

Rational Learning of Mixed Equilibria in Stochastic Games*

Michael Bowling

UAI Workshop: Beyond MDPs
June 30, 2000

*Joint work with Manuela Veloso

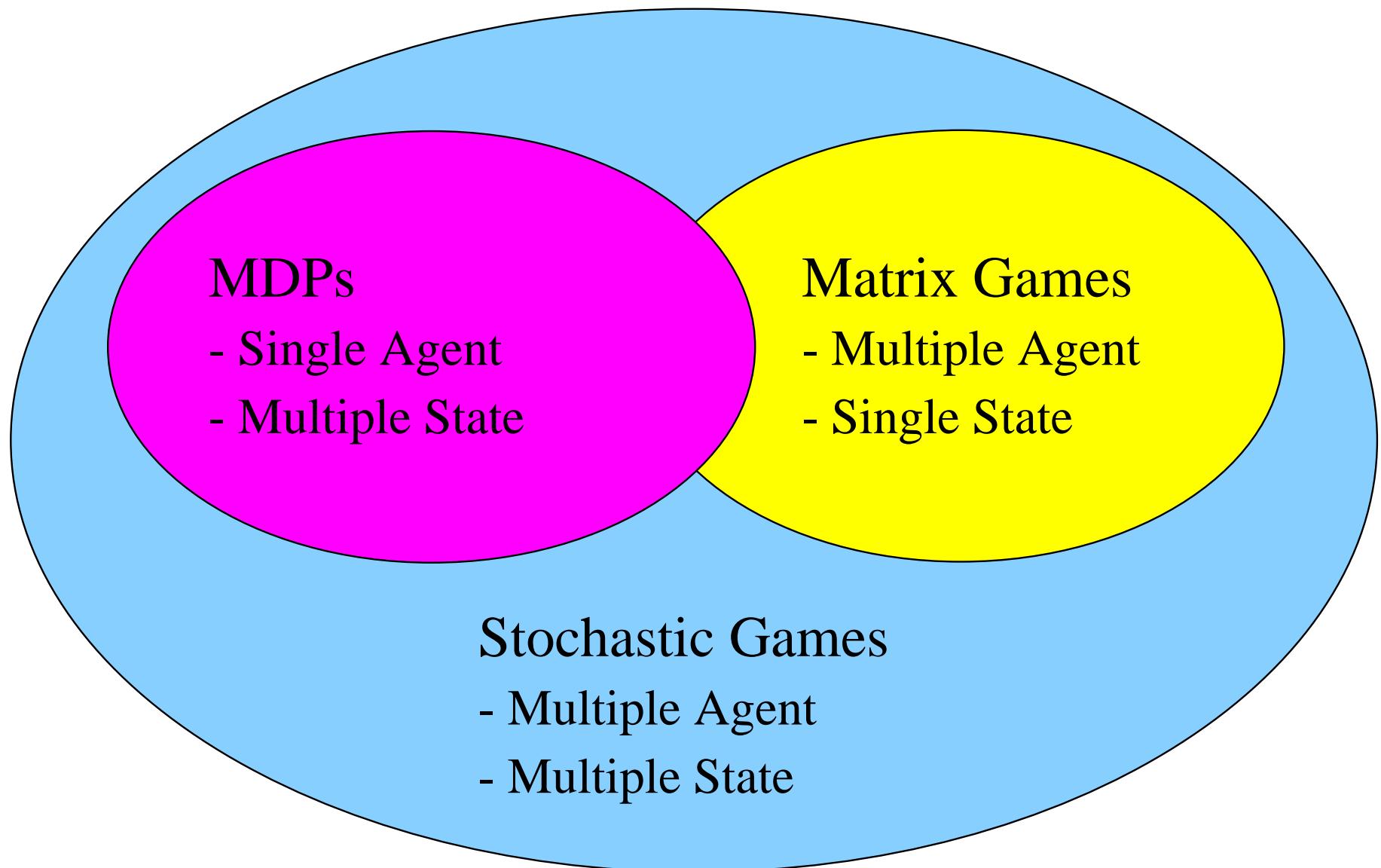
Overview

- Stochastic Game Framework
- Existing Techniques ...

