Conflict-Driven Clause Learning

Marijn J.H. Heule

Carnegie
Mellon
University

http://www.cs.cmu.edu/~mheule/15816-£22/

Automated Reasoning and Satisfiability
September 14, 2022

marijn@cmu.edu

1/ 34

http://www.cs.cmu.edu/~mheule/15816-f22/

The Satisfiability (SAT) problem

XzVi] \/?3
Xg\/§9\/X3
Xg\/X3 \/ity
Xz\/ig\/fg Xg\/fg\/i3 Xg\/igi] ig\/XG\/fz
X7\/X9\/f2 Xg\/fty\/Xz f]\/i9\/X4 XgVX]\/fz

JA(JA(JA (X5 V %3V xs)
))N))
) A JA(IPAY)
) A JA(IPAY)
) A JA(IPAY)
X3\/i4\/f6)/\(i1\/f7\/X5)/\(f7\/X]\/Xg)/\(i5\/X4\/f6)
) A JA(IPAY)
JA(IPAY JA()
) IPAY JA()
))N))
))N))
)N I)N)

X1 \/Xg\/X4
Xg\/f9\/X5

xs VX3 VX7
XzVX] \/X3
X9\/i3\/X3

X5\/X3 \/%2
Xs VX1V X5
fv;\/ig\/Xg

f4\/X9\/f3 Xz\/X9\/X] X5\/i7\/X1 i7\/f9\/f6
X2V x5 Vx4 xg VX4V X5 X5 V X9 V X3 X5 V X7V Xo
XzV?gVX] ?7\/7(1\/)(5 X1\/X4\/X3 X1\/§9\/¥4
X3\/X5\/X6 ?5\/7(3\/?9 ¥7\/X5\/X9 X7\/§5\/¥2
x4 VX7 VX3 xXs V Xo V X7 x5 VX1V x7 x5 VXV Xy
XG\/X7\/f3 is\/fg\/i7 X6\/X2\/X3 isVXz\/X5

>>>>>>>>>>>

(
(
(
(
(
(
(
(
(
(
(
(

Does there exist an assignment satisfying all clauses?

marijn@cmu.edu 2 /34

Search for a satisfying assignment (or proof none exists)

Xz\/i] \/ig
Xg\/ig\/Xg
Xg\/X3 \/Yﬂ;
Xz\/ig\/fg Xg\/fg\/i}, Xg\/ig\/f] Yg\/Xg\/fz
X7\/X9\/f2 Xg\/ft)\/Xz f]\/Y9VX4 Xg\/X]\/fz

JA(JA(JA (X5 V x5V xs)
)N JA()N)
) A JA()N)
) A JA()N)
) A JA() A)
X3\/Y4\/f6)/\(¥1\/f7\/X5)/\(f7\/X]VX6)/\(Y5VX4\/X6)
)N JA()N)
)N JA() A)
)N JA() A)
)N JA() A)
)N JA()N)
)N I)N)

X1 \/Xg\/X4
X6Vf9\/X5

xs VX3 VX7
Xz\/X] \/X3
X9\/Y3\/X3

X5\/X3 \/iz
Xs VX1V X5
fg\/ig\/)(g

f4\/X9\/f3 Xz\/Xg\/X] X5\/Y7\/X] Y7\/f9\/f6
X2V x5 Vx4 xg VX4 VX5 X5 V X9 V X3 X5 V X7V Xo
XzVigVX] §7\/X1\/X5 X]\/X4\/X3 X]Vig\/iz;
Xg\/X5\/X6 ig\/Xg\/ig §7\/X5\/X9 X7\/¥5\/¥2
x4 V x7 VX3 X4 V Xo V X7 x5 VX1 V X7 x5 VX7 VX7
X6\/X7\/f3 Yg\/fg\/i7 X6\/X2\/X3 Yg\/Xz\/X5

>>>>>>>>>>>

(
(
(
(
(
(
(
(
(
(
(
(

marijn@cmu.edu 3/ 34

SAT Solver Paradigms Overview

DPLL: Aims at finding a small search-tree by selecting
effective splitting variables (e.g. via looking ahead).
Strength: Effective on small, hard formulas.

