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Encoding problems into SAT

Architectural 3D Layout
[VSMM ’07]
Henriette Bier

Edge-matching Puzzles
[LaSh ’08]

Graceful Graphs
[AAAI ’10]
Toby Walsh

Clique-Width
[SAT ’13, TOCL ’15]
Stefan Szeider

Firewall Verification
[SSS ’16]
Mohamed Gouda

Open Knight Tours
Moshe Vardi
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Van der Waerden numbers
[EJoC ’07]

Software Model Synthesis
[ICGI ’10, ESE ’13]
Sicco Verwer

Conway’s Game of Life
[EJoC ’13]
Willem van der Poel

Connect the Pairs
Donald Knuth

Pythagorean Triples
[SAT ’16, CACM ’17]
Victor Marek

Collatz conjecture [Open]
Scott Aaronson
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Equivalence checking introduction

Given two formulae, are they equivalent?

Applications:

Hardware and software optimization

Software to FPGA conversion
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Equivalence checking example

original C code

if(!a && !b) h();

else if(!a) g();

else f();

⇓
if(!a) {

if(!b) h();

else g(); }
else f();

⇒ if(a) f();

else {
if(!b) h();

else g(); }

Are these two code fragments equivalent?
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Equivalence checking encoding (1)

1. represent procedures as Boolean variables

original C code :=

if a∧ b then h
else if a then g
else f

optimized C code :=

if a then f
else if b then g
else h

2. compile code into Conjunctive Normal Form

compile (if x then y else z) ≡ (x∨ y)∧ (x∨ z)

3. check equivalence of Boolean formulae
compile (original C code) ⇔ compile (optimized C code)
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Equivalence checking encoding (2)

compile (original C code):

if a∧ b then h else if a then g else f ≡
((a∧ b)∨ h)∧ ((a∧ b)∨ (if a then g else f)) ≡
(a∨ b∨ h)∧ ((a∧ b)∨ ((a∨ g)∧ (a∨ f))

compile (optimized C code):

if a then f else if b then g else h ≡
(a∨ f)∧ (a∨ (if b then g else h)) ≡
(a∨ f)∧ (a∨ ((b∨ g)∧ (b∨ h))

(a∨ b∨ h)∧ ((a∧ b)∨ ((a∨ g)∧ (a∨ f))m
(a∨ f)∧ (a∨ ((b∨ g)∧ (b∨ h))
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Checking (in)equivalence

Reformulate it as a satisfiability (SAT) problem:
Is there an assignment to a, b, f, g, and h, which results in
different evaluations of the compiled codes?

Is the Boolean formula
x↔ ((a∨ b∨ h)∧ ((a∧ b)∨ ((a∨ g)∧ (a∨ f))) ∧

y↔ ((a∨ f)∧ (a∨ ((b∨ g)∧ (b∨ h))) ∧
(x∨ y)∧ (x∨ y)

satisfiable?

Such an assignment would provide a counterexample

Note: by concentrating on counterexamples we moved from
co-NP to NP (not really important for applications)
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Equivalence Checking via Miters

Equivalence checking is mostly used to validate whether two
hardware designs (circuits) are functionally equivalent.

Given two circuits, a miter is circuit that tests whether there
exists an input for both circuits such that the output differs.
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Equivalence Checking

Bounded Model Checking

Graphs and Symmetry Breaking

Arithmetic Operations
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Bounded Model Checking (BMC)

Given a property p: (e.g. signal a = signal b)

Is there a state reachable in k steps, which satisfies p?

S0 S1 S2 S3 Sk−1 Sk

p p p p p p

Turing award 2007 for Model Checking
Edmund M. Clarke, E. Allen Emerson and Joseph Sifakis
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BMC Encoding (1)

Three components:

I The description of the initial state

T The transition of a state into the next state

P The (safety) property

The reachable states in k steps are captured by:

I(S0)∧ T(S0, S1)∧ · · ·∧ T(Sk−1, Sk)

The property p fails in one of the k steps by:

P(S0)∨ P(S1)∨ · · ·∨ P(Sk)
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BMC Encoding (2)

The safety property p is valid up to step k
if and only if F(k) is unsatisfiable:

