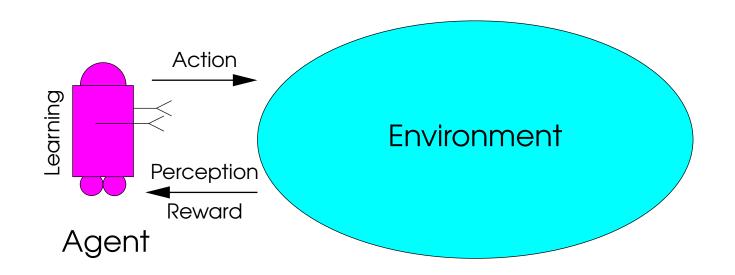
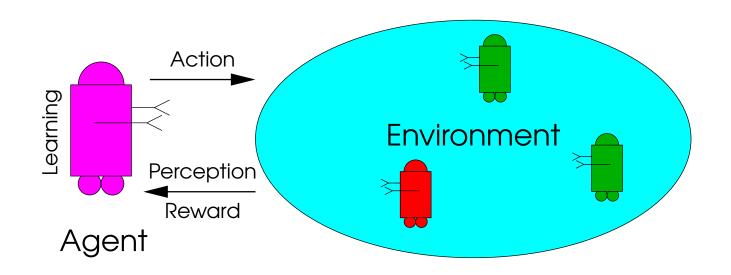
Multiagent Learning in the Presence of Limited Agents

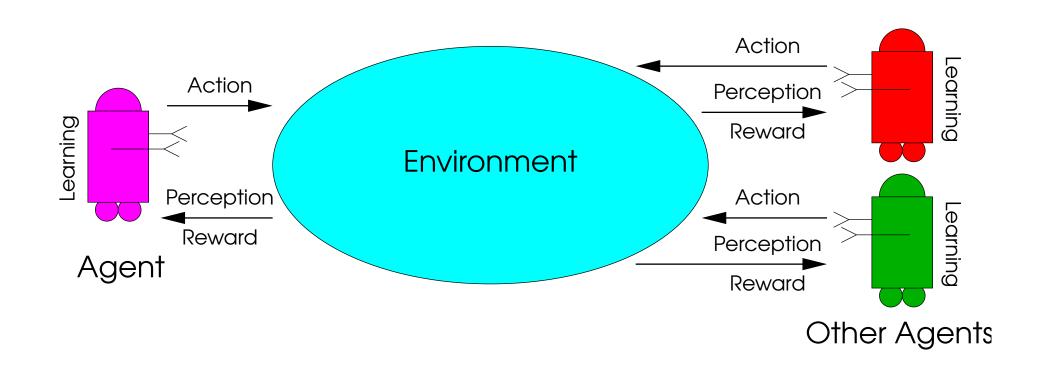
Michael Bowling
Computer Science Department
Carnegie Mellon University

Job Talk

Based on joint work with Manuela Veloso.







Why Limited Agents?

Why Limited Agents?

- Optimal action selection is impractical.
- Agent behavior is at best near optimal.
- "Bounded Rationality"

Examples = Goofspiel

- Players hands and the deck have cards $1 \dots n$.
- Card from the deck is bid on secretly.
- Highest card played gets points equal to the deck card.
- Both players discard the cards bid.
- ullet Repeat for all n deck cards.

Examples = Goofspiel

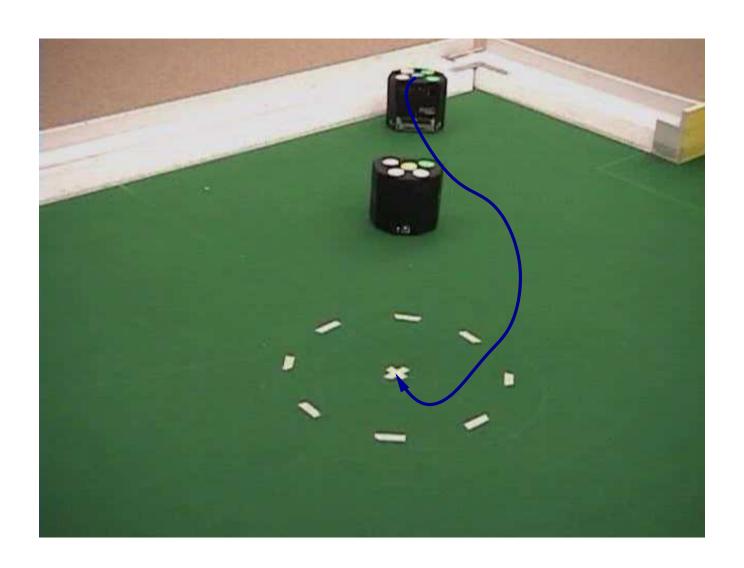
- Players hands and the deck have cards $1 \dots n$.
- Card from the deck is bid on secretly.
- Highest card played gets points equal to the deck card.
- Both players discard the cards bid.
- ullet Repeat for all n deck cards.

n	S	$ S \times A $	Sizeof(π or Q)	Value(det)	Value(random)
4	692	15150	\sim 59KB	-2	-2.5
8	3×10^{6}	1×10^7	\sim 47MB	-20	-10.5
13	3×10^6 1×10^{11}	7×10^{11}	\sim 2.5TB	-65	-28