Weakness: Expensive.

marijn@cmu.edu 4 /34

SAT Solver Paradigms Overview
DPLL: Aims at finding a small search-tree by selecting
effective splitting variables (e.g. via looking ahead).
Strength: Effective on small, hard formulas.

Weakness: Expensive.

Local search: Given a full assignment for a formula T,
flip the truth values of variables until satisfying T.

Strength: Can quickly find solutions for hard formulas.
Weakness: Cannot prove unsatisfiability.

marijn@cmu.edu 4 /34

SAT Solver Paradigms Overview

DPLL: Aims at finding a small search-tree by selecting
effective splitting variables (e.g. via looking ahead). ‘\Tr
Strength: Effective on small, hard formulas.

—)

Weakness: Expensive.

Local search: Given a full assignment for a formula T,

——
flip the truth values of variables until satisfying T.
Strength: Can quickly find solutions for hard formulas.

Weakness: Cannot prove unsatisfiability.

Conflict-driven clause learning (CDCL): Makes fast
decisions and converts conflicts into learned clauses.

Strength: Effective on large, “easy” formulas.
Weakness: Hard to parallelize.

marijn@cmu.edu 4/ 34

Conflict-driven Clause Learning: Overview

m Most successful architecture

m Superior on industrial benchmarks

m Brute-force?

® Addition conflict clauses
® Fast unit propagation

m Complete local search (for a refutation)?

m State-of-the-art (sequential) CDCL solvers:
Kissat, CaDiCal, Glucose, CryptoMiniSAT

marijn@cmu.edu 5/ 34

Clause Learning
Data-structures

Heuristics

Clause Management
Conflict-Clause Minimization

Recent Advances and Conclusions

marijn@cmu.edu 6 /34

Clause Learning

marijn@cmu.edu 7/34

Conflict-driven SAT solvers: Search and Analysis

(X] \/X4) A\

(Xg\/f4\/f5) AN @
(% VX V) A
]:extra.

marijn@cmu.edu 8 /34

Conflict-driven SAT solvers: Search and Analysis

(X] \/X4) A\ @
EXg\/fz;\/YS;ﬁ XS:]
VX VR

]:extra. o

marijn@cmu.edu 8 /34

Conflict-driven SAT solvers: Search and Analysis

(X] \/X4) A\ @
EXg\/fz;\/%S%ﬁ XS:]
V% VR
]:extra. _ o
Xz—]
©

marijn@cmu.edu 8 /34

Conflict-driven SAT solvers: Search and Analysis

(X] \/X4) A\ @
EXg\/fz;\/%S%ﬁ XS:]
V% VR
]:extra. _ o
Xz—]
O

©

marijn@cmu.edu 8 /34

Conflict-driven SAT solvers: Search and Analysis

(X]\/X4) A\ Q
(%3 VX4 VX5) N x5 =1
(%3 V% V) A
]:extra. _ c
Xz—]
O
(®
X]ZO
D

marijn@cmu.edu 8 /34

Conflict-driven SAT solvers: Search and Analysis

(%1 Vx4) N\ (0)
(x3 VX3 VX5) A x5 =1
(%3 V% Vi) A
]:extra. _ o
Xz—]
(2
(®
X]ZO
X4:1
@

marijn@cmu.edu 8 /34

Conflict-driven SAT solvers: Search and Analysis

(%1 Vx4) N\ (0)
EXg\/¥4\/i5§ﬁ XS:]
5V Vi
]:extra. _ o
Xz—]
O
(®
X]ZO
Xq4 =
X3—1
X3_O
D

