github.com/arminbiere/cadical.git

m cd cadical
m ./configure; make

to run: ./build/cadical formula.cnf

SAT and SMT Solvers in Practice

4/32

Kissat: download and install

Most SAT solvers are implemented in C/C++

Kissat is successor of CaDiCal and it is written in C.
Recommended for Linux and macOS users.

obtain Kissat:

m git clone
https://github.com/arminbiere/kissat.git

m cd kissat
m ./configure; make

to run: ./build/kissat formula.cnf

SAT and SMT Solvers in Practice 4/32

SAT4J: download and install

SAT4] is a SAT solver in Java. It is also based on CDCL.
Recommended for windows users.

obtain SAT4J:

m git clone
https://github.com/marijnheule/sat-examples.git

m cd sat-examples

to run: java -jar org.sat4j.core-2.3.1.jar formula.cnf

SAT and SMT Solvers in Practice 5/32

UBCSAT: download and install

UBCSAT is a collection of local search SAT solvers.

obtain UBCSAT:

m download and unzip
http://ubcsat.dtompkins.com/downloads/
ubcsat-beta-12-bl8.tar.gz

m cd ubcsat-beta-12-b18
m make clean; make

to run: ./ubcsat -alg ddfw -i formula.cnf

there are many LS algorithms to choose from (-alg)
./ubcsat -ha (shows the available algorithms)

SAT and SMT Solvers in Practice

6/ 32

http://ubcsat.dtompkins.com/downloads/ubcsat-beta-12-b18.tar.gz
http://ubcsat.dtompkins.com/downloads/ubcsat-beta-12-b18.tar.gz

YalSAT: download and install

YalSAT: yet another local search SAT solver:

obtain YalSAT:

m git clone
https://github.com/arminbiere/yalsat.git

m cd yalsat
m ./configure.sh; make

to run: ./yalsat formula.cnf

A powerful local search solver from the author of CaDiCal and
Kissat

SAT and SMT Solvers in Practice 7/32

Many SAT solvers

Many SAT solvers have been developed

Lots of them participate in the annual SAT competition
m All code of participants in open source
m Each solver is run on hundreds of benchmarks
m Large timeout 5000 seconds

For details and downloading more solvers visit
http://satcompetition.org/

SAT and SMT Solvers in Practice 8 /32

http://satcompetition.org/

Demo: SAT Solving

SAT and SMT Solvers in Practice 9/32

Graph coloring

Given a graph G(V,E), can the vertices be colored
with k colors such that for each edge (v,w) € E,
the vertices v and w are colored differently.

28
>
G

SAT and SMT Solvers in Practice 10 / 32

Graph coloring encoding

Variables Range Meaning
Xy pellnel ode v has color 1
i n r
’ vel{l,... |V}
Clauses Range Meaning

(X VX V- Vx) vell, ..., |V} v is colored

se{l,...,c—1} v has at most

(Xu,s V%o 1) te{s+1,...,c} one color

v and w have a

(Xu,i V Xowsi) (v,w) € E different color

SAT and SMT Solvers in Practice 11/ 32

#include <stdio.h>
#include <stdlib.h>

int main (int argc, charsx argv) {
FILEx graph = fopen (argv[1l, "r");
int i, j, a, b, nVertex, nEdge, nColor = atoi (argv[2]);
fscanf (graph, " p edge %i %i ", &nVertex, &nEdge);

printf ("p cnf %i %i\n", nVertex * nColor, nVertex + nEdge * nColor);

for (i = @; i < nVertex; i++) {
for (j = 1; j <= nColor; j++)
printf ("%i ", i % nColor + j);
printf ("e\n"); }

while (1) {
int tmp = fscanf (graph, " e %i %i ", &a, &b);
if (tmp == @ || tmp == EOF) break;

for (j = 1; j <= nColor; j++)
printf ("-%i -%i @\n", (a-1) * nColor + j, (b-1) * nColor + j);

Demo: Encode, Decode

SAT and SMT Solvers in Practice 13 / 32

Unsatisfiable cores

An unsatisfiable core of an unsatisfiable formula F is a subset
of F that is unsatisfiable.

An minimal unsatisfiable core of an unsatisfiable formula such
that the removal of any clause makes the formula satisfiable.

Extracting a minimal unsatisfiable core from a formula has
many applications, but the computational costs could be high.

m maxSAT
m diagnosis
m formal verification

SAT and SMT Solvers in Practice 14 /32

Proofs

A proof of unsatisfiability is a certificate that a given formula
is unsatisfiable.