... and Their Shortcomings

- A New Algorithm
- Experimental Results

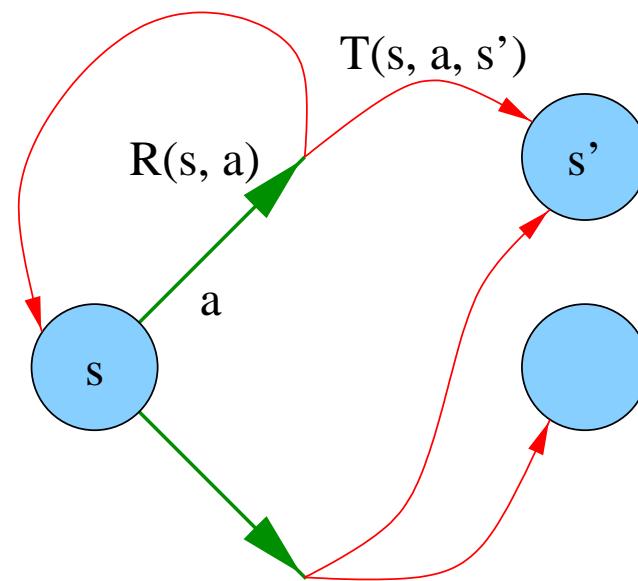
Stochastic Game Framework



Markov Decision Processes

A Markov decision process (MDP) is a tuple, $(\mathcal{S}, \mathcal{A}, T, R)$, where,

- \mathcal{S} is the set of states,
- \mathcal{A} is the set of actions,
- T is a transition function $\mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow [0, 1]$,
- R is a reward function $\mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$.



Matrix Games

A *matrix game* is a tuple $(n, \mathcal{A}_{1\dots n}, R_{1\dots n})$, where,

- n is the number of players,
- \mathcal{A}_i is the set of actions available to player i
 - \mathcal{A} is the joint action space $\mathcal{A}_1 \times \dots \times \mathcal{A}_n$,
- R_i is player i 's payoff function $\mathcal{A} \rightarrow \mathbb{R}$.

$$R_1 = \left(\begin{array}{c|c|c|c|c} & & a_2 & & \\ & & \vdots & & \\ & & \vdots & & \\ \hline a_1 & \dots & R_1(a) & \dots & \dots \\ & & \vdots & & \vdots \\ & & \vdots & & \vdots \end{array} \right)$$

$$R_2 = \left(\begin{array}{c|c|c|c|c} & & a_2 & & \\ & & \vdots & & \\ & & \vdots & & \\ \hline a_1 & \dots & R_2(a) & \dots & \dots \\ & & \vdots & & \vdots \\ & & \vdots & & \vdots \end{array} \right)$$

Matrix Games – Example

Rock-Paper-Scissors

- Two players. Each simultaneously picks an action:
Rock, Paper, or Scissors.

- The rules:

<i>Rock</i>	beats	<i>Scissors</i>
<i>Scissors</i>	beats	<i>Paper</i>
<i>Paper</i>	beats	<i>Rock</i>

- Represent game as two matrices, one for each player:

$$R_1 = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}$$

$$R_2 = -R_1 = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$

Matrix Games – Best Response

- No optimal opponent independent strategies.
- Mixed (i.e. stochastic) strategies does not help.
- Opponent dependent strategies,

Definition 1 *For a game, define the best-response function for player i , $\text{BR}_i(\sigma_{-i})$, to be the set of all, possibly mixed, strategies that are optimal given the other player(s) play the possibly mixed joint strategy σ_{-i} .*