marijn@cmu.edu 8 /34

Conflict-driven SAT solvers: Search and Analysis

(x1V x4) N\ (0)
(x3 VX3 VX5) A x5 =1
(% V% V) A
fextra _ c
X2—1
O
(®
X]ZO
X4:1
X3—1
X3_O
XzZ] e

marijn@cmu.edu 8 /34

(x1V x4) N\
(x3 VX4V Xs5)
(VX2 VX)
fextra

AN
AN

marijn@cmu.edu

Conflict-driven SAT solvers: Search and Analysis

©
X5:1
D
X2:1
O
(©
X]ZO
X4:1
X3—1
X3_O
D

8/ 34

Conflict-driven SAT solvers: Search and Analysis

(X] \/X4) VAN
(x3 VX4V Xs5)
(X3 VX2 VXs)
fextra

AN
AN

marijn@cmu.edu 8 /34

Conflict-driven SAT solvers: Search and Analysis

(x1V x4) N\
(x3 VX4V Xs5)
(X3 VX2 VXs)
fextra

AN
AN

marijn@cmu.edu 8 /34

Conflict-driven SAT solvers: Search and Analysis

(x1V x4) N\
(x3 VX4V Xs5)
(X3 VX2 VXs)
fextra

AN
AN

marijn@cmu.edu 8 /34

Implication graph [Marques-SilvaSakallah '96]

CDCL in a nutshell:

1. Main loop combines efficient problem simplification with
cheap, but effective decision heuristics; (> 90% of time)

2. Reasoning kicks in if the current state is conflicting;
3. The current state is analyzed and turned into a constraint;

4. The constraint is added to the problem, the heuristics are
updated, and the algorithm (partially) restarts.

marijn@cmu.edu 9 /34

Implication graph [Marques-SilvaSakallah '96]

CDCL in a nutshell:

1. Main loop combines efficient problem simplification with
cheap, but effective decision heuristics; (> 920% of time)

2. Reasoning kicks in if the current state is conflicting;
3. The current state is analyzed and turned into a constraint;

4. The constraint is added to the problem, the heuristics are
updated, and the algorithm (partially) restarts.

However, it has three weaknesses:
m CDCL is notoriously hard to parallelize;
m the representation impacts CDCL performance; and
m CDCL has exponential runtime on some “simple” problems.

marijn@cmu.edu 9 /34

Conflict-driven Clause Learning: Pseudo-code

1: while TRUE do
2: ldecision := Decide ()

3 If N0 lyecision then return satisfiable

4 F = Simplify (F (Laecision < 1))

5: while F contains Cgygifeq do

6: Ceontlict := Analyze (Cralsificd)

7: If Ceoniict = 0 then return unsatisfiable
8: BackTrack (Ceonflict)

9: F = Simplify (F U{Cconflict})

10: end while

11: end while

marijn@cmu.edu 10 / 34

Learning conflict clauses ~ [Marques-SilvaSakallah’96]

xa=] Xg= x17=0

X19=1

marijn@cmu.edu 11/ 34

Learning conflict clauses ~ [Marques-SilvaSakallah’96]

Xa=] XSCK

(X1 Vx3 Vx5 Vxi7 Vo) x19=1

tri-asserting clause

marijn@cmu.edu 11/ 34

Learning conflict clauses ~ [Marques-SilvaSakallah’96]

(x10 VX8V x17 V X19) x19=1

first unique implication point

marijn@cmu.edu 11/ 34

Learning conflict clauses ~ [Marques-SilvaSakallah’96]

