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The Satisfiability (SAT) problem
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Does there exist an assignment satisfying all clauses?
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Search for a satisfying assignment (or proof none exists)
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SAT Solver Paradigms Overview

DPLL: Aims at finding a small search-tree by selecting
effective splitting variables (e.g. via looking ahead).
Strength: Effective on small, hard formulas.

Weakness: Expensive.
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SAT Solver Paradigms Overview

DPLL: Aims at finding a small search-tree by selecting
effective splitting variables (e.g. via looking ahead). ‘\Tr
Strength: Effective on small, hard formulas.

—)

Weakness: Expensive.

Local search: Given a full assignment for a formula T,

——
flip the truth values of variables until satisfying T.
Strength: Can quickly find solutions for hard formulas.

Weakness: Cannot prove unsatisfiability.

Conflict-driven clause learning (CDCL): Makes fast
decisions and converts conflicts into learned clauses.

Strength: Effective on large, “easy” formulas.
Weakness: Hard to parallelize.
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Conflict-driven Clause Learning: Overview

m Most successful architecture

m Superior on industrial benchmarks

m Brute-force?

® Addition conflict clauses
® Fast unit propagation

m Complete local search (for a refutation)?

m State-of-the-art (sequential) CDCL solvers:
Kissat, CaDiCal, Glucose, CryptoMiniSAT
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Clause Learning
Data-structures

Heuristics

Clause Management
Conflict-Clause Minimization

Recent Advances and Conclusions
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Clause Learning
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Conflict-driven SAT solvers: Search and Analysis
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Conflict-driven SAT solvers: Search and Analysis
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Conflict-driven SAT solvers: Search and Analysis
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Conflict-driven SAT solvers: Search and Analysis
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Conflict-driven SAT solvers: Search and Analysis
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Conflict-driven SAT solvers: Search and Analysis
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Implication graph [Marques-SilvaSakallah '96]

CDCL in a nutshell:

1. Main loop combines efficient problem simplification with
cheap, but effective decision heuristics; (> 90% of time)

2. Reasoning kicks in if the current state is conflicting;
3. The current state is analyzed and turned into a constraint;

4. The constraint is added to the problem, the heuristics are
updated, and the algorithm (partially) restarts.
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Implication graph [Marques-SilvaSakallah '96]

CDCL in a nutshell:

1. Main loop combines efficient problem simplification with
cheap, but effective decision heuristics; (> 920% of time)

2. Reasoning kicks in if the current state is conflicting;
3. The current state is analyzed and turned into a constraint;

4. The constraint is added to the problem, the heuristics are
updated, and the algorithm (partially) restarts.

However, it has three weaknesses:
m CDCL is notoriously hard to parallelize;
m the representation impacts CDCL performance; and
m CDCL has exponential runtime on some “simple” problems.
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Conflict-driven Clause Learning: Pseudo-code

1: while TRUE do
2: ldecision := Decide ()

3 If N0 lyecision then return satisfiable

4 F = Simplify (F (Laecision < 1))

5: while F contains Cgygifeq do

6: Ceontlict := Analyze (Cralsificd)

7: If Ceoniict = 0 then return unsatisfiable
8: BackTrack (Ceonflict)

9: F = Simplify (F U{Cconflict})

10: end while

11: end while
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Learning conflict clauses ~ [Marques-SilvaSakallah’96]
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Learning conflict clauses ~ [Marques-SilvaSakallah’96]
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Learning conflict clauses ~ [Marques-SilvaSakallah’96]
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Learning conflict clauses ~ [Marques-SilvaSakallah’96]
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Average Learned Clause Length
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Data-structures
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Simple data structure for unit propagation

-1 -2
o

Variables Clauses
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Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

_{Xl *XZ >X3:*>X4:*)X5:*>X6:*}

X1
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Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

(% :{X1 = *)XZ - *>X3 - 1)X4 - *)XS - 1>X6 - *}

X1
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Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]
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Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]
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Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]
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Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]
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Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]
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Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]
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Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]
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Conflict-driven: Watch pointers (2) [MoskewiczMZZM'01]

Only examine (get in the cache) a clause when both
m a watch pointer gets falsified
m the other one is not satisfied

While backjumping, just unassign variables
Conflict clauses — watch pointers
No detailed information available

Not used for binary clauses
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Average Number Clauses Visited Per Propagation
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Percentage visited clauses with other watched literal true
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Heuristics
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Most important CDCL heuristics

Variable selection heuristics
® aim: minimize the search space
m plus: could compensate a bad value selection
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Most important CDCL heuristics

Variable selection heuristics
® aim: minimize the search space
m plus: could compensate a bad value selection

Value selection heuristics
® aim: guide search towards a solution or conflict

m plus: could compensate a bad variable selection,
cache solutions of subproblems [PipatsrisawatDarwiche'07]

Restart strategies
m aim: avoid heavy-tail behavior [GomesSelmanCrato'97]

m plus: focus search on recent conflicts when combined with
dynamic heuristics
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Variable selection heuristics

Based on the occurrences in the (reduced) formula

m examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

m not practical for CDCL solver due to watch pointers
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Variable selection heuristics

Based on the occurrences in the (reduced) formula

m examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

m not practical for CDCL solver due to watch pointers

Variable State Independent Decaying Sum (VSIDS)

m original idea (zChaff): for each conflict, increase the score
of involved variables by 1, half all scores each 256 conflicts
[MoskewiczMZZM'01]

m improvement (MiniSAT): for each conflict, increase the
score of involved variables by & and increase & := 1.050
[EenSérensson’03]
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Visualization of VSIDS in PicoSAT

http://www.youtube.com/watch?v=M0jhFywLre8
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Value selection heuristics