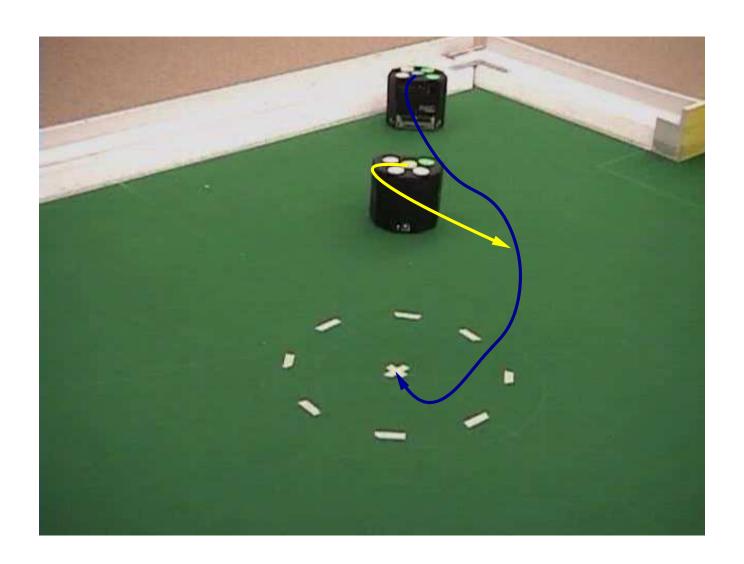
Examples = Robot Soccer

Examples = Keepout

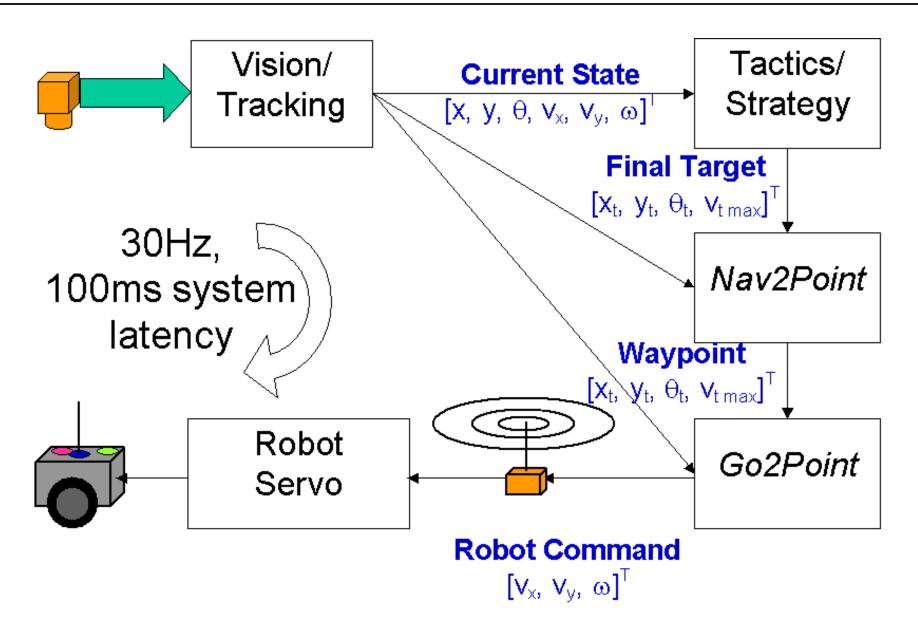
Examples = Keepout



Examples = Keepout



Examples = Keepout = 2



Why is This Hard?

Why is This Hand?

- Multiagent Learning
 - Optimal behavior depends on the other agents.
 - Other agents may be learning as well.
 - Deterministic policies can often be exploited.
- Limitations
 - Agents cannot act optimally.
 - * Intractably large or continuous state spaces.
 - * Situated learning among fixed components.
 - Latency as Partial Observability
 - Applies to "us" as well as "them".

Examples = Other Applications

- Keepout
 - Robot Soccer
 - Search and Rescue
 - Automated Driving
- Goofspiel
 - Auctions with Limited Resources
 - Electronic Commerce
 - Artificial Markets
- Many environments involve goal-directed agents
 - Personal Assistants, Negotiators
 - Computer Games (Agent-Human Interaction)

- Motivation
- Stochastic Games
- WoLF: Rational and Convergent Learning
 - Theoretical results in matrix games
 - Empirical results in "small" stochastic games
- GraWoLF: Learning with Limitations
 - Limitations and Equilibria
 - GraWoLF Algorithm
 - Empirical results of learning in Goofspiel and Keepout
- Summary and Future Work

Stochastic Games

MDPs

- Single Agent
- Multiple State

Matrix Games

- Multiple Agent
- Single State

Stochastic Games

- Multiple Agent
- Multiple State

Matrix Games = Examples

- Matching Pennies
 - Players: Two
 - Actions: Heads (H) or Tails (T)
 - The rules:

Player One wins if actions are the same Player Two wins if actions are different

Matrix Games = Examples

Matching Pennies

- Players: Two

Actions: Heads (H) or Tails (T)

- The rules:

Player One wins if actions are the same Player Two wins if actions are different

$$R_1 = egin{array}{cccc} \mathsf{H} & \mathsf{T} & & \mathsf{H} & \mathsf{T} \\ \mathsf{T} & \left(egin{array}{cccc} 1 & -1 \\ -1 & 1 \end{array}
ight) & R_2 = egin{array}{cccc} \mathsf{H} & \left(egin{array}{cccc} -1 & 1 \\ 1 & -1 \end{array}
ight) \end{array}$$

Matrix Games = Examples = 2

Rock-Paper-Scissors

- Players: Two

Actions: Rock (R), Paper (P), or Scissors (S)

- The rules:

Rock beats Scissors Scissors beats Paper Paper beats Rock

Matrix Games - Equilibria

- No optimal opponent independent strategies.
- Best-responses

The set of all strategies that are optimal given the strategies of the other players.

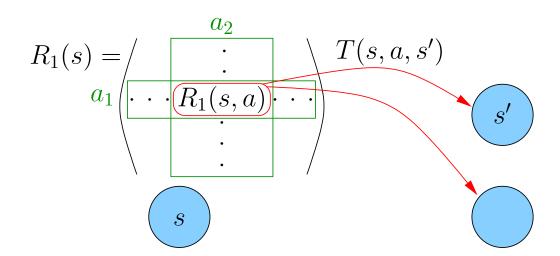
Nash Equilibrium (Nash, 1950)

A strategy for each player, such that each is playing a best-response to the others' strategies. No player wants to deviate.

Stochastic Games

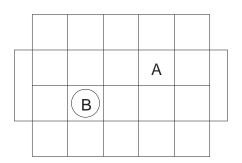
A stochastic game is a tuple $(n, \mathcal{S}, \mathcal{A}_{1...n}, T, R_{1...n})$,

- n is the number of agents,
- S is the set of states,
- ullet \mathcal{A}_i is the set of actions available to agent i,
 - \mathcal{A} is the joint action space $\mathcal{A}_1 \times \ldots \times \mathcal{A}_n$,
- ullet T is the transition function $\mathcal{S} imes \mathcal{A} imes \mathcal{S} o [0,1]$,
- R_i is the reward function for the *i*th agent $S \times A \rightarrow \Re$.



Stochastic Games = Example

(Littman, 1994)



Players: Two

States: Player positions and ball possession (780).

• Actions: N, S, E, W, Hold (5).

• Transitions:

- Simultaneous action selection, random execution.
- Collision could change ball possession.
- Rewards: Ball enters a goal.

Stochastic Games - Equilibria

- Goal is to learn a policy, $\pi: \mathcal{S} \to PD(A_i)$.
- No optimal opponent independent policies.
- Best-responses

The set of all policies that are optimal given the policies of the other players.

