Introduction to Automated Reasoning and Satisfiability

Marijn J.H. Heule

Carnegie
 Mellon University

http://www.cs.cmu.edu/~mheule/15816-f22/
Automated Reasoning and Satisfiability
August 28, 2022

To Start...

Marijn Heule Instructor

Ruben Martins Instructor

Margarida Ferreira
Teaching Assistant

Let's start by shortly introducing ourselves

To Start...

Marijn Heule Instructor

Ruben Martins Instructor

Margarida Ferreira
Teaching Assistant

Let's start by shortly introducing ourselves
Everyone is expect to attend the lectures
■ Email us prior to a lecture if you can't attend.

Automated Reasoning Has Many Applications

formal verification

train safety

security

automated theorem proving
 automated reasoning

bioinformatics

exploit
generation

planning and scheduling

term rewriting termination

Automated Reasoning Has Many Applications

formal verification

train safety

security

automated theorem proving

bioinformatics

planning and scheduling

term rewriting termination

Breakthrough in SAT Solving in the Last 20 Years

Satisfiability (SAT) problem: Can a Boolean formula be satisfied? mid '90s: formulas solvable with thousands of variables and clauses now: formulas solvable with millions of variables and clauses

Edmund Clarke: "a key technology of the 21st century" [Biere, Heule, vanMaaren, and Walsh '09] marijn@cmu.edu

NEWLY AVAILABLE SECTION OF
THE CLASSIC WORK

The Art of
 Computer Programming

```
VOLumE 4
```

 Satisfiability

DONALD E. KNUTH
Donald Knuth: "evidently a killer app, because it is key to the solution of so many other problems" [Knuth '15]

Satisfiability and Complexity

Complexity classes of decision problems:
P : efficiently computable answers.
NP : efficiently checkable yes-answers.
co-NP : efficiently checkable no-answers.

Cook-Levin Theorem [1971]: SAT is NP-complete.
Solving the $P \stackrel{?}{=}$ NP question is worth $\$ 1,000,000$ [Clay MI '00].

Satisfiability and Complexity

Complexity classes of decision problems:
P : efficiently computable answers.
NP : efficiently checkable yes-answers.
co-NP : efficiently checkable no-answers.

Cook-Levin Theorem [1971]: SAT is NP-complete.
Solving the $P \stackrel{?}{=}$ NP question is worth $\$ 1,000,000$ [Clay MI '00].
The effectiveness of SAT solving: fast solutions in practice.
The beauty of NP: guaranteed short solutions.
"NP is the new P!"

Course Overview

This schedule may change throughout the semester. Check back regularly for updates, including assignment deadlines and other important dates.

date	topic	slides	nideo	notes
08/29/2022	Introduction to Automated Reasoning	pdf (F21)	link (F20)	
08/31/2022	Applications for Automated Reasoning (F21)	pdf (F21)	link (F20)	
09/07/2022	Representations for Automated Reasoning	pdf (F21)	link (F20)	
09/12/2022	SAT and SMT Solvers in Practice	pdf (F21)	link (F20)	
09/14/2022	Conflict-Driven Clause Learning	pdf (F21)	link (F20)	
09/19/2022	Preprocessing Techniques	pdf (F21)	link (F20)	Homework 1 assigned
09/21/2022	Proof Systems and Proof Complexity	pdf (F21), pdf (F21)	link (F20)	Homework 2 assigned
09/26/2022	Maximum Satisfiability	pdf (F21)	link (F20)	
09/28/2022	Local Search and Lookahead Techniques	pdf (F21)	Homework 2 due	
TBD	Quantified Boolean Formulas	pdf (F21)	link (F20)	
TBD	Binary Decision Diagrams	Homework 3 assigned		
TBD	Verifying Automated Reasoning Results	link (F20)		
$10 / 24 / 2022$	Select topic for final project and form groups	link (F20)	Homework 3 due	

