
Conflict-Driven Clause Learning

Marijn J.H. Heule

http://www.cs.cmu.edu/~mheule/15816-f22/

Automated Reasoning and Satisfiability

September 14, 2022

marijn@cmu.edu 1 / 34

http://www.cs.cmu.edu/~mheule/15816-f22/


The Satisfiability (SAT) problem

(x5 ∨ x8 ∨ x2)∧ (x2 ∨ x1 ∨ x3)∧ (x8 ∨ x3 ∨ x7)∧ (x5 ∨ x3 ∨ x8) ∧

(x6 ∨ x1 ∨ x5)∧ (x8 ∨ x9 ∨ x3)∧ (x2 ∨ x1 ∨ x3)∧ (x1 ∨ x8 ∨ x4) ∧

(x9 ∨ x6 ∨ x8)∧ (x8 ∨ x3 ∨ x9)∧ (x9 ∨ x3 ∨ x8)∧ (x6 ∨ x9 ∨ x5) ∧

(x2 ∨ x3 ∨ x8)∧ (x8 ∨ x6 ∨ x3)∧ (x8 ∨ x3 ∨ x1)∧ (x8 ∨ x6 ∨ x2) ∧

(x7 ∨ x9 ∨ x2)∧ (x8 ∨ x9 ∨ x2)∧ (x1 ∨ x9 ∨ x4)∧ (x8 ∨ x1 ∨ x2) ∧

(x3 ∨ x4 ∨ x6)∧ (x1 ∨ x7 ∨ x5)∧ (x7 ∨ x1 ∨ x6)∧ (x5 ∨ x4 ∨ x6) ∧

(x4 ∨ x9 ∨ x8)∧ (x2 ∨ x9 ∨ x1)∧ (x5 ∨ x7 ∨ x1)∧ (x7 ∨ x9 ∨ x6) ∧

(x2 ∨ x5 ∨ x4)∧ (x8 ∨ x4 ∨ x5)∧ (x5 ∨ x9 ∨ x3)∧ (x5 ∨ x7 ∨ x9) ∧

(x2 ∨ x8 ∨ x1)∧ (x7 ∨ x1 ∨ x5)∧ (x1 ∨ x4 ∨ x3)∧ (x1 ∨ x9 ∨ x4) ∧

(x3 ∨ x5 ∨ x6)∧ (x6 ∨ x3 ∨ x9)∧ (x7 ∨ x5 ∨ x9)∧ (x7 ∨ x5 ∨ x2) ∧

(x4 ∨ x7 ∨ x3)∧ (x4 ∨ x9 ∨ x7)∧ (x5 ∨ x1 ∨ x7)∧ (x5 ∨ x1 ∨ x7) ∧

(x6 ∨ x7 ∨ x3)∧ (x8 ∨ x6 ∨ x7)∧ (x6 ∨ x2 ∨ x3)∧ (x8 ∨ x2 ∨ x5)

Does there exist an assignment satisfying all clauses?

marijn@cmu.edu 2 / 34



Search for a satisfying assignment (or proof none exists)