Matrix Games – Equilibria

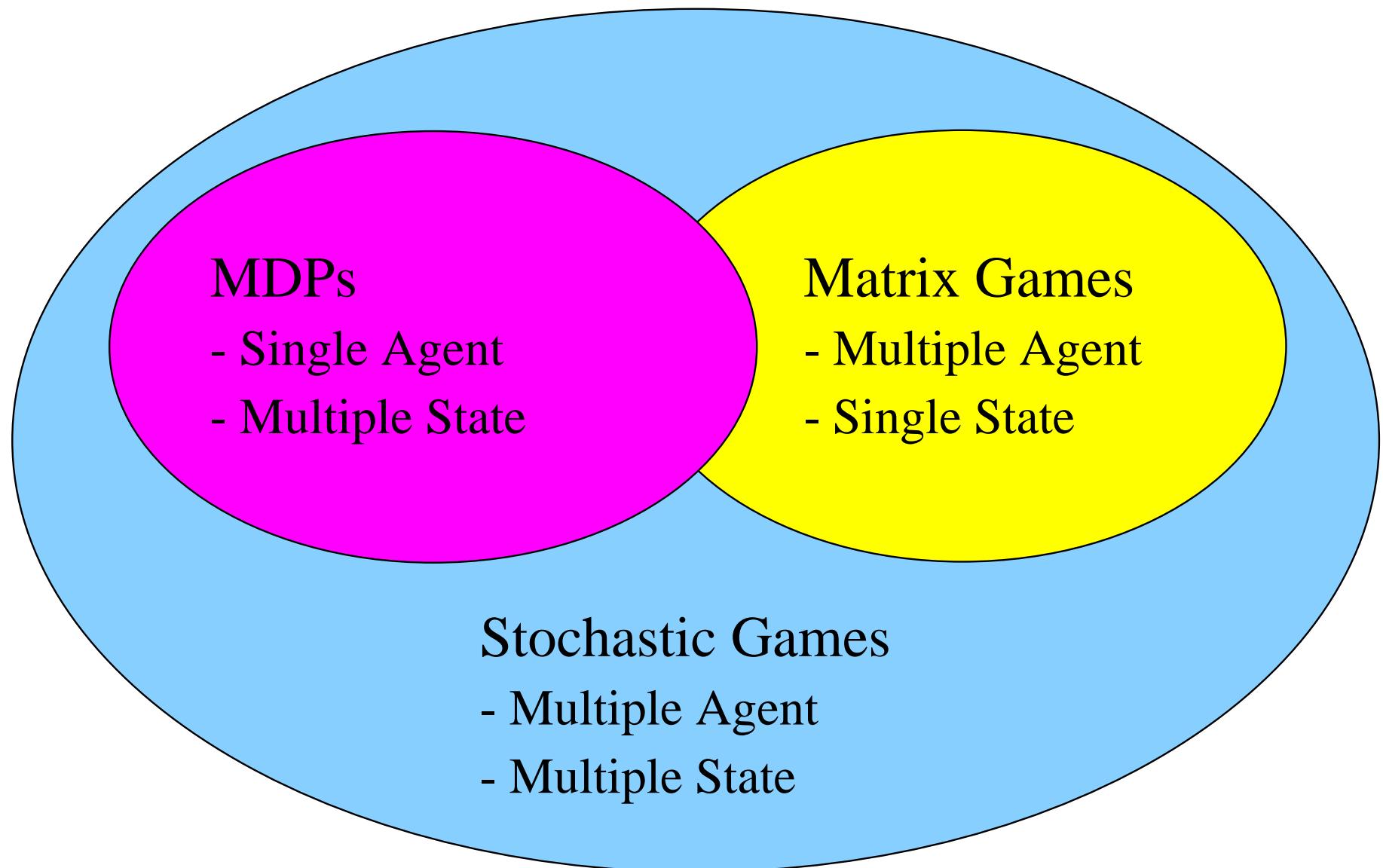
- Best-response equilibrium [Nash, 1950],

Definition 2 A Nash equilibrium *is a collection of strategies (possibly mixed) for all players, σ_i , with,*

$$\sigma_i \in \text{BR}_i(\sigma_{-i}).$$

- An equilibrium in *Rock-Paper-Scissors* consists of both players randomizing evenly among all its actions.