Course Reports

The second half of the course consists of a project

- A group of 1 to 3 students work on a research question
- The results will be presented in a scientific report
- Several have been published in journals and at conferences

Emre Yolcu, Xinyu Wu, and Marijn J. H. Heule Mycielski graphs and PR proofs (2020). In Theory and Practice of Satisfiability Testing - SAT 2020, Lecture Notes in Computer Science 12178, pp. 201-217. Best student paper award

Peter Oostema, Ruben Martins, and Marijn J. H. Heule. Coloring Unit-Distance Strips using SAT (2020).
In Logic for Programming, Artificial Intelligence and Reasoning, EPiC Series in Computing 73, pp. 373-389.

Introduction

Terminology

Basic Solving Techniques

Solvers and Benchmarks

Introduction

Terminology

Basic Solving Techniques

Solvers and Benchmarks

Diplomacy Problem

"You are chief of protocol for the embassy ball. The crown prince instructs you either to invite Peru or to exclude Qatar. The queen asks you to invite either Qatar or Romania or both. The king, in a spiteful mood, wants to snub either Romania or Peru or both. Is there a guest list that will satisfy the whims of the entire royal family?"

Diplomacy Problem

"You are chief of protocol for the embassy ball. The crown prince instructs you either to invite Peru or to exclude Qatar. The queen asks you to invite either Qatar or Romania or both. The king, in a spiteful mood, wants to snub either Romania or Peru or both. Is there a guest list that will satisfy the whims of the entire royal family?"

$$
(p \vee \bar{q}) \wedge(q \vee r) \wedge(\bar{r} \vee \bar{p})
$$

Truth Table

$$
\begin{aligned}
& \mathrm{F}:=(\mathrm{p} \vee \overline{\mathrm{q}}) \wedge(\mathrm{q} \vee \mathrm{r}) \wedge(\overline{\mathrm{r}} \vee \overline{\mathrm{p}})
\end{aligned}
$$

Slightly Harder Example

Slightly Harder Example 1

What are the solutions for the following formula?

$$
\begin{aligned}
& (a \vee b \vee \bar{c}) \wedge \\
& (\bar{a} \vee \bar{b} \vee c) \wedge \\
& (b \vee c \vee \bar{d}) \wedge \\
& (\bar{b} \vee \bar{c} \vee d) \wedge \\
& (a \vee c \vee d) \wedge \\
& (\bar{a} \vee \bar{c} \vee \bar{d}) \wedge \\
& (\bar{a} \vee b \vee d)
\end{aligned}
$$

Slightly Harder Example

Slightly Harder Example 1

What are the solutions for the following formula?

	a	b	c		a	b	c	d
$(\mathrm{a} \vee \mathrm{b} \vee \overline{\mathrm{c}}) \wedge$	0	0	0	0	1	0	0	0
$(\bar{a} \vee \bar{b} \vee c) \wedge$	0	0	0	1	1	0	0	1
$(\mathrm{b} \vee \mathrm{c} \vee \overline{\mathrm{d}}) \wedge$	0	0	1	0	I	0	1	0
$(\bar{b} \vee \bar{c} \vee d) \wedge$	0	0	1	1	1	0	1	1
$(a \vee c \vee d) \wedge$	0	1	0	0		1	0	0
$(\overline{\mathrm{a}} \vee \overline{\mathrm{c}} \vee \overline{\mathrm{d}}) \wedge$	0	1	0	1	1	1	0	1
$(\bar{a} \vee b \vee d)$	0	1	1	0	1	1	1	0
	0	1	1	1	1	1	1	

Pythagorean Triples Problem (I) [Ronald Graham, early 80's]

Will any coloring of the positive integers with red and blue result in a monochromatic Pythagorean Triple $a^{2}+b^{2}=c^{2}$?