(x5 ∨ x8 ∨ x2)∧ (x2 ∨ x1 ∨ x3)∧ (x8 ∨ x3 ∨ x7)∧ (x5 ∨ x3 ∨ x8) ∧

(x6 ∨ x1 ∨ x5)∧ (x8 ∨ x9 ∨ x3)∧ (x2 ∨ x1 ∨ x3)∧ (x1 ∨ x8 ∨ x4) ∧

(x9 ∨ x6 ∨ x8)∧ (x8 ∨ x3 ∨ x9)∧ (x9 ∨ x3 ∨ x8)∧ (x6 ∨ x9 ∨ x5) ∧

(x2 ∨ x3 ∨ x8)∧ (x8 ∨ x6 ∨ x3)∧ (x8 ∨ x3 ∨ x1)∧ (x8 ∨ x6 ∨ x2) ∧

(x7 ∨ x9 ∨ x2)∧ (x8 ∨ x9 ∨ x2)∧ (x1 ∨ x9 ∨ x4)∧ (x8 ∨ x1 ∨ x2) ∧

(x3 ∨ x4 ∨ x6)∧ (x1 ∨ x7 ∨ x5)∧ (x7 ∨ x1 ∨ x6)∧ (x5 ∨ x4 ∨ x6) ∧

(x4 ∨ x9 ∨ x8)∧ (x2 ∨ x9 ∨ x1)∧ (x5 ∨ x7 ∨ x1)∧ (x7 ∨ x9 ∨ x6) ∧

(x2 ∨ x5 ∨ x4)∧ (x8 ∨ x4 ∨ x5)∧ (x5 ∨ x9 ∨ x3)∧ (x5 ∨ x7 ∨ x9) ∧

(x2 ∨ x8 ∨ x1)∧ (x7 ∨ x1 ∨ x5)∧ (x1 ∨ x4 ∨ x3)∧ (x1 ∨ x9 ∨ x4) ∧

(x3 ∨ x5 ∨ x6)∧ (x6 ∨ x3 ∨ x9)∧ (x7 ∨ x5 ∨ x9)∧ (x7 ∨ x5 ∨ x2) ∧

(x4 ∨ x7 ∨ x3)∧ (x4 ∨ x9 ∨ x7)∧ (x5 ∨ x1 ∨ x7)∧ (x5 ∨ x1 ∨ x7) ∧

(x6 ∨ x7 ∨ x3)∧ (x8 ∨ x6 ∨ x7)∧ (x6 ∨ x2 ∨ x3)∧ (x8 ∨ x2 ∨ x5)

Does there exist an assignment satisfying all clauses?

marijn@cmu.edu 3 / 34



SAT Solver Paradigms Overview

DPLL: Aims at finding a small search-tree by selecting
effective splitting variables (e.g. via looking ahead).

Strength: Effective on small, hard formulas.

Weakness: Expensive.

marijn@cmu.edu 4 / 34



SAT Solver Paradigms Overview

DPLL: Aims at finding a small search-tree by selecting
effective splitting variables (e.g. via looking ahead).

Strength: Effective on small, hard formulas.

Weakness: Expensive.

Local search: Given a full assignment for a formula Γ ,
flip the truth values of variables until satisfying Γ .

Strength: Can quickly find solutions for hard formulas.

Weakness: Cannot prove unsatisfiability.

marijn@cmu.edu 4 / 34



SAT Solver Paradigms Overview

DPLL: Aims at finding a small search-tree by selecting
effective splitting variables (e.g. via looking ahead).

Strength: Effective on small, hard formulas.

Weakness: Expensive.

Local search: Given a full assignment for a formula Γ ,
flip the truth values of variables until satisfying Γ .

Strength: Can quickly find solutions for hard formulas.

Weakness: Cannot prove unsatisfiability.

Conflict-driven clause learning (CDCL): Makes fast
decisions and converts conflicts into learned clauses.

Strength: Effective on large, “easy” formulas.

Weakness: Hard to parallelize.

marijn@cmu.edu 4 / 34



Conflict-driven Clause Learning: Overview

Most successful architecture

Superior on industrial benchmarks

Brute-force?
• Addition conflict clauses
• Fast unit propagation

Complete local search (for a refutation)?

State-of-the-art (sequential) CDCL solvers:
Kissat, CaDiCaL, Glucose, CryptoMiniSAT