Nash Equilibrium (Shapley, 1953; Fink 1964)

A policy for each player, such that each is playing a best-response to the others' policies. No player wants to deviate.

- Motivation
- Stochastic Games
- WoLF: Rational and Convergent Learning
 - Theoretical results in matrix games
 - Empirical results in "small" stochastic games
- GraWoLF: Learning with Limitations
 - Limitations and Equilibria
 - GraWoLF Algorithm
 - Empirical results of learning in Goofspiel and Keepout
- Summary and Future Work

• Rational.

We want to learn best responses, if possible.

- Rational.
 We want to learn best responses, if possible.
- Convergent.
 We want to converge, if possible.
- Convergent in Self-Play.
 Opponents are at least as sophisticated as ourselves.

- Rational.
 We want to learn best responses, if possible.
- Convergent.
 We want to converge, if possible.
- Convergent in Self-Play.
 Opponents are at least as sophisticated as ourselves.

If all players are rational and their policies converge, it must be to an equilibrium.

How do previous algorithms do?

- How do previous algorithms do?
 - Single-Agent Learners (e.g., Q-learning, $TD(\lambda)$)

- How do previous algorithms do?
 - Single-Agent Learners (e.g., Q-learning, TD(λ))
 Rational
 Not Convergent

- How do previous algorithms do?
 - Single-Agent Learners (e.g., Q-learning, TD(λ))
 Rational
 Not Convergent
 - Best-Response Learners (e.g., JALs, Fictitious-Play)

- How do previous algorithms do?
 - Single-Agent Learners (e.g., Q-learning, TD(λ))
 Rational
 Not Convergent
 - Best-Response Learners (e.g., JALs, Fictitious-Play)
 Rational
 Not Convergent

Learning Properties = 2

- How do previous algorithms do?
 - Single-Agent Learners (e.g., Q-learning, TD(λ))
 Rational
 Not Convergent
 - Best-Response Learners (e.g., JALs, Fictitious-Play)
 Rational
 Not Convergent
 - Equilibrium Learners (e.g., Minimax-Q, Nash-Q, CE-Q)

Learning Properties = 2

- How do previous algorithms do?
 - Single-Agent Learners (e.g., Q-learning, TD(λ))
 Rational
 Not Convergent
 - Best-Response Learners (e.g., JALs, Fictitious-Play)
 Rational
 Not Convergent
 - Equilibrium Learners (e.g., Minimax-Q, Nash-Q, CE-Q)
 Not Rational Convergent

 Goal: We want the rationality of best-response learners and the convergence of equilibrium learners.

Wolf: Win or Learn Fast

- Intuition: Don't want to "overfit" to a changing policy.
- Intuition: Learning should be cautious if doing too well.

Wolf: Win or Learn Fast

- Intuition: Don't want to "overfit" to a changing policy.
- Intuition: Learning should be cautious if doing too well.
- Idea #1: Variable Learning Rate.
 - Change the speed of learning over time.
- Idea #2: WoLF "Win or Learn Fast".
 - If we're winning, we learn cautiously.
 - If we're losing, we learn quickly.
 - Winning == Doing better than playing the equilibrium.
- Can make rational, non-convergent algorithms converge!
 - Theoretical Results.
 - Empirical Results.

Theoretical Results

- Learning in two-player, two-action matrix games.
- Gradient ascent (Singh, Kearns, & Mansour, 2000)
- Modify with WoLF.

Gradient Ascent

$$R = \begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix} \quad C = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}$$

Gradient Ascent

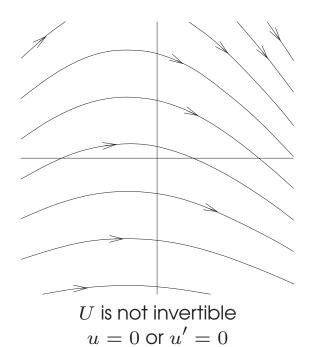
$$R = \begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix} \quad C = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}$$

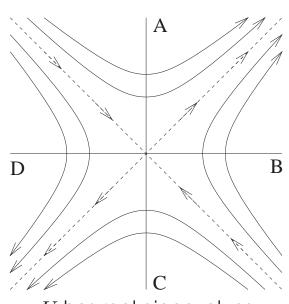
$$\alpha_{k+1} = \alpha_k + \eta \frac{\partial V_r(\alpha_k, \beta_k)}{\partial \alpha_k}$$

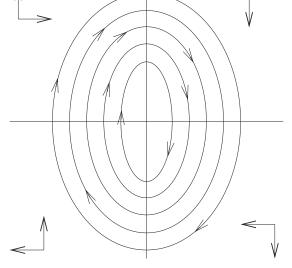
$$\beta_{k+1} = \beta_k + \eta \frac{\partial V_r(\alpha_k, \beta_k)}{\partial \beta_k}$$

Gradient Ascent = 3

$$\begin{bmatrix} \frac{\partial \alpha}{\partial t} \\ \frac{\partial \beta}{\partial t} \end{bmatrix} = \begin{bmatrix} 0 & u \\ u' & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} + \begin{bmatrix} (r_{12} - r_{22}) \\ (c_{21} - c_{22}) \end{bmatrix}.$$







U has real eigenvalues uu' < 0

U has imaginary eigenvalues uu' > 0

$$\alpha_{k+1} = \alpha_k + \eta \ell_k^r \frac{\partial V_r(\alpha_k, \beta_k)}{\partial \alpha}$$

$$\beta_{k+1} = \beta_k + \eta \ell_k^c \frac{\partial V_r(\alpha_k, \beta_k)}{\partial \beta}$$

$$\ell_k^{r,c} \in [\ell_{\min}, \ell_{\max}] > 0$$

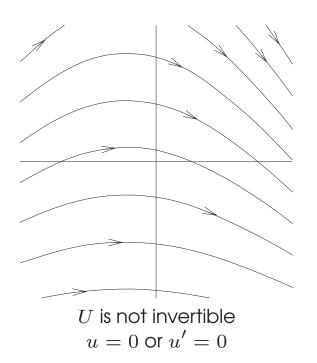
$$\alpha_{k+1} = \alpha_k + \eta \ell_k^r \frac{\partial V_r(\alpha_k, \beta_k)}{\partial \alpha}$$

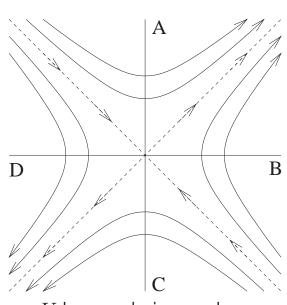
$$\beta_{k+1} = \beta_k + \eta \ell_k^c \frac{\partial V_r(\alpha_k, \beta_k)}{\partial \beta}$$

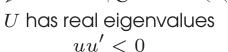
WoLF = Win or Learn Fast!