$$
\begin{array}{rrrr}
3^{2}+4^{2}=5^{2} & 6^{2}+8^{2}=10^{2} & 5^{2}+12^{2}=13^{2} & 9^{2}+12^{2}=15^{2} \\
8^{2}+15^{2}=17^{2} & 12^{2}+16^{2}=20^{2} & 15^{2}+20^{2}=25^{2} & 7^{2}+24^{2}=25^{2} \\
10^{2}+24^{2}=26^{2} & 20^{2}+21^{2}=29^{2} & 18^{2}+24^{2}=30^{2} & 16^{2}+30^{2}=34^{2} \\
21^{2}+28^{2}=35^{2} & 12^{2}+35^{2}=37^{2} & 15^{2}+36^{2}=39^{2} & 24^{2}+32^{2}=40^{2}
\end{array}
$$

Pythagorean Triples Problem (I) [Ronald Graham, early 80's]

Will any coloring of the positive integers with red and blue result in a monochromatic Pythagorean Triple $a^{2}+b^{2}=c^{2}$?

$$
\begin{array}{rrrr}
3^{2}+4^{2}=5^{2} & 6^{2}+8^{2}=10^{2} & 5^{2}+12^{2}=13^{2} & 9^{2}+12^{2}=15^{2} \\
8^{2}+15^{2}=17^{2} & 12^{2}+16^{2}=20^{2} & 15^{2}+20^{2}=25^{2} & 7^{2}+24^{2}=25^{2} \\
10^{2}+24^{2}=26^{2} & 20^{2}+21^{2}=29^{2} & 18^{2}+24^{2}=30^{2} & 16^{2}+30^{2}=34^{2} \\
21^{2}+28^{2}=35^{2} & 12^{2}+35^{2}=37^{2} & 15^{2}+36^{2}=39^{2} & 24^{2}+32^{2}=40^{2}
\end{array}
$$

Best lower bound: a bi-coloring of $[1,7664]$ s.t. there is no monochromatic Pythagorean Triple [Cooper \& Overstreet 2015].
Myers conjectures that the answer is No [PhD thesis, 2015].

Pythagorean Triples Problem (II) [Ronald Graham, early 80's]

Will any coloring of the positive integers with red and blue result in a monochromatic Pythagorean Triple $a^{2}+b^{2}=c^{2}$?

A bi-coloring of $[1, n]$ is encoded using Boolean variables x_{i} with $i \in\{1,2, \ldots, n\}$ such that $x_{i}=1(=0)$ means that i is colored red (blue). For each Pythagorean Triple $a^{2}+b^{2}=c^{2}$, two clauses are added: ($x_{\mathrm{a}} \vee \mathrm{x}_{\mathrm{b}} \vee x_{c}$) and ($\overline{\mathrm{x}}_{\mathrm{a}} \vee \overline{\mathrm{x}}_{\mathrm{b}} \vee \overline{\mathrm{x}}_{\mathrm{c}}$).

Pythagorean Triples Problem (II) [Ronald Graham, early 80's]

Will any coloring of the positive integers with red and blue result in a monochromatic Pythagorean Triple $a^{2}+b^{2}=c^{2}$?

A bi-coloring of $[1, n]$ is encoded using Boolean variables x_{i} with $i \in\{1,2, \ldots, n\}$ such that $x_{i}=1(=0)$ means that i is colored red (blue). For each Pythagorean Triple $a^{2}+b^{2}=c^{2}$, two clauses are added: ($x_{\mathrm{a}} \vee x_{\mathrm{b}} \vee x_{c}$) and ($\overline{\mathrm{x}}_{\mathrm{a}} \vee \bar{x}_{\mathrm{b}} \vee \overline{\mathrm{x}}_{\mathrm{c}}$).

Theorem ([Heule, Kullmann, and Marek (2016)])
[1,7824] can be bi-colored s.t. there is no monochromatic Pythagorean Triple. This is impossible for $[1,7825]$.

Pythagorean Triples Problem (II) [Ronald Graham, early 80's]

Will any coloring of the positive integers with red and blue result in a monochromatic Pythagorean Triple $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$?