F(k) = I(S0)∧

k−1∧
i=0

T(Si, Si+1))∧

k∨
i=0

P(Si)

S0 S1 S2 S3 Sk−1 Sk

p p p p p p
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Bounded Model Checking Example: Two-bit counter

11

1001

00
Initial state I: l0 = 0, r0 = 0

Transition T :
li+1 = li ⊕ ri,
ri+1 = ri

Property P: li ∨ ri

F(2) = (l0 ∧ r0)∧

(
l1 = l0 ⊕ r0 ∧ r1 = r0 ∧

l2 = l1 ⊕ r1 ∧ r2 = r1

)
∧

 (l0 ∧ r0) ∨
(l1 ∧ r1) ∨
(l2 ∧ r2)


For k = 2, F(k) is unsatisfiable; for k = 3 it is satisfiable
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Graph coloring

Given a graph G(V, E), can the vertices be colored
with k colors such that for each edge (v,w) ∈ E,
the vertices v and w are colored differently.

Problem: Many symmetries!!!
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Graph coloring encoding

Variables Range Meaning

xv,i
i ∈ {1, . . . , c}

v ∈ {1, . . . , |V |}
node v has color i

Clauses Range Meaning
(xv,1 ∨ xv,2 ∨ · · ·∨ xv,c) v ∈ {1, . . . , |V |} v is colored

(xv,s ∨ xv,t)
s ∈ {1, . . . , c− 1}
t ∈ {s+ 1, . . . , c}

v has at most
one color

(xv,i ∨ xw,i) (v,w) ∈ E v and w have a
different color

??? ??? breaking symmetry
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Unavoidable Subgraphs and Ramsey Numbers

A connected undirected graph G is an unavoidable subgraph
of clique K of order n if any red/blue edge-coloring of the
edges of K contains G either in red or in blue.

Ramsey Number R(k): What is
the smallest n such that any
graph with n vertices has either
a clique or a co-clique of size k?

R(3) = 6
R(4) = 18

43 ≤ R(5) ≤ 49

6

1 2

3

5 4

SAT solvers can determine that R(4) = 18 in 1 second using
symmetry breaking; w/o symmetry breaking it requires weeks.
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Example formula: an unavoidable path of two edges

Consider the formula below — which expresses the statement
whether path of two edges unavoidable in a clique of order 3:

F :=

C1︷ ︸︸ ︷
(x∨y)∧

C2︷ ︸︸ ︷
(x∨z)∧

C3︷ ︸︸ ︷
(y∨z)∧

C4︷ ︸︸ ︷
(x∨y)∧

C5︷ ︸︸ ︷
(x∨z)∧

C6︷ ︸︸ ︷
(y∨z)

A clause-literal graph has a vertex for each clause and literal,
and edges for each literal occurrence connecting the literal and
clause vertex. Also, two complementary literals are connected.

C1 C2 C3

x x y y z z

C4 C5 C6

C6 C4 C5

y y z z x x

C3 C1 C2

Symmetry: (x,y,z)(y,z,x) is an edge-preserving bijection
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Three Symmetries of the Example Formula

C1 C2 C3

x x y y z z

C4 C5 C6

identity symmetry

C1 C2 C3

xx yy zz

C4 C5 C6

(x, y, z, C1, C2, C3, C4, C5, C6)
(x, y, z, C4, C5, C6, C1, C2, C3)

C1 C2C3

x xy y z z

C4 C5C6

(x, y, C2, C5, C3, C6)
(y, x, C3, C6, C2, C5)

C1C2 C3

x x y yz z

C4C5 C6

(y, z, C1, C4, C2, C5)
(z, y, C2, C5, C1, C4)
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Convert Symmetries into Symmetry-Breaking Predicates

A symmetry σ = (x1, . . . , xn)(p1, . . . , pn) of a CNF formula F
is an edge-preserving bijection of the clause-literal graph of F,
that maps literals xi onto pi and xi onto pi with i ∈ {1, . . . , n}.

Given a CNF formula F. Let α be a satisfying truth
assignment for F and σ a symmetry for F, then σ(α) is also a
satisfying truth assignment for F.