marijn@cmu.edu 5 / 34



Clause Learning

Data-structures

Heuristics

Clause Management

Conflict-Clause Minimization

Recent Advances and Conclusions

marijn@cmu.edu 6 / 34



Clause Learning

Data-structures

Heuristics

Clause Management

Conflict-Clause Minimization

Recent Advances and Conclusions

marijn@cmu.edu 7 / 34



Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧

(x3 ∨ x4 ∨ x5) ∧

(x3 ∨ x2 ∨ x4) ∧

Fextra

0

marijn@cmu.edu 8 / 34



Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧

(x3 ∨ x4 ∨ x5) ∧

(x3 ∨ x2 ∨ x4) ∧

Fextra

0

1

x5 = 1

marijn@cmu.edu 8 / 34



Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧

(x3 ∨ x4 ∨ x5) ∧

(x3 ∨ x2 ∨ x4) ∧

Fextra

0

1

2

x5 = 1

x2 = 1

marijn@cmu.edu 8 / 34



Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧

(x3 ∨ x4 ∨ x5) ∧

(x3 ∨ x2 ∨ x4) ∧

Fextra

0

1

2

6

x5 = 1

x2 = 1

marijn@cmu.edu 8 / 34



Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧

(x3 ∨ x4 ∨ x5) ∧

(x3 ∨ x2 ∨ x4) ∧

Fextra

0

1

2

6

7

x5 = 1

x2 = 1

x1 = 0

marijn@cmu.edu 8 / 34



Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧

(x3 ∨ x4 ∨ x5) ∧

(x3 ∨ x2 ∨ x4) ∧

Fextra

0

1

2

6

7

x5 = 1

x2 = 1

x1 = 0
x4 = 1

marijn@cmu.edu 8 / 34



Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧

(x3 ∨ x4 ∨ x5) ∧

(x3 ∨ x2 ∨ x4) ∧

Fextra

0

1

2

6

7

x5 = 1

x2 = 1

x1 = 0
x4 = 1
x3 = 1
x3 = 0

marijn@cmu.edu 8 / 34



Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧

(x3 ∨ x4 ∨ x5) ∧

(x3 ∨ x2 ∨ x4) ∧

Fextra

7

1

2

7

7

7

x1 = 0 x4 = 1

x2 = 1

x5 = 1

x3 = 0

x3 = 1

0

1

2

6

7

x5 = 1

x2 = 1

x1 = 0
x4 = 1
x3 = 1
x3 = 0

marijn@cmu.edu 8 / 34



Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧

(x3 ∨ x4 ∨ x5) ∧

(x3 ∨ x2 ∨ x4) ∧

Fextra

7

1

2

7

7

7

x1 = 0 x4 = 1

x2 = 1

x5 = 1

x3 = 0

x3 = 1

(x2 ∨ x4 ∨ x5)

0

1

2

6

7

x5 = 1

x2 = 1

x1 = 0
x4 = 1
x3 = 1
x3 = 0

marijn@cmu.edu 8 / 34



Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧

(x3 ∨ x4 ∨ x5) ∧

(x3 ∨ x2 ∨ x4) ∧

Fextra

7

1

2

7

7

7

x1 = 0 x4 = 1

x2 = 1

x5 = 1

x3 = 0

x3 = 1

(x2 ∨ x4 ∨ x5)

0

1

2

6

7

x5 = 1

x2 = 1

x1 = 0
x4 = 1
x3 = 1
x3 = 0

marijn@cmu.edu 8 / 34



Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧

(x3 ∨ x4 ∨ x5) ∧

(x3 ∨ x2 ∨ x4) ∧

Fextra

7

1

2

7

7

7

x1 = 0 x4 = 1

x2 = 1

x5 = 1

x3 = 0

x3 = 1

(x2 ∨ x4 ∨ x5)

0

1

2

6

7

2

x5 = 1

x2 = 1

x1 = 0
x4 = 1
x3 = 1
x3 = 0

x4 = 0
x1 = 1

marijn@cmu.edu 8 / 34



Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧

(x3 ∨ x4 ∨ x5) ∧

(x3 ∨ x2 ∨ x4) ∧

Fextra

7

1

2

7

7

7

x1 = 0 x4 = 1

x2 = 1

x5 = 1

x3 = 0

x3 = 1

(x2 ∨ x4 ∨ x5)

0

1

2

6

7

2

x5 = 1

x2 = 1

x1 = 0
x4 = 1
x3 = 1
x3 = 0

x4 = 0
x1 = 1

marijn@cmu.edu 8 / 34



Implication graph [Marques-SilvaSakallah ’96]

CDCL in a nutshell:

1. Main loop combines efficient problem simplification with
cheap, but effective decision heuristics; (> 90% of time)

2. Reasoning kicks in if the current state is conflicting;

3. The current state is analyzed and turned into a constraint;

4. The constraint is added to the problem, the heuristics are
updated, and the algorithm (partially) restarts.

marijn@cmu.edu 9 / 34



Implication graph [Marques-SilvaSakallah ’96]

CDCL in a nutshell:

1. Main loop combines efficient problem simplification with
cheap, but effective decision heuristics; (> 90% of time)

2. Reasoning kicks in if the current state is conflicting;

3. The current state is analyzed and turned into a constraint;

4. The constraint is added to the problem, the heuristics are
updated, and the algorithm (partially) restarts.

However, it has three weaknesses:

CDCL is notoriously hard to parallelize;

the representation impacts CDCL performance; and

CDCL has exponential runtime on some “simple” problems.

marijn@cmu.edu 9 / 34



Conflict-driven Clause Learning: Pseudo-code

1: while TRUE do

2: ldecision := Decide ()

3: If no ldecision then return satisfiable

4: F := Simplify (F(ldecision ← 1))

5: while F contains Cfalsified do

6: Cconflict := Analyze (Cfalsified)

7: If Cconflict = ∅ then return unsatisfiable

8: BackTrack (Cconflict)

9: F := Simplify (F ∪ {Cconflict})

10: end while

11: end while

marijn@cmu.edu 10 / 34



Learning conflict clauses [Marques-SilvaSakallah’96]

6

x13=0

7

x11=1

4

x6=0

7

x7=1

7

x12=0

7

x2=0

3

x4=1

7

x10=0

1

x8=1

7

x1=1

7

x3=1

7

x5=0

5

x17=0

2

x19=1

7

x18=1

7

x18=0

marijn@cmu.edu 11 / 34



Learning conflict clauses [Marques-SilvaSakallah’96]

6

x13=0

7

x11=1

4

x6=0

7

x7=1

7

x12=0

7

x2=0

3

x4=1

7

x10=0

1

x8=1

7

x1=1

7

x3=1

7

x5=0

5

x17=0

2

x19=1

7

x18=1

7

x18=0

(x1 ∨ x3 ∨ x5 ∨ x17 ∨ x19)

tri-asserting clause

marijn@cmu.edu 11 / 34



Learning conflict clauses [Marques-SilvaSakallah’96]

6

x13=0

7

x11=1

4

x6=0

7

x7=1

7

x12=0

7

x2=0

3

x4=1

7

x10=0

1

x8=1

7

x1=1

7

x3=1

7

x5=0

5

x17=0

2

x19=1

7

x18=1

7

x18=0

(x10 ∨ x8 ∨ x17 ∨ x19)

first unique implication point

marijn@cmu.edu 11 / 34



Learning conflict clauses [Marques-SilvaSakallah’96]

6

x13=0

7

x11=1

4

x6=0

7

x7=1

7

x12=0

7

x2=0

3

x4=1

7

x10=0

1

x8=1

7

x1=1

7

x3=1

7

x5=0

5

x17=0

2

x19=1

7

x18=1

7

x18=0

(x2 ∨ x4 ∨ x8 ∨ x17 ∨ x19)