Based on the occurrences in the (reduced) formula

m examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

m not practical for CDCL solver due to watch pointers

Based on the encoding / consequently
m negative branching (early MiniSAT) [EenSorensson’03]

Based on the last implied value (phase-saving)
m introduced to CDCL [PipatsrisawatDarwiche'07]
m already used in local search [HirschKojevnikov'01]
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Heuristics: Phase-saving  [PipatsrisawatDarwiche’07]

Selecting the last implied value remembers solved components
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Variable index

400
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Decision number Decision number
negative branching phase-saving
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Restarts

Restarts in CDCL solvers:
m Counter heavy-tail behavior [GomesSelmanCrato'97]
m Unassign all variables but keep the (dynamic) heuristics
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Restarts

Restarts in CDCL solvers:
m Counter heavy-tail behavior [GomesSelmanCrato'97]
m Unassign all variables but keep the (dynamic) heuristics

Restart strategies: [Walsh'99, LubySinclairZuckerman’93]
m Geometrical restart: e.g. 100,150, 225,333,500, 750, ...
m Luby sequence: e.g. 100, 100, 200, 100, 100, 200, 400, . ..
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Restarts

Restarts in CDCL solvers:
m Counter heavy-tail behavior [GomesSelmanCrato'97]
m Unassign all variables but keep the (dynamic) heuristics

Restart strategies: [Walsh'99, LubySinclairZuckerman'93]
m Geometrical restart: e.g. 100,150, 225,333,500, 750, ...
m Luby sequence: e.g. 100, 100,200, 100, 100, 200, 400, ...

Rapid restarts by reusing trail: [vanderTakHeuleRamos'11]

m Partial restart same effect as full restart
m Optimal strategy Luby-1: 1,1,2,1,1,2,4,...
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Heuristics: SAT vs UNSAT [Oh’15]

The best heuristics choices depend on satisfiability: E.g.
m Restart frequently for UNSAT instances to get conflict early
m Restart sporadically for SAT instances to keep “progress”

Also, keeping learned clauses is less important on SAT
instances and can actually slow down the search.

State-of-the-art CDCL solvers, such as CaDiCal, have separate
modes for SAT and UNSAT and they alternate between them.
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Clause Management
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Clause delection [EenSorensson’03, AudemardSimon’09]

Conflict clauses can significantly slow down CDCL solvers:
m Conflict clauses can quickly outnumber the original clauses
m Conflict clauses consists of important variables

Clause deletion is used to reduce the overhead:
m When the learned clause reach a limit, remove half
m Increase limit after every removal (completeness)
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Clause delection [EenSorensson’03, AudemardSimon’09]

Conflict clauses can significantly slow down CDCL solvers:
m Conflict clauses can quickly outnumber the original clauses
m Conflict clauses consists of important variables

Clause deletion is used to reduce the overhead:
m When the learned clause reach a limit, remove half
m Increase limit after every removal (completeness)

Clause deletion heuristics:
m length of the clause
m relevance of the clause (when was it used in Analyze)
m the number of involved decision levels

marijn@cmu.edu 28 / 34



Conflict-Clause Minimization
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Self-Subsumption

Use self-subsumption to shorten conflict clauses

CVl DVI1 (aVbV1) (aVbVeVl)
CCD
D (aVbVe)

Conflict clause minimization is an important
optimization.
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Self-Subsumption

Use self-subsumption to shorten conflict clauses

CVl DVI1 (aVbV1) (aVbVeVl)
CCD
D (aVbVe)

Conflict clause minimization is an important
optimization.

Use implication chains to further minimization:

.(@avo)(bVe)lavVeVd)... =
(@vo)(dbVe)lcVva)...
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Conflict-clause minimization [SorenssonBiere'09]
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Conflict-clause minimization [SorenssonBiere'09]
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Conflict-clause minimization
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[SorenssonBiere'09]
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Conflict-clause minimization [SorenssonBiere'09]
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reduced conflict clause
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Conflict-clause minimization [SorenssonBiere'09]

X3::O

X5::1 X7::0
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minimized conflict clause
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Recent Advances and Conclusions
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Recent Advances
A new idea contributes to winning the competition.

Winner 2017: Clause vivification during search
[LuoLiXiaoManyaLi'17]

Winner 2018: Chronological backtracking
[NadelRyvchin'18]

Winner 2019: Multiple learnt clauses per conflict
[KochemazovZaikinKondratievSemenov'19]

Winner 2020: Back to C and “target phases”
[BiereFleury'20]

marijn@cmu.edu 33 /34



Conclusions: state-of-the-art CDCL solver

Key contributions to CDCL solvers:
concept of conflict clauses (grasp) [Marques-SilvaSakallah'96]

m restart strategies [GomesSC'97,LubySZ'93]
m 2-watch pointers and VSIDS (zChaff) [MoskewiczMZZM'01]
m efficient implementation (Minisat) [EenSorensson’03]
m phase-saving (Rsat) [PipatsrisawatDarwiche'07]
m conflict-clause minimization [SorenssonBiere'09]
m SAT vs UNSAT [Oh'15]

+ Pre- and in-processing techniques
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