Symmetry σ = (x1, . . . , xn)(p1, . . . , pn) for F can be broken
by adding a symmetry-breaking predicate:
x1, . . . , xn ≤ p1, . . . , pn.

(x1 ∨ p1)∧ (x1 ∨ x2 ∨ p2)∧ (p1 ∨ x2 ∨ p2)∧

(x1 ∨ x2 ∨ x3 ∨ p3)∧ (x1 ∨ p2 ∨ x3 ∨ p3)∧

(p1 ∨ x2 ∨ x3 ∨ p3)∧ (p1 ∨ p2 ∨ x3 ∨ p3)∧ . . .
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Symmetry Breaking in Practice

In practice, symmetry breaking is mostly used as a
preprocessing technique.

A given CNF formula is first transformed into a clause-literal
graph. Symmetries are detected in the clause-literal graph. An
efficient tool for this is saucy.

The symmetries can broken by adding symmetry-breaking
predicates to the given CNF.

Many hard problems for resolution, such as pigeon hole
formulas, can be solved instantly after symmetry-breaking
predicates are added.
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Chromatic Number of the Plane [Nelson ’50]

How many colors are required to color the plane such that each
pair of points that are exactly 1 apart are colored differently?

The Moser Spindle graph
shows the lower bound of 4

A colored tiling of the plane
shows the upper bound of 7

Lower bound of 5 [DeGrey ’18]

based on a 1581-vertex graph

We found smaller graphs with SAT:

874 vertices on April 14, 2018

803 vertices on April 30, 2018

610 vertices on May 14, 2018
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Record by Proof Minimization: 529 Vertices [Heule 2019]
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Equivalence Checking

Bounded Model Checking

Graphs and Symmetry Breaking

Arithmetic Operations
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Arithmetic operations: Introduction

How to encode arithmetic operations into SAT?

Efficient encoding using electronic circuits

Applications:

factorization (not competitive)

term rewriting
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Arithmetic operations: 4x4 Multiplier circuit
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Arithmetic operations: Multiplier encoding

1. Multiplication mi,j = xi × yj = And (xi, yj)

(mi,j ∨ xi ∨ yj)∧ (mi,j ∨ xi)∧ (mi,j ∨ yj)

2. Carry out cout = 1 if and only if pin +mi,j + cin > 1

(cout∨pin∨mi,j)∧ (cout∨pin∨ cin)∧ (cout∨mi,j∨ cin)∧
(cout ∨ pin ∨mi,j)∧ (cout ∨ pin ∨cin)∧ (cout ∨mi,j ∨ cin)

3. Parity out pout of variables pin, mi,j and cin
(pout ∨ pin ∨mi,j ∨ cin) ∧
(pout ∨ pin ∨mi,j ∨ cin) ∧
(pout ∨ pin ∨mi,j ∨ cin) ∧
(pout ∨ pin ∨mi,j ∨ cin) ∧

(pout ∨ pin ∨mi,j ∨ cin) ∧
(pout ∨ pin ∨mi,j ∨ cin) ∧
(pout ∨ pin ∨mi,j ∨ cin) ∧
(pout ∨ pin ∨mi,j ∨ cin)
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1. Multiplication mi,j = xi × yj = And (xi, yj)

(mi,j ∨ xi ∨ yj)∧ (mi,j ∨ xi)∧ (mi,j ∨ yj)

2. Carry out cout = 1 if and only if pin +mi,j + cin > 1
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Arithmetic operations: Is 27 prime?

x3 x2 x1 x0
x3y0 x2y0 x1y0 x0y0 y0

x3y1 x2y1 x1y1 x0y1 y1
x3y2 x2y2 x1y2 x0y2 y2

x3y3 x2y3 x1y3 x0y3 y3
0 0 1 1 0 1 1

Prime: (x1 ∨ x2 ∨ x3)∧ (y1 ∨ y2 ∨ y3)
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Arithmetic operations: Is 29 prime?
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Arithmetic operations: Term rewriting

Given a set of rewriting rules,
will rewriting always terminate?