X4:] XgZ] \ X]7R
(4 \ v
X6=0 o 7

(x2 VX3 VXgVx17VXie) X19=1

second unique implication point

marijn@cmu.edu 11/ 34

Average Learned Clause Length

600

500

400

300

200

100

it Tt

++
++
ottt

+++++++++T+++++++++‘ ‘ ‘

0

-
TR

et

0 10 20 30 40

marijn@cmu.edu

50

60 70

80

12 / 34

Data-structures

marijn@cmu.edu 13 / 34

Simple data structure for unit propagation

-1 -2
o

Variables Clauses

SO RARRRR:
/4

marijn@cmu.edu 14 / 34

Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

_{Xl *XZ >X3:*>X4:*)X5:*>X6:*}

X1

marijn@cmu.edu 15/ 34

Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

_{X1 *XZ)X3:*>X4:*)X5:1>X6:*}

X1

marijn@cmu.edu 15/ 34

Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

(% :{X1 = *)XZ - *>X3 - 1)X4 - *)XS - 1>X6 - *}

X1

marijn@cmu.edu 15/ 34

Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

(% :{X1 = *)XZ - *>X3 - 1)X4 - *)XS - 1>X6 - *}

X1

marijn@cmu.edu 15/ 34

Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

=X =1Lx= *>X3 =1,x4 = *>X5 =1,%x¢ = *}

\/

X1 X4 X6

marijn@cmu.edu 15/ 34

Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

=X =1Lx= *>X3 =1,x4 = *>X5 =1,%x¢ = *}

X6

X1

X4

X6

marijn@cmu.edu

15/ 34

Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

=X =1Lx= *>X3 =1,x4 =0,%x5 = 1,x¢ = *}

X6

X1

X6

X4

marijn@cmu.edu

15/ 34

Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

o= =1Lx2=0x3=1%x=0%x5=1% = *}

X6

X1

X6

X4

marijn@cmu.edu

15/ 34

Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

¢ :{X1 =Lxx=0,x3=1,x=0,%x5 = 1,x¢ = 1}

X6

X2

X1

X4

marijn@cmu.edu

15/ 34

Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

¢ :{X1 =Lxx=0,x3=1,x=0,%x5 = 1,x¢ = 1}

X6

X2

X1

X4

marijn@cmu.edu

15/ 34

Conflict-driven: Watch pointers (2) [MoskewiczMZZM'01]

Only examine (get in the cache) a clause when both
m a watch pointer gets falsified
m the other one is not satisfied

While backjumping, just unassign variables
Conflict clauses — watch pointers
No detailed information available

Not used for binary clauses

marijn@cmu.edu 16 / 34

Average Number Clauses Visited Per Propagation

25

20

15

10 +

5+

.
"
4t

T
I
-

4+
+++

R +

marijn@cmu.edu

10

20

30

40

50

60 70

80

17 / 34

Percentage visited clauses with other watched literal true

90
85 I -
80 o]
75]

70 t .
65 | -

60]
50 _++++++++*++ E
45 .
40 ‘ ‘ ‘ ‘ ‘ ‘ ‘

marijn@cmu.edu 18 / 34

Heuristics

marijn@cmu.edu 19 / 34

Most important CDCL heuristics

Variable selection heuristics
® aim: minimize the search space
m plus: could compensate a bad value selection

marijn@cmu.edu 20 / 34

Most important CDCL heuristics

Variable selection heuristics
® aim: minimize the search space
m plus: could compensate a bad value selection

Value selection heuristics
® aim: guide search towards a solution or conflict

m plus: could compensate a bad variable selection,
cache solutions of subproblems [PipatsrisawatDarwiche'07]

marijn@cmu.edu 20 / 34

Most important CDCL heuristics

Variable selection heuristics
® aim: minimize the search space
m plus: could compensate a bad value selection

Value selection heuristics
® aim: guide search towards a solution or conflict

m plus: could compensate a bad variable selection,
cache solutions of subproblems [PipatsrisawatDarwiche'07]