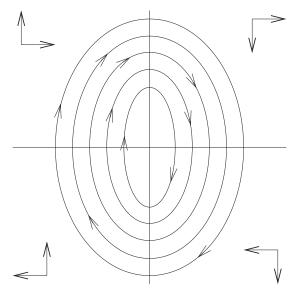
$$\begin{split} \ell_k^r &= \left\{ \begin{array}{ll} \ell_{\min} & \text{WINNING} & \text{if } V_r(\alpha_k,\beta_k) > V_r(\alpha^*,\beta_k) \\ \ell_{\max} & \text{LOSING} & \text{otherwise} \end{array} \right. \\ \ell_k^c &= \left\{ \begin{array}{ll} \ell_{\min} & \text{WINNING} & \text{if } V_c(\alpha_k,\beta_k) > V_c(\alpha_k,\beta^*) \\ \ell_{\max} & \text{LOSING} & \text{otherwise} \end{array} \right. \end{split}$$

$$\begin{bmatrix} \frac{\partial \alpha}{\partial t} \\ \frac{\partial \beta}{\partial t} \end{bmatrix} = \begin{bmatrix} 0 & u\ell_r(t) \\ u'\ell_c(t) & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} + \begin{bmatrix} \ell_r(t)(r_{12} - r_{22}) \\ \ell_c(t)(c_{21} - c_{22}) \end{bmatrix}.$$





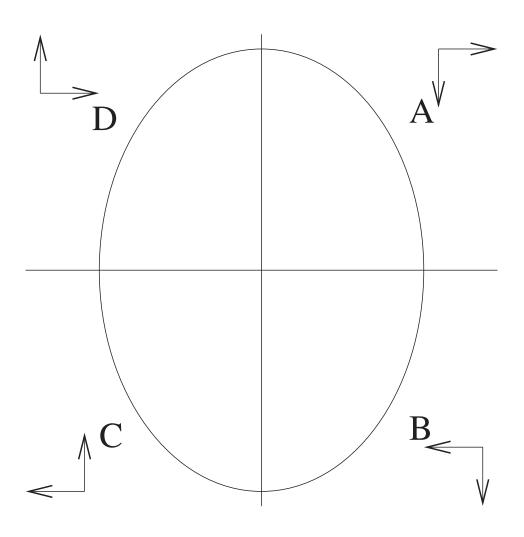


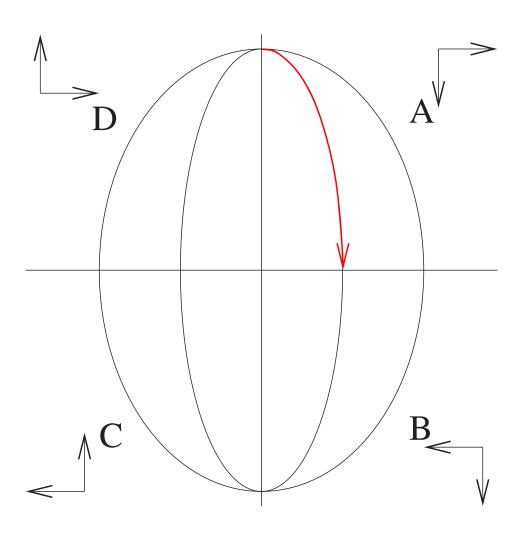


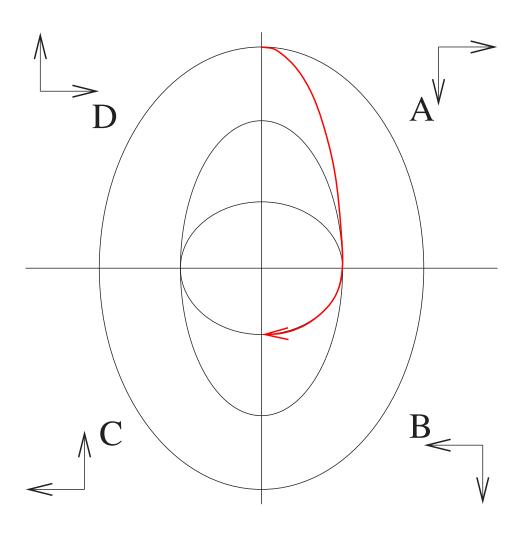
U has imaginary eigenvalues uu'>0

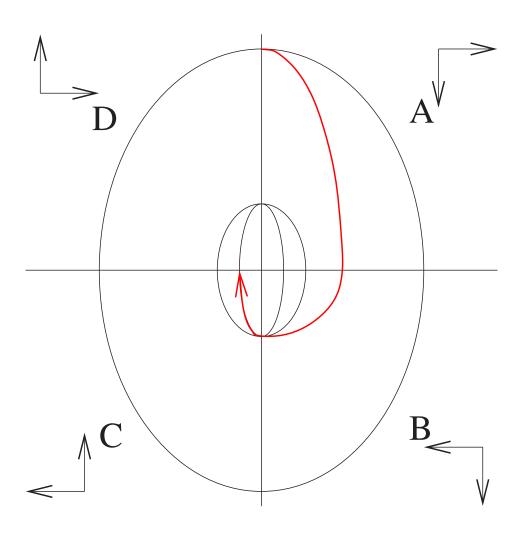
Lemma. A player's strategy is moving away from the equilibrium *if and only if* they are "winning".

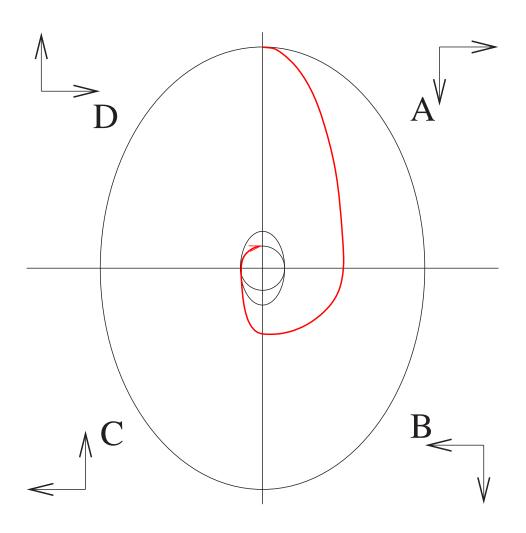
Le.,
$$V_r(\alpha,\beta) - V_r(\alpha^*,\beta) > 0 \iff (\alpha - \alpha^*) \frac{\partial V_r(\alpha,\beta)}{\partial \alpha} > 0$$
.