A bi-coloring of $[1, n]$ is encoded using Boolean variables x_{i} with $i \in\{1,2, \ldots, n\}$ such that $x_{i}=1(=0)$ means that i is colored red (blue). For each Pythagorean Triple $a^{2}+b^{2}=c^{2}$, two clauses are added: ($x_{\mathrm{a}} \vee x_{\mathrm{b}} \vee x_{c}$) and ($\overline{\mathrm{x}}_{\mathrm{a}} \vee \bar{x}_{\mathrm{b}} \vee \overline{\mathrm{x}}_{\mathrm{c}}$).

Theorem ([Heule, Kullmann, and Marek (2016)])
[1,7824] can be bi-colored s.t. there is no monochromatic Pythagorean Triple. This is impossible for $[1,7825]$.

4 CPU years computation, but 2 days on cluster (800 cores)

Pythagorean Triples Problem (II) [Ronald Graham, early 80's]

Will any coloring of the positive integers with red and blue result in a monochromatic Pythagorean Triple $a^{2}+b^{2}=c^{2}$?

A bi-coloring of $[1, n]$ is encoded using Boolean variables x_{i} with $i \in\{1,2, \ldots, n\}$ such that $x_{i}=1(=0)$ means that i is colored red (blue). For each Pythagorean Triple $a^{2}+b^{2}=c^{2}$, two clauses are added: ($x_{\mathrm{a}} \vee x_{\mathrm{b}} \vee x_{\mathrm{c}}$) and ($\overline{\mathrm{x}}_{\mathrm{a}} \vee \bar{x}_{\mathrm{b}} \vee \bar{x}_{\mathrm{c}}$).

Theorem ([Heule, Kullmann, and Marek (2016)])
[1,7824] can be bi-colored s.t. there is no monochromatic Pythagorean Triple. This is impossible for $[1,7825]$.

4 CPU years computation, but 2 days on cluster (800 cores) 200 terabytes proof, but validated with verified checker

Media: "The Largest Math Proof Ever"

engadger
THE NEW REDDIT

tom'sHATỉDWARE
 THE AUTHORITY ON TECH

comments other discussions (5)	
Two-hundred-terabyte 19 days ago by CryptoBeer 265 comments share	NATURE \mid NEWS

Slashdot stores Two-hundred-terabyte maths proof is largest ever Topics: Devices Build Entertainment Technology Open Source Science YRO

6f. Become a fan of Slashdot on Facebook
Computer Generates Largest Math Proof Ever At 200TB of Data (phys.org)

Introduction

Terminology

Basic Solving Techniques

Solvers and Benchmarks

Terminology: SAT question

Given a CNF formula, does there exist an assignment to the Boolean variables that satisfies all clauses?

Terminology: Variables and literals

Boolean variable x_{i}
■ can be assigned the Boolean values 0 or 1
Literal
■ refers either to x_{i} or its complement \bar{x}_{i}
$■$ literals x_{i} are satisfied if variable x_{i} is assigned to 1 (true)
$■$ literals \bar{x}_{i} are satisfied if variable x_{i} is assigned to 0 (false)

Terminology: Clauses

Clause

\square Disjunction of literals: E.g. $C_{j}=\left(l_{1} \vee l_{2} \vee l_{3}\right)$

- Can be falsified with only one assignment to its literals: All literals assigned to false
- Can be satisfied with $2^{k}-1$ assignment to its k literals

■ One special clause - the empty clause (denoted by \perp) which is always falsified

Terminology: Formulae

Formula

■ Conjunction of clauses: E.g. $F=C_{1} \wedge C_{2} \wedge C_{3}$
■ Is satisfiable if there exists an assignment satisfying all clauses, otherwise unsatisfiable
■ Formulae are defined in Conjunction Normal Form (CNF) and generally also stored as such - also learned information

- Any propositional formula can be efficiently transformed into CNF [Tseitin '70]