Various proof producing methods exists (another lecture).

Proof checking tools cannot only validate a proof but also
produce additional information about the formula:

m unsatisfiable core
m optimized proof

DRAT-trim is a tool that validates proofs and produces such
information

SAT and SMT Solvers in Practice 15/ 32

Demo: Core Extraction

SAT and SMT Solvers in Practice 16 / 32

StarExec

StarExec is a cross community logic solving service
m Great to evaluate solvers/heuristics in parallel
m Also used to run the SAT/SMT competitions

Register at https://www.starexec.org/
m select SAT as your community

SAT and SMT Solvers in Practice 17 /32

https://www.starexec.org/

Demo: StarExec

SAT and SMT Solvers in Practice 18 / 32

Tools for making SAT-based modeling easier

PySAT is a Python toolkit that makes it easier for users to call
SAT solvers and build encodings using Python:
m https://pysathq.github.io/

m SAT solver is still written in C, C4++
m Interface includes several encodings for linear constraints:

® At-most-one constraints
® Cardinality constraints
® AIGER circuits to CNF

m Well documented
m Active development

SAT and SMT Solvers in Practice 19 /32

https://pysathq.github.io/

Demo: PySAT

SAT and SMT Solvers in Practice 20 / 32

SMT-LIB: SMT solver input format (I)

http://smtlib.cs.uiowa.edu/

Language has similarities with functional languages and it is
more readable than CNF. Theories:

m Arrays,

m Bitvectors,

m Boolean predicates,
m Floating point,

m Ints,

m Reals

SAT and SMT Solvers in Practice 21 /32

http://smtlib.cs.uiowa.edu/

(set-logic QF_UF)
(declare-const p Bool)
(assert Cand p (not p)))
(check-sat)

(exit)

(set-logic QF_LIA)

(declare-const x Int)
(declare-const y Int)

(ossert (= (- xy) G+ x (- y) 1))
{check-sat)

(exit)

SMT Solvers

m Z3 (Microsoft):
https://github.com/Z3Prover/z3/wiki

m CVC5 (Stanford): https://cvch.github.io/
m Yices (SRI): http://yices.csl.sri.com/

m Boolector (JKU Austria):
https://boolector.github.io/

SAT and SMT Solvers in Practice 24 /32

https://github.com/Z3Prover/z3/wiki
https://cvc5.github.io/
http://yices.csl.sri.com/
https://boolector.github.io/

SMT Solvers

We recommend the use of Z3:

m Tutorial:
https://theory.stanford.edu/~nikolaj/
programmingz3.html

m APlIs for Python, C++, Java
m MIT License: https://github.com/Z3Prover/z3
m Most used and cited SMT solver (>7,000 citations)

SAT and SMT Solvers in Practice 24 / 32

https://theory.stanford.edu/~nikolaj/programmingz3.html
https://theory.stanford.edu/~nikolaj/programmingz3.html
https://github.com/Z3Prover/z3

Proving program equivalence in SMT

1 int power3(int in) 1 int power3 new (int in)
2 { 2 {
3 int i, out.a; 3 int out.b;
4 out_.a = in; 4
for (i = 0; 1 < 2; i++4) 5 out.b = (in * in) * in;
6 out_.a = out.a * in; 6
7 return out.a; 7 return out_b;
s } 8 }

©q =(outO_a = in0_a) A (outl_a = outO_a x in0_a)A\
(out2_a = outl_a x in0_a)
@ =out0_b = (in0_b x in0_b) x in0_b

To show these programs are equivalent, we must show the following
formula is valid: in0_a =in0_b A\ @q N\ @, — out2_a = outO_b

SAT and SMT Solvers in Practice 25 / 32

Demo: Program equivalence with SMT solving (BV)

© 0N O U A WN R

e e s =
W N U A WNRS

SAT and SMT Solvers in Practice

(declare-fun out@_a () (_ BitVec 128))
(declare-fun outl_a () (_ BitVec 128))
(declare-fun in@_a () (_ BitVec 128))
(declare-fun out2_a () (_ BitVec 128))
(declare-fun out@_b () (_ BitVec 128))
(declare-fun in@_b () (_ BitVec 128))
(define-fun phi_a () Bool