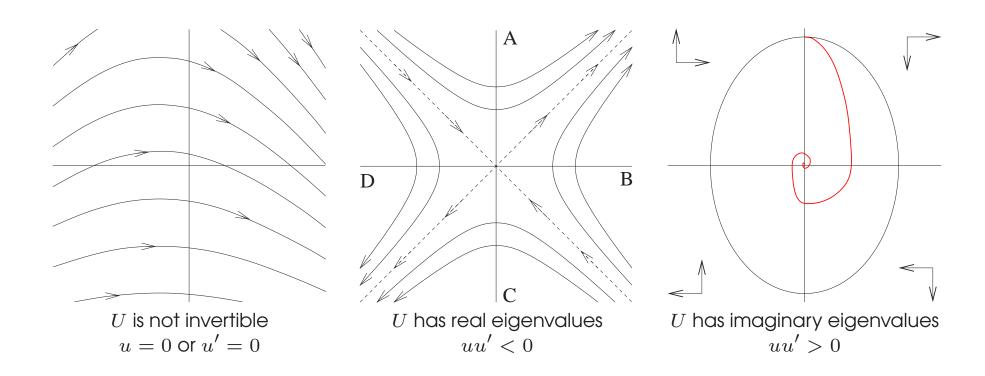






Wolf Gradient Ascent - Summary

Theorem 1. If both players follow WoLF gradient ascent then their strategies will converge to a Nash equilibrium.



Empirical Results

Policy Hill Climbing

- Q-Learning, but maintain a separate policy.
- ullet Step policy towards maximizing Q-values.

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \left(r + \gamma \max_{a'} Q(s',a')\right)$$

$$\pi(s,a) \leftarrow \pi(s,a) + \begin{cases} \delta & \text{if } a = \operatorname{argmax}_{a'} Q(s,a') \\ \frac{-\delta}{|A_i|-1} & \text{Otherwise} \end{cases}$$

Rational, but not Convergent.

Wolf Policy Hill-Climbing

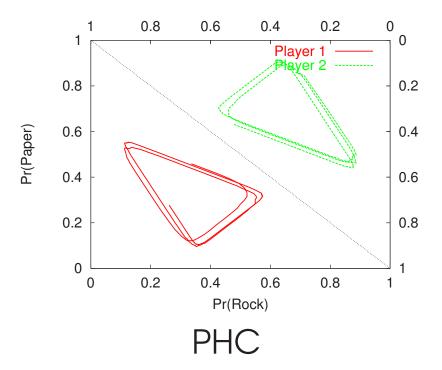
- ullet Adjust δ based on winning and losing.
- Compare current policy to the average policy while learning.

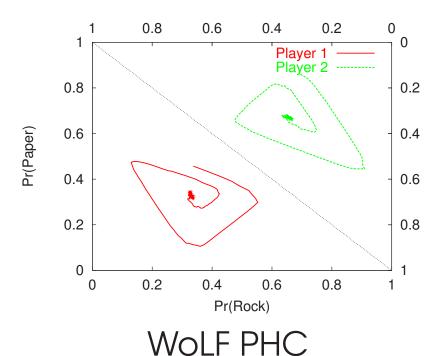
$$\delta = \begin{cases} \delta_w & \text{if } \sum_{a'} \pi(s,a') Q(s,a') > \sum_{a'} \bar{\pi}(s,a') Q(s,a') \\ \delta_l & \text{otherwise} \end{cases}$$

Makes PHC converge in practice!

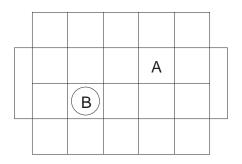
Results = Rock=Paper=Scissors

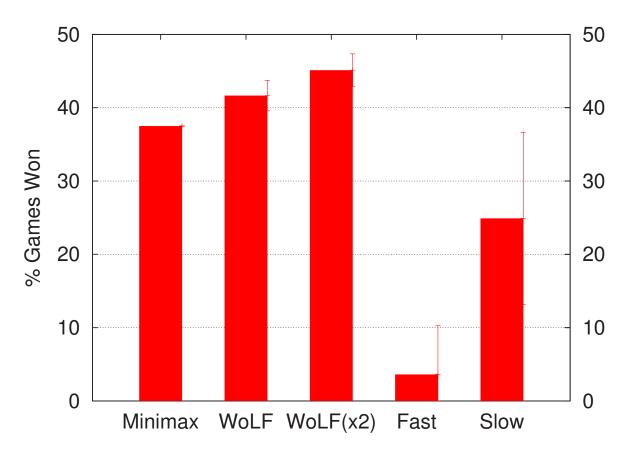
$$R_1 = \begin{array}{ccc} & & & & & & \\ R & & P & & S \\ R_1 = & P & \begin{pmatrix} & 0 & -1 & & 1 \\ & 1 & & 0 & & -1 \\ & S & & & -1 & & 1 & & 0 \end{array} \right)$$





Results = Soccer





- Motivation
- Stochastic Games
- WoLF: Rational and Convergent Learning
 - Theoretical results in matrix games
 - Empirical results in "small" stochastic games
- GraWoLF: Learning with Limitations
 - Limitations and Equilibria
 - GraWoLF Algorithm
 - Empirical results of learning in Goofspiel and Keepout
- Summary and Future Work

Limitations and Equilibria

- Limitations may restrict an agent from playing the equilibrium.
- Restricted equilibria may exist. (Bowling & Veloso, 2002)
 - Guaranteed only under stringent assumptions.
 - Restricted equilibria can be learned by WoLF-PHC.
- In general, limitations do not preserve equilibria.
 - Can agents still learn?
 - How do we evaluate learning agents?

- Intuition: Use parameterized policy gradient techniques.
- Intuition: Combine with WoLF.