Terminology: Assignments

Assignment
\square Mapping of the values 0 and 1 to the variables
$■ \alpha \circ \mathrm{~F}$ results in a reduced formula $\mathrm{F}_{\text {reduced }}$:

- all satisfied clauses are removed
- all falsified literals are removed

■ satisfying assignment $\leftrightarrow F_{\text {reduced }}$ is empty
■ falsifying assignment $\leftrightarrow \mathrm{F}_{\text {reduced }}$ contains \perp
■ partial assignment versus full assignment

Resolution

The most commonly used inference rule in propositional logic is the resolution rule (the operation is denoted by \bowtie)

Resolution

The most commonly used inference rule in propositional logic is the resolution rule (the operation is denoted by \bowtie)

$$
\frac{C \vee x \quad \bar{x} \vee D}{C \vee D}
$$

Examples for $F:=(p \vee \bar{q}) \wedge(q \vee r) \wedge(\bar{r} \vee \bar{p})$
$■(\bar{q} \vee p) \bowtie(\bar{p} \vee \bar{r})=(\bar{q} \vee \bar{r})$
$■(p \vee \bar{q}) \bowtie(q \vee r)=(p \vee r)$
$■(q \vee r) \bowtie(\bar{r} \vee \bar{p})=(q \vee \bar{p})$

Resolution

The most commonly used inference rule in propositional logic is the resolution rule (the operation is denoted by \bowtie)

$$
\frac{C \vee x \quad \bar{x} \vee D}{C \vee D}
$$

Examples for $F:=(p \vee \bar{q}) \wedge(q \vee r) \wedge(\bar{r} \vee \bar{p})$
■ $(\bar{q} \vee p) \bowtie(\bar{p} \vee \bar{r})=(\bar{q} \vee \bar{r})$
■ $(p \vee \bar{q}) \bowtie(q \vee r)=(p \vee r)$
$■(q \vee r) \bowtie(\bar{r} \vee \bar{p})=(q \vee \bar{p})$

Adding (non-redundant) resolvents until fixpoint, is a complete proof procedure. It produces the empty clause if and only if the formula is unsatisfiable

Tautology

A clause C is a tautology if it contains for some variable x, both the literals x and \bar{x}.

Slightly Harder Example 2

Compute all non-tautological resolvents for:

$$
\begin{aligned}
& (a \vee b \vee \bar{c}) \wedge(\bar{a} \vee \bar{b} \vee c) \wedge \\
& (b \vee c \vee \bar{d}) \wedge(\bar{b} \vee \bar{c} \vee d) \wedge \\
& (a \vee c \vee d) \wedge(\bar{a} \vee \bar{c} \vee \bar{d}) \wedge \\
& (\bar{a} \vee b \vee d)
\end{aligned}
$$

Which resolvents remain after removing the supersets?

Introduction

Terminology

Basic Solving Techniques

Solvers and Benchmarks

SAT solving: Unit propagation

A unit clause is a clause of size 1

UnitPropagation (α, F) :
1: while $\perp \notin \mathrm{F}$ and unit clause y exists do
2: \quad expand α by adding $y=1$ and simplify F
3: end while
4: return α, F

Unit Propagation: Example

$$
\begin{gathered}
\mathrm{F}_{\text {unit }}:=\left(\bar{x}_{1} \vee \bar{x}_{3} \vee x_{4}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge \\
\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{6}\right) \wedge\left(\bar{x}_{1} \vee x_{4} \vee \bar{x}_{5}\right) \wedge \\
\left(x_{1} \vee \bar{x}_{6}\right) \wedge\left(x_{4} \vee x_{5} \vee x_{6}\right) \wedge\left(x_{5} \vee \bar{x}_{6}\right)
\end{gathered}
$$