(and (= out@_a in@_a) ; outd_a = in0_a

(and (= outl_a (bvmul out@_a in@_a)) ; outl_a = out@_a * in@_a
(= out2_a (bvmul outl_a in@_a))))) ; out2_a = outl_a x ind_a

(define-fun phi_b () Bool

(= out@_b (bvmul (bvmul in@_b in@_b) in@_b))) ; out@_b = in@_b % in@_b * in@_b
(define—fun phi_input () Bool

(= in@_a in@_b))
(define-fun phi_output () Bool

(= out2_a out@_b))
(assert (not (=> (and phi_input phi_a phi_b) phi_output)))
(check-sat)

26 / 32

Demo: Program equivalence with SMT solving (Int)

1 (declare-fun
2 (declare-fun
3 (declare-fun
4 (declare-fun
5 (declare-fun
6 (declare-fun
7

8

9
10
11
12
13
14
15
16
17
18 (check-sat)

outd_a () (Int))
outl_a () (Int))
in@_a () (Int))
out2_a () (Int))
outd_b () (Int))
in@_b () (Int))

(define-fun phi_a () Bool
(and (= out@_a in@_a) ; outd_a

= 1in0_a

(and (= outl_a (* out@_a in@_a)) ; outl_a = out@_a * in0d_a
(= out2_a (* outl_a in@_a))))) ; out2_a = outl_a * in@_a

(define-fun phi_b () Bool
(= out@_b (x (x in@_b in@_b) in@_b))) ; outd_b = in0_b * ind_b * in0d_b
(define-fun phi_input () Bool
(= in@_a in@_b))
(define-fun phi_output () Bool
(= out2_a out@_b))
(assert (not (=> (and phi_input phi_a phi_b) phi_output)))

SAT and SMT Solvers in Practice

27 /

32

Demo: Program equivalence with SMT solving (UF)

© 0N U A WN R

e e e I e e = =
VW ~NOU A WNRS

SAT and SMT Solvers in Practice 28 /

(declare-fun out@_a () (_ BitVec 128))
(declare-fun outl_a () (_ BitVec 128))
(declare-fun in@_a () (_ BitVec 128))
(declare-fun out2_a () (_ BitVec 128))
(declare-fun out@_b () (_ BitVec 128))
(declare-fun in@_b () (_ BitVec 128))
(declare-fun f ((_ BitVec 128) (_ BitVec 128)) (_ BitVec 128))
(define-fun phi_a () Bool

(and (= out@_a in@_a) ; outd_a = in0_a

(and (= outl_a (f out0_a in@_a)) ; outl_a = outf_a * in0d_a
(= out2_a (f outl_a in@_a))))) ; out2_a = outl_a * in@_a

(define-fun phi_b () Bool

(= out@_b (f (f in@_b in@_b) in@_b))) ; outd_b = ind_b * in@_b * in0_b
(define-fun phi_input () Bool

(= in@_a in@_b))
(define-fun phi_output () Bool

(= out2_a outo_b))
(assert (not (=> (and phi_input phi_a phi_b) phi_output)))
(check-sat)

32

Graph coloring encoding in SMT

S,

BN

Variables:

m Integer variables x; for each node
Constraints:

Bl <x;<c

m X # X for (xi,%;) € E

SAT and SMT Solvers in Practice 29 /32

from z3 import *
Lmport sys

with open(sys.argv[1]) as f:
content = f.readlines()

nodes=int({content[@].split(Q[2]1)
edges=int(content[@].split(Q[3])
s = Solver()

variables = []

for id in range(1l,nodes+1):
variables.append(Int('x'+str(id)))

s.add(And(1 <= variables[id-1], variables[id-1] <= int(sys.argv[2])))

for line in content:
1f line[@]=="p"':

continue
else:
edge=line.split()
s.add((variables[int(edge[1])-1])!=(variables[int(edge[2])-1]))
s.check()

print(s.model())

Demo: Encoding in SMT

SAT and SMT Solvers in Practice 31/ 32

(set-option :produce-unsat-cores true)
(set-logic QF_UF)
(declare-const p Bool) (declare-const q Bool) (declare-const r Bool)

(declare-const s Bool) (declare-const t Bool)
(assert (! (=> p q) :named PQ))
(assert (! (=> q r) :named QR))
(assert (! (= r s) :named RS))
Cassert (! (== s t) :named ST))

(assert (! (not (=> q s)) :named NQS))
(check-sat)

({get-unsat-core)

(exit)

	Introduction