- Intuition: Use parameterized policy gradient techniques.
- Intuition: Combine with WoLF.
- Idea #1: Policy Gradient Ascent

(Sutton et al., 2000)

$$\theta \leftarrow \theta + \delta \frac{\partial V^{\pi_{\theta}}}{\partial \theta}$$

$$\pi_{\theta}(s, a) = \frac{e^{\phi_{sa} \cdot \theta}}{\sum_{b \in \mathcal{A}_i} e^{\phi_{sb} \cdot \theta}}$$

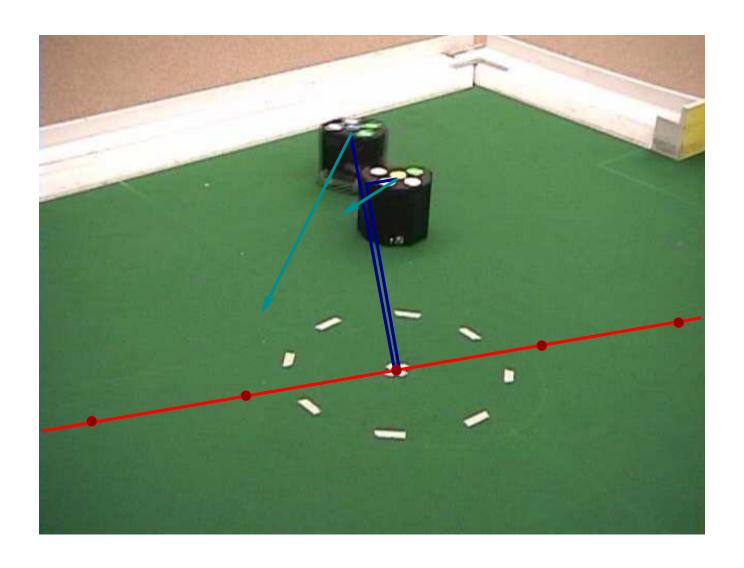
$$\theta \leftarrow \theta + \delta \sum_{a} \phi_{sa} \pi_{\theta}(s, a) \left(Q^{\pi}(s, a) - V^{\pi}(s) \right)$$

Idea #2: WoLF

$$\delta = \left\{ \begin{array}{ll} \delta_w & \text{if } V^{\pi_\theta} > V^{\pi_{\bar{\theta}}} \\ \delta_l & \text{otherwise} \end{array} \right.$$

where $\delta_w < \delta_l$

Applying GraWoLF - Keepout



Applying GraWoLF - Goofspiel

```
My Hand 1 3 4 5 6 8 11 13

Opp Hand 4 5 8 9 10 11 12 13

Deck 1 2 3 5 9 10 11 12
```


Applying GraWoLF - Goofspiel

```
My Hand
           1 3 4 5 6
                                  13
Opp Hand
           4 5 8
                   9
                      10
                              12
                                  13
                 3
                   5
                       9
                          10
                                  12
Deck
Quartiles
           X
                       X
                          X
                                  X
                 X
```

 $\langle 1, 4, 6, 8, 13 \rangle$, $\langle 4, 8, 10, 11, 13 \rangle$, $\langle 1, 3, 9, 10, 12 \rangle$, $\langle 1, 3, 9, 10, 12 \rangle$,

Card 11 Action 3

Applying GraWoLF - Goofspiel

```
My Hand
           1 3 4 5
                                  13
Opp Hand
           4 5 8
                    9
                       10
                                  13
                 3
                    5
                       9
                           10
                                  12
Deck
Quartiles
           X
                 X
                       X
                           X
                                   X
Card
```

$$\langle 1, 4, 6, 8, 13 \rangle$$
, $\langle 4, 8, 10, 11, 13 \rangle$, $\langle 1, 3, 9, 10, 12 \rangle$, $\langle 11, 3 \rangle$ (Tile Coding)
$$\phi_{eg} \in \{0, 1\}^{10^6}$$

Action

Multiagent Learning Evaluation

This is an important part of the ongoing research.

Multiagent Learning Evaluation

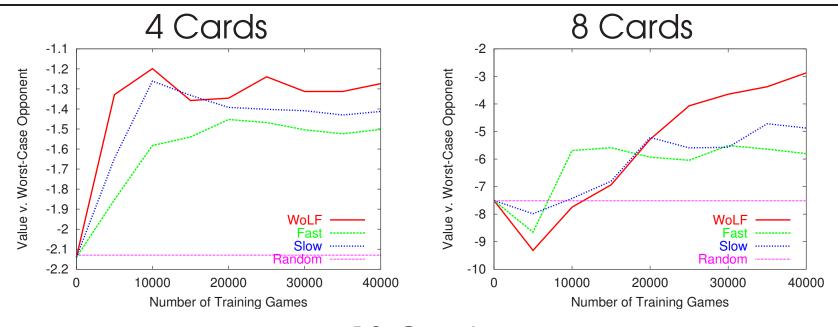
- This is an important part of the ongoing research.
- No optimal policy. No equilibrium for convergence.

Multiagent Learning Evaluation

- This is an important part of the ongoing research.
- No optimal policy. No equilibrium for convergence.
- Measure the policy's worst-case value.
 - For a given policy, train a "challenger".
 - Measures distance to the equilibrium.
 - Measures robustness of the learned policy.

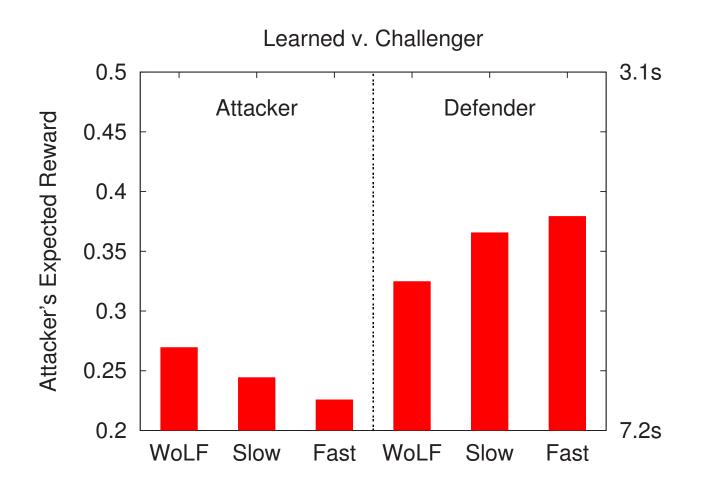
Goofspiel

Goofspiel



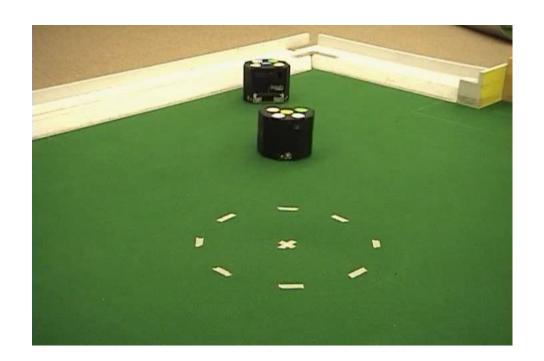
Keepout = Simulation

4000 Trials of Simultaneous Learning in Simulation.



Keepout = Robots

- 2000 Trials of Simultaneous Learning in Simulation.
- 2000 Trials of Simultaneous Learning on Robots.