second unique implication point

marijn@cmu.edu 11 / 34



Average Learned Clause Length

marijn@cmu.edu 12 / 34



Clause Learning

Data-structures

Heuristics

Clause Management

Conflict-Clause Minimization

Recent Advances and Conclusions

marijn@cmu.edu 13 / 34



Simple data structure for unit propagation

marijn@cmu.edu 14 / 34



Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

ϕ = {x1 = *, x2 = *, x3 = *, x4 = *, x5 = *, x6 = *}

x1 x2 x3 x5 x6

x1 x3 x4 x5 x6

marijn@cmu.edu 15 / 34



Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

ϕ = {x1 = *, x2 = *, x3 = *, x4 = *, x5 = 1, x6 = *}

x1 x2 x3 x5 x6

x1 x3 x4 x5 x6

marijn@cmu.edu 15 / 34



Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

ϕ = {x1 = *, x2 = *, x3 = 1, x4 = *, x5 = 1, x6 = *}

x1 x2 x3 x5 x6

x1 x3 x4 x5 x6

marijn@cmu.edu 15 / 34



Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

ϕ = {x1 = *, x2 = *, x3 = 1, x4 = *, x5 = 1, x6 = *}

x1 x2 x3 x5 x6

x1 x3x4 x5 x6

marijn@cmu.edu 15 / 34



Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

ϕ = {x1 = 1, x2 = *, x3 = 1, x4 = *, x5 = 1, x6 = *}

x1 x2 x3 x5 x6

x1 x3x4 x5 x6

marijn@cmu.edu 15 / 34



Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

ϕ = {x1 = 1, x2 = *, x3 = 1, x4 = *, x5 = 1, x6 = *}

x1x2 x3 x5x6

x1 x3x4 x5 x6

marijn@cmu.edu 15 / 34



Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

ϕ = {x1 = 1, x2 = *, x3 = 1, x4 = 0, x5 = 1, x6 = *}

x1x2 x3 x5x6

x1 x3x4 x5 x6

marijn@cmu.edu 15 / 34



Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

ϕ = {x1 = 1, x2 = 0, x3 = 1, x4 = 0, x5 = 1, x6 = *}

x1x2 x3 x5x6

x1 x3x4 x5 x6

marijn@cmu.edu 15 / 34



Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

ϕ = {x1 = 1, x2 = 0, x3 = 1, x4 = 0, x5 = 1, x6 = 1}

x1x2 x3 x5x6

x1 x3x4 x5 x6

marijn@cmu.edu 15 / 34



Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

ϕ = {x1 = 1, x2 = 0, x3 = 1, x4 = 0, x5 = 1, x6 = 1}

x1x2 x3 x5x6

x1 x3x4 x5 x6

marijn@cmu.edu 15 / 34



Conflict-driven: Watch pointers (2) [MoskewiczMZZM’01]

Only examine (get in the cache) a clause when both
a watch pointer gets falsified

the other one is not satisfied

While backjumping, just unassign variables

Conflict clauses → watch pointers

No detailed information available

Not used for binary clauses

marijn@cmu.edu 16 / 34



Average Number Clauses Visited Per Propagation

marijn@cmu.edu 17 / 34



Percentage visited clauses with other watched literal true

marijn@cmu.edu 18 / 34



Clause Learning

Data-structures

Heuristics

Clause Management

Conflict-Clause Minimization

Recent Advances and Conclusions

marijn@cmu.edu 19 / 34



Most important CDCL heuristics

Variable selection heuristics
aim: minimize the search space

plus: could compensate a bad value selection

marijn@cmu.edu 20 / 34



Most important CDCL heuristics

Variable selection heuristics
aim: minimize the search space

plus: could compensate a bad value selection

Value selection heuristics
aim: guide search towards a solution or conflict

plus: could compensate a bad variable selection,
cache solutions of subproblems [PipatsrisawatDarwiche’07]

marijn@cmu.edu 20 / 34



Most important CDCL heuristics

Variable selection heuristics
aim: minimize the search space

plus: could compensate a bad value selection

Value selection heuristics
aim: guide search towards a solution or conflict

plus: could compensate a bad variable selection,
cache solutions of subproblems [PipatsrisawatDarwiche’07]

Restart strategies
aim: avoid heavy-tail behavior [GomesSelmanCrato’97]

plus: focus search on recent conflicts when combined with
dynamic heuristics

marijn@cmu.edu 20 / 34



Variable selection heuristics

Based on the occurrences in the (reduced) formula
examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

not practical for CDCL solver due to watch pointers

marijn@cmu.edu 21 / 34



Variable selection heuristics

Based on the occurrences in the (reduced) formula
examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

not practical for CDCL solver due to watch pointers

Variable State Independent Decaying Sum (VSIDS)
original idea (zChaff): for each conflict, increase the score
of involved variables by 1, half all scores each 256 conflicts

[MoskewiczMZZM’01]

improvement (MiniSAT): for each conflict, increase the
score of involved variables by δ and increase δ := 1.05δ

[EenSörensson’03]

marijn@cmu.edu 21 / 34



Visualization of VSIDS in PicoSAT

http://www.youtube.com/watch?v=MOjhFywLre8

marijn@cmu.edu 22 / 34

http://www.youtube.com/watch?v=MOjhFywLre8


Value selection heuristics

Based on the occurrences in the (reduced) formula
examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

not practical for CDCL solver due to watch pointers

marijn@cmu.edu 23 / 34



Value selection heuristics

Based on the occurrences in the (reduced) formula
examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

not practical for CDCL solver due to watch pointers

Based on the encoding / consequently
negative branching (early MiniSAT) [EenSörensson’03]

marijn@cmu.edu 23 / 34



Value selection heuristics

Based on the occurrences in the (reduced) formula
examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

not practical for CDCL solver due to watch pointers

Based on the encoding / consequently
negative branching (early MiniSAT) [EenSörensson’03]