Example set of rules:

aa→R bc

bb→R ac

cc→R ab

bbaa→R bbbc→R bacc→R baab→R bbcb→R

accb→R aabb→R aaac→R abcc→R abab

Strongest rewriting solvers use SAT (e.g. AProVE)

Example solved by Hofbauer, Waldmann (2006)
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Arithmetic operations: Term rewriting proof outline

Proof termination of:

aa→R bc

bb→R ac

cc→R ab

Proof outline:

Interpret a,b,c by linear functions [a], [b], [c] from N4 to N4

Interpret string concatenation by function composition

Show that if [uaav] (0, 0, 0, 0) = (x1, x2, x3, x4) and
[ubcv] (0, 0, 0, 0) = (y1, y2, y3, y4) then x1 > y1

Similar for bb→ ac and cc→ ab

Hence every rewrite step gives a decrease of x1 ∈ N, so
rewriting terminates
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Arithmetic operations: Term rewriting linear functions

The linear functions:

[a](~x) =


1 0 0 3
0 0 2 1
0 1 0 1
0 0 0 0

~x+


1
0
1
0



[b](~x) =


1 2 0 0
0 2 0 1
0 1 0 0
0 0 0 0

~x+


0
2
0
0



[c](~x) =


1 0 0 1
0 0 0 1
0 1 0 0
0 2 0 0

~x+


1
0
3
0


Checking decrease properties using linear algebra
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Arithmetic operations: Solving Mathematical Challenges

Recent articles in Quanta Magazine:

Computer Search Settles 90-Year-Old Math
Problem August 19, 2020

Computer Scientists Attempt to Corner the Collatz
Conjecture August 26, 2020

How Close Are Computers to Automating
Mathematical Reasoning? August 27, 2020
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Arithmetic operations: Collatz

Resolving foundational algorithm questions

Col(n) =

{
n/2 if n is even

(3n+ 1)/2 if n is odd

while(n > 1) n=Col(n); terminates?

Find a non-negative function fun(n) s.t.

∀n > 1 : fun(n) > fun(Col(n))
source: xkcd.com/710

fun(3) fun(5) fun(8) fun(4) fun(2) fun(1)

t(t(~0)) t(f(t(~0))) t(f(f(f(~0)))) t(f(f(~0))) t(f(~0)) t(~0)(
5
1

) (
4
1

) (
3
1

) (
2
1

) (
1
1

) (
0
1

)
using t(~x) =

(
1 5
0 0

)
~x+

(
0
1

)
and f(~x) =

(
1 3
0 0

)
~x+

(
1
0

)
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Arithmetic Operations: Collatz as Rewriting System

1 ×3+2 ×3 ×3+2 ×3 ×3+2 ×1

1 ×2 ×2+1 ×3 ×3+2 ×3 ×3+2 ×1

1 ×2 ×3+1 ×2+1 ×3+2 ×3 ×3+2 ×1

1 ×2 ×3+1 ×3+2 ×2+1 ×3 ×3+2 ×1

1 ×2 ×3+1 ×3+2 ×3+1 ×2+1 ×3+2 ×1

1 ×2 ×3+1 ×3+2 ×3+1 ×3+2 ×2+1 ×1

1 ×2 ×3+1 ×3+2 ×3+1 ×3+2 ×3+2 ×1

1 ×3 ×2+1 ×3+2 ×3+1 ×3+2 ×3+2 ×1

1 ×3 ×3+2 ×2+1 ×3+1 ×3+2 ×3+2 ×1

1 ×3 ×3+2 ×3+2 ×2 ×3+2 ×3+2 ×1

1 ×3 ×3+2 ×3+2 ×3+1 ×2 ×3+2 ×1

1 ×3 ×3+2 ×3+2 ×3+1 ×3+1 ×2 ×1

1 ×3 ×3+2 ×3+2 ×3+1 ×3+1 ×1

×2 ×1 ×1

×2+1 ×1 ×3+2 ×1

×2 ×3 ×3 ×2

×2 ×3+1 ×3 ×2+1

×2 ×3+2 ×3+1 ×2

×2+1 ×3 ×3+1 ×2+1

×2+1 ×3+1 ×3+2 ×2

×2+1 ×3+2 ×3+2 ×2+1

1 ×3 1 ×2+1

1 ×3+1 1 ×2 ×2

1 ×3+2 1 ×2 ×2+1
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