Reepout = Robots = Versus Random

- 2000 Trials of Simultaneous Learning in Simulation.
- 2000 Trials of Simultaneous Learning on Robots.
- 500 Trials of Evaluation on Robots



Summary

- Multiagent learning is important and challenging.
- WoLF makes rational learners converge.
 - Theoretical results for a class of matrix games.
 - Empirical results on "small" stochastic games.
 - WoLF can also learn restricted equilibria.
- GraWoLF is a scalable multiagent learning algorithm.
 - Combines approximation and WoLF.
 - Empirical results in Goofspiel and Keepout.

Future Work

- Further Theoretical Analysis of WoLF
 - Wolf dynamics outside matrix games.
 - How does WoLF relate to regret-minimizing algorithms.
- Asymmetric Learning
 - Can we systematically exploit "weaker" algorithms?
 - Can we guarantee an algorithm cannot be exploited?
 - Human–Agent Interaction.
- Multiagent Learning Evaluation
 - Learn general policies for a range of opponents, or
 - Learn policies specific to a particular opponent.
 - Reusing data between different opponents.

Questions

Three-Player Matching Pennies

 Three players. Each simultaneously picks an action: Heads, or Tails,

The rules:

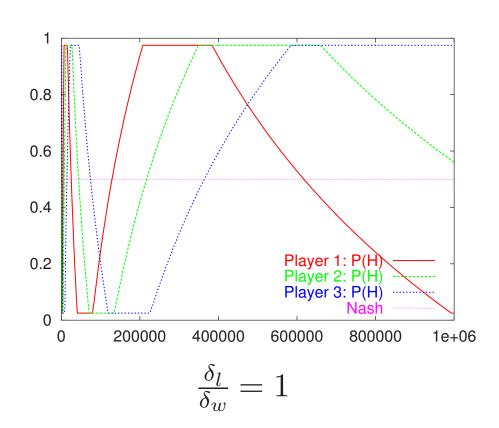
Player One Player Three

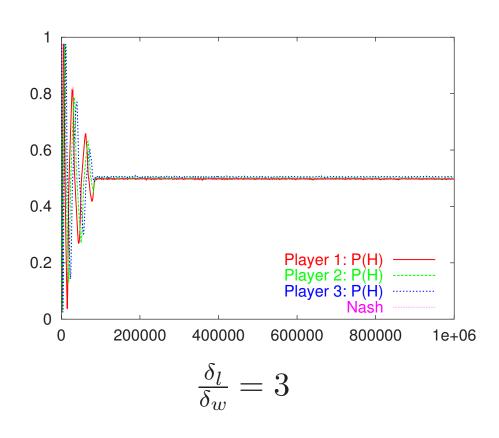
wins by matching Player Two wins by matching wins by *not* matching Player Two, Player Three, Player One.

Results = Three Player Matching Pennies

	Н	T
Н	+1,+1,-1	-1,-1,-1
		+1,-1,+1

	Н	T
Н	+1,-1,+1	-1,+1,+1
T	-1,-1,-1	+1,+1,-1

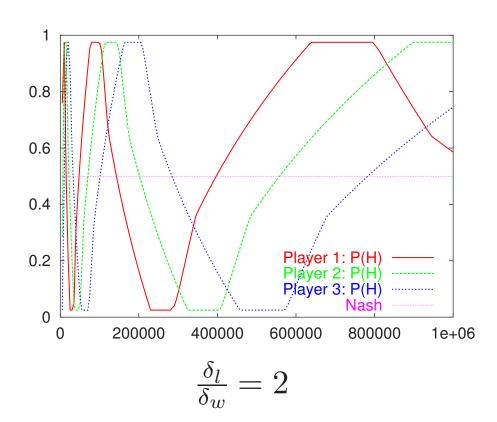


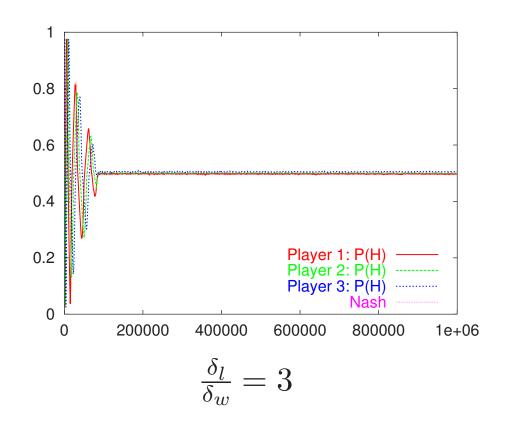


Results = Three Player Matching Pennies = 2

	Н	T
Н	+1,+1,-1	-1,-1,-1
Τ	-1,+1,+1	+1,-1,+1

	Н	T
Н	+1,-1,+1	-1,+1,+1
Τ	-1,-1,-1	+1,+1,-1





Limitations

Anything that prevents an agent from acting optimally.

Broken Actuators Reward Shaping

Poor Control Abstraction/Subproblems

Hardwired Behavior Parameterized Policy

State Aliasing Exploration

Poor Communication Bounded Memory

Latency Function Approximation

Limitations restrict behavior.

Limitations Restrict Behavior

ullet Restricted Policy Space — $\overline{\Pi}_i \subseteq \Pi_i$

Any subset of stochastic policies.

Limitations Restrict Behavior

- ullet Restricted Policy Space $\overline{\Pi}_i \subseteq \Pi_i$
 - Any subset of stochastic policies.
- ullet Restricted Best-Response $\overline{\mathrm{BR}}_i(\pi_{-i})$

The set of all policies from $\overline{\Pi}_i$ that are optimal given the policies of the other players.

• Restricted Equilibrium — $\pi_{i=1...n}$

$$\pi_i \in \overline{\mathrm{BR}}_i(\pi_{-i})$$

A strategy for each player, where no player *can* and *wants* to deviate given the other players continue to play the equilibrium.

No.

Rock-Paper-Scissors with only deterministic policies.

No.

Rock-Paper-Scissors with only deterministic policies.

• Yes.

If π^* is a Nash equilibrium and $\forall i \, \pi_i^* \in \overline{\Pi}_i$ then π^* is a restricted equilibrium.

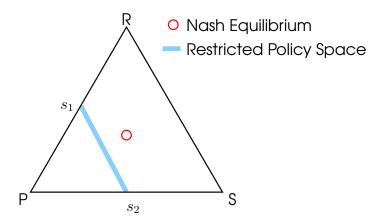
• No.