Based on the last implied value (phase-saving)
introduced to CDCL [PipatsrisawatDarwiche’07]

already used in local search [HirschKojevnikov’01]

marijn@cmu.edu 23 / 34



Heuristics: Phase-saving [PipatsrisawatDarwiche’07]

Selecting the last implied value remembers solved components

negative branching phase-saving

marijn@cmu.edu 24 / 34



Restarts

Restarts in CDCL solvers:
Counter heavy-tail behavior [GomesSelmanCrato’97]

Unassign all variables but keep the (dynamic) heuristics

marijn@cmu.edu 25 / 34



Restarts

Restarts in CDCL solvers:
Counter heavy-tail behavior [GomesSelmanCrato’97]

Unassign all variables but keep the (dynamic) heuristics

Restart strategies: [Walsh’99, LubySinclairZuckerman’93]

Geometrical restart: e.g. 100, 150, 225, 333, 500, 750, . . .

Luby sequence: e.g. 100, 100, 200, 100, 100, 200, 400, . . .

marijn@cmu.edu 25 / 34



Restarts

Restarts in CDCL solvers:
Counter heavy-tail behavior [GomesSelmanCrato’97]

Unassign all variables but keep the (dynamic) heuristics

Restart strategies: [Walsh’99, LubySinclairZuckerman’93]

Geometrical restart: e.g. 100, 150, 225, 333, 500, 750, . . .

Luby sequence: e.g. 100, 100, 200, 100, 100, 200, 400, . . .

Rapid restarts by reusing trail: [vanderTakHeuleRamos’11]

Partial restart same effect as full restart

Optimal strategy Luby-1: 1, 1, 2, 1, 1, 2, 4, . . .

marijn@cmu.edu 25 / 34



Heuristics: SAT vs UNSAT [Oh’15]

The best heuristics choices depend on satisfiability: E.g.

Restart frequently for UNSAT instances to get conflict early

Restart sporadically for SAT instances to keep “progress”

Also, keeping learned clauses is less important on SAT
instances and can actually slow down the search.

State-of-the-art CDCL solvers, such as CaDiCaL, have separate
modes for SAT and UNSAT and they alternate between them.

marijn@cmu.edu 26 / 34



Clause Learning

Data-structures

Heuristics

Clause Management

Conflict-Clause Minimization

Recent Advances and Conclusions

marijn@cmu.edu 27 / 34



Clause delection [EenSörensson’03, AudemardSimon’09]

Conflict clauses can significantly slow down CDCL solvers:

Conflict clauses can quickly outnumber the original clauses

Conflict clauses consists of important variables

Clause deletion is used to reduce the overhead:

When the learned clause reach a limit, remove half

Increase limit after every removal (completeness)

marijn@cmu.edu 28 / 34



Clause delection [EenSörensson’03, AudemardSimon’09]

Conflict clauses can significantly slow down CDCL solvers:

Conflict clauses can quickly outnumber the original clauses

Conflict clauses consists of important variables

Clause deletion is used to reduce the overhead:

When the learned clause reach a limit, remove half

Increase limit after every removal (completeness)

Clause deletion heuristics:

length of the clause

relevance of the clause (when was it used in Analyze)

the number of involved decision levels

marijn@cmu.edu 28 / 34



Clause Learning

Data-structures

Heuristics

Clause Management

Conflict-Clause Minimization

Recent Advances and Conclusions

marijn@cmu.edu 29 / 34



Self-Subsumption

Use self-subsumption to shorten conflict clauses

C∨ l D∨ l

D
C ⊆ D

(a∨b∨l) (a∨b∨c∨l)

(a∨b∨c)

Conflict clause minimization is an important

optimization.

marijn@cmu.edu 30 / 34



Self-Subsumption

Use self-subsumption to shorten conflict clauses

C∨ l D∨ l

D
C ⊆ D

(a∨b∨l) (a∨b∨c∨l)

(a∨b∨c)

Conflict clause minimization is an important

optimization.