Unit Propagation: Example

$$
\begin{aligned}
& \mathrm{F}_{\text {unit }}:=\left(\bar{x}_{1} \vee \bar{x}_{3} \vee x_{4}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge \\
& \left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{6}\right) \wedge\left(\bar{x}_{1} \vee x_{4} \vee \bar{x}_{5}\right) \wedge \\
& \quad\left(x_{1} \vee \bar{x}_{6}\right) \wedge\left(x_{4} \vee x_{5} \vee x_{6}\right) \wedge\left(x_{5} \vee \bar{x}_{6}\right) \\
& \alpha=\left\{x_{1}=1\right\}
\end{aligned}
$$

Unit Propagation: Example

$$
\begin{aligned}
& \mathrm{F}_{\text {unit }}:=\left(\bar{x}_{1} \vee \bar{x}_{3} \vee x_{4}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge \\
& \left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{6}\right) \wedge\left(\bar{x}_{1} \vee x_{4} \vee \bar{x}_{5}\right) \wedge \\
& \left(x_{1} \vee \bar{x}_{6}\right) \wedge\left(x_{4} \vee x_{5} \vee x_{6}\right) \wedge\left(x_{5} \vee \bar{x}_{6}\right) \\
& \alpha=\left\{x_{1}=1, x_{2}=1\right\}
\end{aligned}
$$

Unit Propagation: Example

$$
\begin{aligned}
& \mathrm{F}_{\text {unit }}:=\left(\bar{x}_{1} \vee \bar{x}_{3} \vee x_{4}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge \\
& \left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{6}\right) \wedge\left(\bar{x}_{1} \vee x_{4} \vee \bar{x}_{5}\right) \wedge \\
& \left(x_{1} \vee \bar{x}_{6}\right) \wedge\left(x_{4} \vee x_{5} \vee x_{6}\right) \wedge\left(x_{5} \vee \bar{x}_{6}\right) \\
& \alpha=\left\{x_{1}=1, x_{2}=1, x_{3}=1\right\}
\end{aligned}
$$

Unit Propagation: Example

$$
\begin{aligned}
& \mathrm{F}_{\text {unit }}:=\left(\bar{x}_{1} \vee \bar{x}_{3} \vee x_{4}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge \\
& \left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{6}\right) \wedge\left(\bar{x}_{1} \vee x_{4} \vee \bar{x}_{5}\right) \wedge \\
& \left(x_{1} \vee \bar{x}_{6}\right) \wedge\left(x_{4} \vee x_{5} \vee x_{6}\right) \wedge\left(x_{5} \vee \bar{x}_{6}\right) \\
& \alpha=\left\{x_{1}=1, x_{2}=1, x_{3}=1, x_{4}=1\right\}
\end{aligned}
$$

Reverse Unit Propagation

- Unit propagation (UP) satisfies unit clauses by assigning their literal to true (until fixpoint or a conflict).
- Let F be a formula. A clause C is implied by F via UP (denoted by $\mathrm{F} \vdash_{1} \mathrm{C}$) if UP on $\mathrm{F} \wedge \neg \mathrm{C}$ results in a conflict.

Example

$$
\begin{aligned}
F= & (a \vee b \vee \bar{c}) \wedge(\bar{a} \vee \bar{b} \vee c) \wedge(b \vee c \vee \bar{d}) \wedge(\bar{b} \vee \bar{c} \vee d) \wedge \\
& (a \vee c \vee d) \wedge(\bar{a} \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee b \vee d) \wedge(a \vee \bar{b} \vee \bar{d})
\end{aligned}
$$

Reverse Unit Propagation

- Unit propagation (UP) satisfies unit clauses by assigning their literal to true (until fixpoint or a conflict).
- Let F be a formula. A clause C is implied by F via UP (denoted by $\mathrm{F} \vdash_{1} \mathrm{C}$) if UP on $\mathrm{F} \wedge \neg \mathrm{C}$ results in a conflict.