Restart strategies
m aim: avoid heavy-tail behavior [GomesSelmanCrato'97]

m plus: focus search on recent conflicts when combined with
dynamic heuristics

marijn@cmu.edu 20 / 34

Variable selection heuristics

Based on the occurrences in the (reduced) formula

m examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

m not practical for CDCL solver due to watch pointers

marijn@cmu.edu 21/ 34

Variable selection heuristics

Based on the occurrences in the (reduced) formula

m examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

m not practical for CDCL solver due to watch pointers

Variable State Independent Decaying Sum (VSIDS)

m original idea (zChaff): for each conflict, increase the score
of involved variables by 1, half all scores each 256 conflicts
[MoskewiczMZZM'01]

m improvement (MiniSAT): for each conflict, increase the
score of involved variables by & and increase & := 1.050
[EenSérensson’03]

marijn@cmu.edu 21/ 34

Visualization of VSIDS in PicoSAT

http://www.youtube.com/watch?v=M0jhFywLre8

marijn@cmu.edu 22/ 34

http://www.youtube.com/watch?v=MOjhFywLre8

Value selection heuristics

Based on the occurrences in the (reduced) formula

m examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

m not practical for CDCL solver due to watch pointers

marijn@cmu.edu 23 /34

Value selection heuristics

Based on the occurrences in the (reduced) formula

m examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

m not practical for CDCL solver due to watch pointers

Based on the encoding / consequently
m negative branching (early MiniSAT) [EenSorensson’03]

marijn@cmu.edu 23 /34

Value selection heuristics

Based on the occurrences in the (reduced) formula

m examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

m not practical for CDCL solver due to watch pointers

Based on the encoding / consequently
m negative branching (early MiniSAT) [EenSorensson’03]

Based on the last implied value (phase-saving)
m introduced to CDCL [PipatsrisawatDarwiche'07]
m already used in local search [HirschKojevnikov'01]

marijn@cmu.edu 23 /34

Heuristics: Phase-saving [PipatsrisawatDarwiche’07]

Selecting the last implied value remembers solved components

600

Variable index
Variable index

400

200

o 50000 10.0000 150000 ?@000 250000 300000 350000 400000 0 5()()‘()() 100000 IS(;(D(P() 200000 250000
Decision number Decision number
negative branching phase-saving

marijn@cmu.edu 24 / 34

Restarts

Restarts in CDCL solvers:
m Counter heavy-tail behavior [GomesSelmanCrato'97]
m Unassign all variables but keep the (dynamic) heuristics

marijn@cmu.edu 25/ 34

Restarts

Restarts in CDCL solvers:
m Counter heavy-tail behavior [GomesSelmanCrato'97]
m Unassign all variables but keep the (dynamic) heuristics

Restart strategies: [Walsh'99, LubySinclairZuckerman’93]
m Geometrical restart: e.g. 100,150, 225,333,500, 750, ...
m Luby sequence: e.g. 100, 100, 200, 100, 100, 200, 400, . ..

marijn@cmu.edu 25/ 34

Restarts

Restarts in CDCL solvers:
m Counter heavy-tail behavior [GomesSelmanCrato'97]
m Unassign all variables but keep the (dynamic) heuristics

Restart strategies: [Walsh'99, LubySinclairZuckerman'93]
m Geometrical restart: e.g. 100,150, 225,333,500, 750, ...
m Luby sequence: e.g. 100, 100,200, 100, 100, 200, 400, ...

Rapid restarts by reusing trail: [vanderTakHeuleRamos'11]

m Partial restart same effect as full restart
m Optimal strategy Luby-1: 1,1,2,1,1,2,4,...

marijn@cmu.edu 25 /34

Heuristics: SAT vs UNSAT [Oh’15]

The best heuristics choices depend on satisfiability: E.g.
m Restart frequently for UNSAT instances to get conflict early
m Restart sporadically for SAT instances to keep “progress”

Also, keeping learned clauses is less important on SAT
instances and can actually slow down the search.