Rock-Paper-Scissors with only deterministic policies.

• Yes.

If π^* is a Nash equilibrium and $\forall i \, \pi_i^* \in \overline{\Pi}_i$ then π^* is a restricted equilibrium.

Not everything is so trivial.

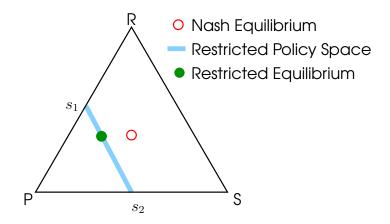


Explicit Game

Payoffs

$$\left(\begin{array}{cccc}
0 & -1 & 1 \\
1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right)$$

Equilibrium
$$\langle \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \rangle, \langle \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \rangle$$



Explicit Game

Implicit Game

Payoffs

$$\begin{pmatrix}
0 & -1 & 1 \\
1 & 0 & -1 \\
-1 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
-\frac{1}{2} & 0 \\
\frac{1}{2} & -\frac{1}{2} \\
0 & \frac{1}{2}
\end{pmatrix}$$

Equilibrium

$$\left\langle \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right\rangle, \left\langle \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right\rangle$$

$$\langle 0, \frac{1}{3}, \frac{2}{3} \rangle, \langle \frac{2}{3}, \frac{1}{3} \rangle$$

Restricted Equilibrium

$$\langle 0, \frac{1}{3}, \frac{2}{3} \rangle, \langle \frac{1}{3}, \frac{1}{2}, \frac{1}{6} \rangle$$

ullet In matrix games, if $\overline{\Pi}_i$ is convex, then there exists a restricted equilibrium..

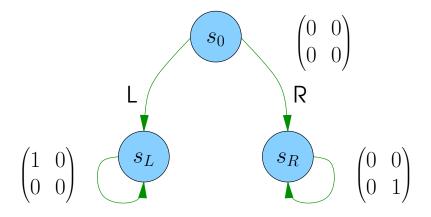
Proof. Uses Rosen's theorem for concave games.

 \bullet In matrix games, if $\overline{\Pi}_i$ is convex, then there exists a restricted equilibrium..

Proof. Uses Rosen's theorem for concave games.

• This is not generally true for stochastic games.

Two-player, zero-sum stochastic game¹



- Players restricted to policies that play the same distribution over actions in all states.
- No restricted equilibria!

¹This counterexample is brought to you by Martin Zinkevich.

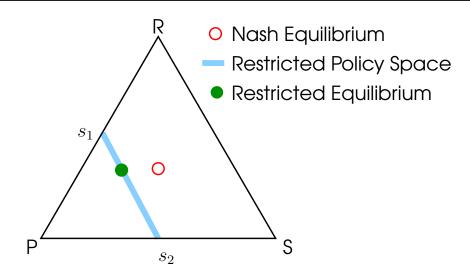
- ullet In matrix games, if $\overline{\Pi}_i$ is convex, then . . .
- ullet If $\overline{\Pi}_i$ is statewise convex, then ...
- ullet In no-control stochastic games, if convex $\overline{\Pi}_i$, then . . .
- ullet In single-controller stochastic games, if $\overline{\Pi}_1$ is statewise convex, and $\overline{\Pi}_{i\neq 1}$ is convex, then . . .
- In team games ...

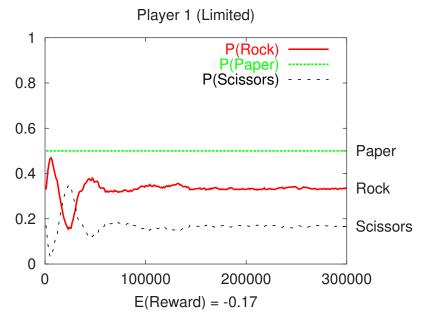
... there exists a restricted equilibrium.

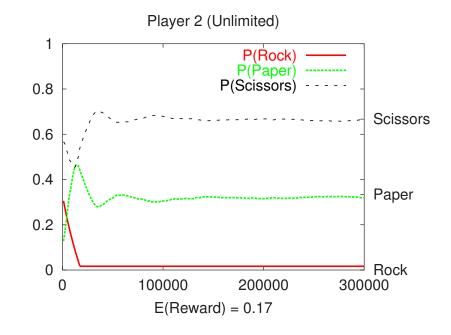
Proofs. Uses Kakutani's fixed point theorem after showing

$$\forall \pi_{-i} \quad \overline{\mathrm{BR}}_i(\pi_{-i}) \text{ is convex.}$$

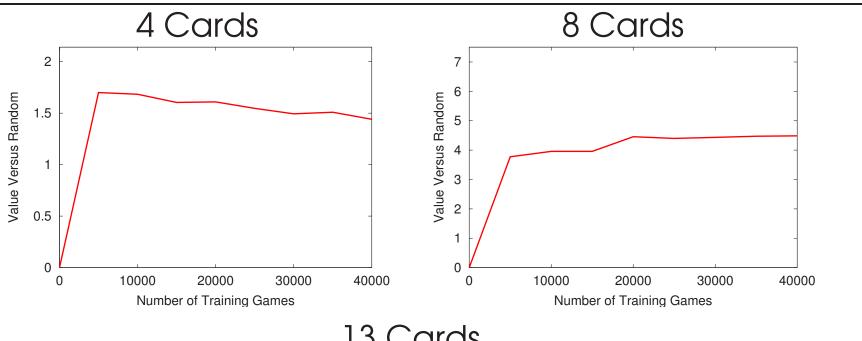
Limitations and Learning

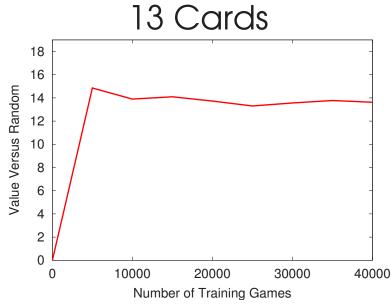






Goofspiel = Versus Random

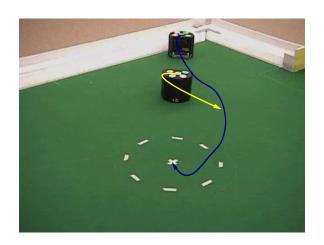




Reepout = simulation = Versus Random

The Key ...

- R Random policy
- LL Policy learned against learning opponent
- LR Policy learned against random opponent



Reepout = simulation = Versus Random