Example

$$
\begin{aligned}
F= & (a \vee b \vee \bar{c}) \wedge(\bar{a} \vee \bar{b} \vee c) \wedge(b \vee c \vee \bar{d}) \wedge(\bar{b} \vee \bar{c} \vee d) \wedge \\
& (a \vee c \vee d) \wedge(\bar{a} \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee b \vee d) \wedge(a \vee \bar{b} \vee \bar{d})
\end{aligned}
$$

clause	$(a \vee b)$
units	$\bar{a} \wedge \bar{b}$

Reverse Unit Propagation

- Unit propagation (UP) satisfies unit clauses by assigning their literal to true (until fixpoint or a conflict).
- Let F be a formula. A clause C is implied by F via UP (denoted by $\mathrm{F} \vdash_{1} \mathrm{C}$) if UP on $\mathrm{F} \wedge \neg \mathrm{C}$ results in a conflict.

Example

$$
\begin{aligned}
F= & (a \vee b \vee \bar{c}) \wedge(\bar{a} \vee \bar{b} \vee c) \wedge(b \vee c \vee \bar{d}) \wedge(\bar{b} \vee \bar{c} \vee d) \wedge \\
& (a \vee c \vee d) \wedge(\bar{a} \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee b \vee d) \wedge(a \vee \bar{b} \vee \bar{d})
\end{aligned}
$$

clause	$(a \vee b)$	$(a \vee b \vee \bar{c})$
units	$\bar{a} \wedge \bar{b}$	\bar{c}

Reverse Unit Propagation

■ Unit propagation (UP) satisfies unit clauses by assigning their literal to true (until fixpoint or a conflict).
■ Let F be a formula. A clause C is implied by F via UP (denoted by $F \vdash_{1} C$) if UP on $F \wedge \neg C$ results in a conflict.

Example

$$
\begin{aligned}
F= & (a \vee b \vee \bar{c}) \wedge(\bar{a} \vee \bar{b} \vee c) \wedge(b \vee c \vee \bar{d}) \wedge(\bar{b} \vee \bar{c} \vee d) \wedge \\
& (a \vee c \vee d) \wedge(\bar{a} \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee b \vee d) \wedge(a \vee \bar{b} \vee \bar{d})
\end{aligned}
$$

clause	$(a \vee b)$	$(a \vee b \vee \bar{c})$	$(b \vee c \vee \bar{d})$
units	$\bar{a} \wedge \bar{b}$	\bar{c}	\bar{d}

Reverse Unit Propagation

■ Unit propagation (UP) satisfies unit clauses by assigning their literal to true (until fixpoint or a conflict).
■ Let F be a formula. A clause C is implied by F via UP (denoted by $F \vdash_{1} C$) if UP on $F \wedge \neg C$ results in a conflict.

Example

$$
\begin{aligned}
F= & (a \vee b \vee \bar{c}) \wedge(\bar{a} \vee \bar{b} \vee c) \wedge(b \vee c \vee \bar{d}) \wedge(\bar{b} \vee \bar{c} \vee d) \wedge \\
& (a \vee c \vee d) \wedge(\bar{a} \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee b \vee d) \wedge(a \vee \bar{b} \vee \bar{d})
\end{aligned}
$$

clause	$(a \vee b)$	$(a \vee b \vee \bar{c})$	$(b \vee c \vee \bar{d})$	$(a \vee c \vee d)$
units	$\bar{a} \wedge \bar{b}$	\bar{c}	\bar{d}	\perp

Reverse Unit Propagation

■ Unit propagation (UP) satisfies unit clauses by assigning their literal to true (until fixpoint or a conflict).
■ Let F be a formula. A clause C is implied by F via UP (denoted by $F \vdash_{1} C$) if UP on $F \wedge \neg C$ results in a conflict.