State-of-the-art CDCL solvers, such as CaDiCal, have separate
modes for SAT and UNSAT and they alternate between them.

marijn@cmu.edu 26 / 34

Clause Management

marijn@cmu.edu 27 / 34

Clause delection [EenSorensson’03, AudemardSimon’09]

Conflict clauses can significantly slow down CDCL solvers:
m Conflict clauses can quickly outnumber the original clauses
m Conflict clauses consists of important variables

Clause deletion is used to reduce the overhead:
m When the learned clause reach a limit, remove half
m Increase limit after every removal (completeness)

marijn@cmu.edu 28 / 34

Clause delection [EenSorensson’03, AudemardSimon’09]

Conflict clauses can significantly slow down CDCL solvers:
m Conflict clauses can quickly outnumber the original clauses
m Conflict clauses consists of important variables

Clause deletion is used to reduce the overhead:
m When the learned clause reach a limit, remove half
m Increase limit after every removal (completeness)

Clause deletion heuristics:
m length of the clause
m relevance of the clause (when was it used in Analyze)
m the number of involved decision levels

marijn@cmu.edu 28 / 34

Conflict-Clause Minimization

marijn@cmu.edu 29 / 34

Self-Subsumption

Use self-subsumption to shorten conflict clauses

CVl DVI1 (aVbV1) (aVbVeVl)
CCD
D (aVbVe)

Conflict clause minimization is an important
optimization.

marijn@cmu.edu 30 / 34

Self-Subsumption

Use self-subsumption to shorten conflict clauses

CVl DVI1 (aVbV1) (aVbVeVl)
CCD
D (aVbVe)

Conflict clause minimization is an important
optimization.

Use implication chains to further minimization:

.(@avo)(bVe)lavVeVd)... =
(@vo)(dbVe)lcVva)...

marijn@cmu.edu 30/ 34

Conflict-clause minimization [SorenssonBiere'09]

X2=1 X3=O
X]ZO
X6=1 X7:0
X4—1
Xg—]

marijn@cmu.edu 31/ 34

Conflict-clause minimization [SorenssonBiere'09]

X2=1 X3=O

X5=1 X7:0

(X2 Vx5 VX Vx7Vxir) x13=1
first unique

implication point

marijn@cmu.edu 31/ 34

Conflict-clause minimization

X2=1

[SorenssonBiere'09]

=1 @

(X]\/i4\/i8\/§10) X14:1
last unique

implication point

marijn@cmu.edu

31/ 34

Conflict-clause minimization [SorenssonBiere'09]

X2::1 X3::O

(X2 Vx5 VXV xi1)
reduced conflict clause

marijn@cmu.edu

31/ 34

Conflict-clause minimization [SorenssonBiere'09]

X3::O

X5::1 X7::0

(X2 Vx5 Vx11)

minimized conflict clause

marijn@cmu.edu

31/ 34

Recent Advances and Conclusions

marijn@cmu.edu 32 /34

Recent Advances
A new idea contributes to winning the competition.

Winner 2017: Clause vivification during search
[LuoLiXiaoManyaLi'17]

Winner 2018: Chronological backtracking
[NadelRyvchin'18]

Winner 2019: Multiple learnt clauses per conflict
[KochemazovZaikinKondratievSemenov'19]

Winner 2020: Back to C and “target phases”
[BiereFleury'20]

marijn@cmu.edu 33 /34

Conclusions: state-of-the-art CDCL solver

Key contributions to CDCL solvers:
concept of conflict clauses (grasp) [Marques-SilvaSakallah'96]

m restart strategies [GomesSC'97,LubySZ'93]
m 2-watch pointers and VSIDS (zChaff) [MoskewiczMZZM'01]
m efficient implementation (Minisat) [EenSorensson’03]
m phase-saving (Rsat) [PipatsrisawatDarwiche'07]
m conflict-clause minimization [SorenssonBiere'09]
m SAT vs UNSAT [Oh'15]

+ Pre- and in-processing techniques

marijn@cmu.edu 34 / 34

	Clause Learning
	Data-structures
	Heuristics
	Clause Management
	Conflict-Clause Minimization
	Recent Advances and Conclusions