Use implication chains to further minimization:

. . . (a∨ b)(b∨ c)(a ∨ c∨ d) . . . ⇒

. . . (a∨ b)(b∨ c)(c∨ d) . . .

marijn@cmu.edu 30 / 34



Conflict-clause minimization [SörenssonBiere’09]

1 1 1

2 2 2 2

3 3

4 4 4 4

4 4 4

x1= 0

x2= 1 x3= 0

x4= 1

x5= 0 x6= 1 x7= 0

x8= 1

x9= 0

x10= 1

x11= 0 x12= 1 x13= 0

x14= 1 x15= 0 x13= 1

marijn@cmu.edu 31 / 34



Conflict-clause minimization [SörenssonBiere’09]

1 1 1

2 2 2 2

3 3

4 4 4 4

4 4 4

x1= 0

x2= 1 x3= 0

x4= 1

x5= 0 x6= 1 x7= 0

x8= 1

x9= 0

x10= 1

x11= 0 x12= 1 x13= 0

x14= 1 x15= 0 x13= 1
first unique

implication point

(x2 ∨ x5 ∨ x6 ∨ x7 ∨ x11)

marijn@cmu.edu 31 / 34



Conflict-clause minimization [SörenssonBiere’09]

1 1 1

2 2 2 2

3 3

4 4 4 4

4 4 4

x1= 0

x2= 1 x3= 0

x4= 1

x5= 0 x6= 1 x7= 0

x8= 1

x9= 0

x10= 1

x11= 0 x12= 1 x13= 0

x14= 1 x15= 0 x13= 1
last unique

implication point

(x1 ∨ x4 ∨ x8 ∨ x10)

marijn@cmu.edu 31 / 34



Conflict-clause minimization [SörenssonBiere’09]

1 1 1

2 2 2 2

3 3

4 4 4 4

4 4 4

x1= 0

x2= 1 x3= 0

x4= 1

x5= 0 x6= 1 x7= 0

x8= 1

x9= 0

x10= 1

x11= 0 x12= 1 x13= 0

x14= 1 x15= 0 x13= 1

reduced conflict clause

(x2 ∨ x5 ∨ x6 ∨ x11)

marijn@cmu.edu 31 / 34



Conflict-clause minimization [SörenssonBiere’09]

1 1 1

2 2 2 2

3 3

4 4 4 4

4 4 4

x1= 0

x2= 1 x3= 0

x4= 1

x5= 0 x6= 1 x7= 0

x8= 1

x9= 0

x10= 1

x11= 0 x12= 1 x13= 0

x14= 1 x15= 0 x13= 1

minimized conflict clause

(x2 ∨ x5 ∨ x11)

marijn@cmu.edu 31 / 34



Clause Learning

Data-structures

Heuristics

Clause Management

Conflict-Clause Minimization

Recent Advances and Conclusions

marijn@cmu.edu 32 / 34



Recent Advances

A new idea contributes to winning the competition.

Winner 2017: Clause vivification during search
[LuoLiXiaoManyáLü’17]

Winner 2018: Chronological backtracking

[NadelRyvchin’18]

Winner 2019: Multiple learnt clauses per conflict
[KochemazovZaikinKondratievSemenov’19]

Winner 2020: Back to C and “target phases”

[BiereFleury’20]

marijn@cmu.edu 33 / 34



Conclusions: state-of-the-art CDCL solver

Key contributions to CDCL solvers:
concept of conflict clauses (grasp) [Marques-SilvaSakallah’96]

restart strategies [GomesSC’97,LubySZ’93]

2-watch pointers and VSIDS (zChaff) [MoskewiczMZZM’01]

efficient implementation (Minisat) [EenSörensson’03]

phase-saving (Rsat) [PipatsrisawatDarwiche’07]

conflict-clause minimization [SörenssonBiere’09]

SAT vs UNSAT [Oh’15]

+ Pre- and in-processing techniques

marijn@cmu.edu 34 / 34


	Clause Learning
	Data-structures
	Heuristics
	Clause Management
	Conflict-Clause Minimization
	Recent Advances and Conclusions