Example

$$
\begin{aligned}
F= & (a \vee b \vee \bar{c}) \wedge(\bar{a} \vee \bar{b} \vee c) \wedge(b \vee c \vee \bar{d}) \wedge(\bar{b} \vee \bar{c} \vee d) \wedge \\
& (a \vee c \vee d) \wedge(\bar{a} \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee b \vee d) \wedge(a \vee \bar{b} \vee \bar{d})
\end{aligned}
$$

clause	$(a \vee b)$	$(a \vee b \vee \bar{c})$	$(b \vee c \vee \bar{d})$	$(a \vee c \vee d)$
units	$\bar{a} \wedge \bar{b}$	\bar{c}	\bar{d}	\perp

$$
\frac{(a \vee c \vee d)(b \vee c \vee \bar{d})}{(a \vee b \vee c)}(a \vee b \vee \bar{c}) \frac{(a \vee b)}{(a \vee}
$$

SAT Solving: DPLL

Davis Putnam Logemann Loveland [DP60,DLL62]

Recursive procedure that in each recursive call:

- Simplifies the formula (using unit propagation)
- Splits the formula into two subformulas
- Variable selection heuristics (which variable to split on)
- Direction heuristics (which subformula to explore first)

DPLL: Example

$$
\begin{gathered}
\mathrm{F}_{\mathrm{DPLL}}:=\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right) \wedge \\
\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right)
\end{gathered}
$$

DPLL: Example

$$
\begin{gathered}
\mathrm{F}_{\text {DPLL }}:=\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right) \wedge \\
\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right)
\end{gathered}
$$

DPLL: Example

$$
\begin{gathered}
\mathrm{F}_{\mathrm{DPLL}}:=\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right) \wedge \\
\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right)
\end{gathered}
$$

DPLL: Slightly Harder Example

Slightly Harder Example 3

Construct a DPLL tree for:

$$
\begin{aligned}
& (a \vee b \vee \bar{c}) \wedge(\bar{a} \vee \bar{b} \vee c) \wedge \\
& (b \vee c \vee \bar{d}) \wedge(\bar{b} \vee \bar{c} \vee d) \wedge \\
& (a \vee c \vee d) \wedge(\bar{a} \vee \bar{c} \vee \bar{d}) \wedge \\
& (\bar{a} \vee b \vee d)
\end{aligned}
$$

SAT Solving: Decision and Implications

Decision variables
■ Variable selection heuristics and direction heuristics
■ Play a crucial role in performance
Implied variables
■ Assigned by reasoning (e.g. unit propagation)

- Maximizing the number of implied variables is an important aspect of look-ahead SAT solvers

SAT Solving: Clauses \leftrightarrow assignments

■ A clause C represents a set of falsified assignments, i.e. those assignments that falsify all literals in C

- A falsifying assignment α for a given formula represents a set of clauses that follow from the formula
- For instance with all decision variables
- Important feature of conflict-driven SAT solvers

Introduction

Terminology

Basic Solving Techniques

Solvers and Benchmarks

SAT Solving Paradigms

Conflict-driven

- search for short refutation, complete

■ examples: lingeling, glucose, CaDiCaL, kissat
Look-ahead
■ extensive inference, complete
■ examples: march, OKsolver, kcnfs
Local search
■ local optimizations, incomplete
■ examples: probSAT, UnitWalk, DDFW, Dimetheus

Progress of SAT Solvers

SAT Competition Winners on the SC2020 Benchmark Suite

Applications: Industrial

■ Model checking

- Turing award '07 Clarke, Emerson, and Sifakis

■ Software verification

- Hardware verification

■ Equivalence checking
■ Planning and scheduling

- Cryptography
- Car configuration

■ Railway interlocking

Applications: Crafted

Combinatorial challenges and solver obstruction instances

- Pigeon-hole problems
- Tseitin problems
- Mutilated chessboard problems
- Sudoku
- Factorization problems
- Ramsey theory
- Rubik's cube puzzles

Random k-SAT: Introduction

- All clauses have length k
- Variables have the same probability to occur
- Each literal is negated with probability of 50%

■ Density is ratio Clauses to Variables

Random 3-SAT: \% satisfiable, the phase transition

Random 3-SAT: exponential runtime, the threshold

SAT Game

SAT Game

 by Olivier Rousselhttp://www.cs.utexas.edu/~marijn/game/