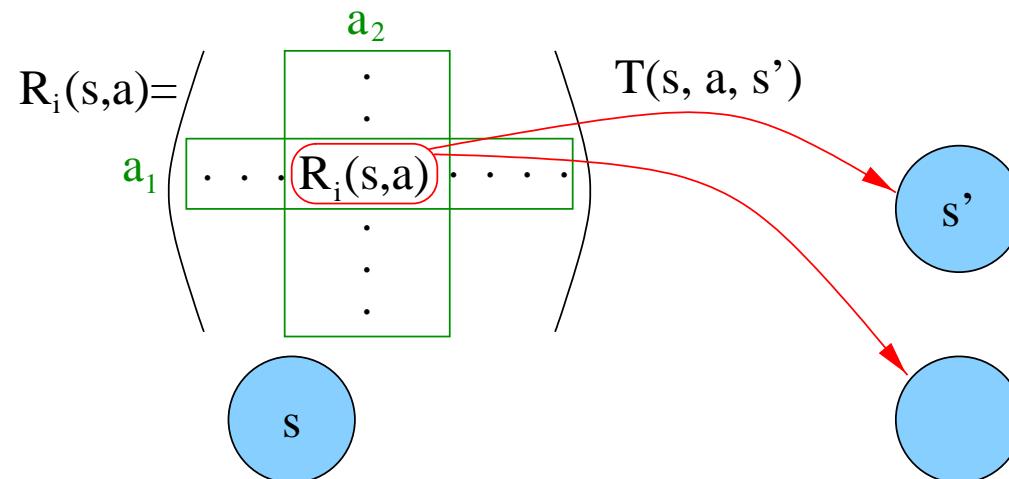
Stochastic Game Framework



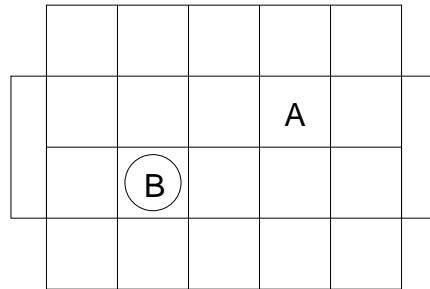
Stochastic Games

A *stochastic game* is a tuple $(n, \mathcal{S}, \mathcal{A}_1 \dots n, T, R_1 \dots n)$, where,

- n is the number of agents,
- \mathcal{S} is the set of states,
- \mathcal{A}_i is the set of actions available to agent i ,
 - \mathcal{A} is the joint action space $\mathcal{A}_1 \times \dots \times \mathcal{A}_n$,
- T is the transition function $\mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow [0, 1]$,
- R_i is the reward function for the i th agent $\mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$.



Stochastic Games – Example



- Players: Two
- States: Players' positions and possession of the ball (780).
- Actions: N, S, E, W, Hold (5).
- Transitions:
 - Actions are selected simultaneously but executed in a random order.
 - If a player moves to another player's square, the stationary play gets possession of the ball.
- Rewards: Reward is only received when the ball is moved into one of the goals.

[Littman, 1994]

Solving Stochastic Games

$$\text{MG} + \text{MDP} = \text{Game Theory} \quad \text{RL}$$

LP	TD(0)	Shapley	MiniMax-Q
LP	TD(1)	Pollatschek and Avi-Itzhak	–
LP	TD(λ)	Van der Wal	–
QP	TD(0)	–	Hu and Wellman
FP	TD(0)	Fictitious Play	JALs / Opponent-Modeling

LP: linear programming

QP: quadratic programming

FP: fictitious play

Minimax-Q

1. Initialize $Q(s \in \mathcal{S}, a \in \mathcal{A})$ arbitrarily.
2. Repeat,
 - (a) From state s select action a_i that solves the matrix game $[Q(s, a)_{a \in \mathcal{A}}]$, with some exploration.
 - (b) Observing joint-action a , reward r , and next state s' ,

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha(r + \gamma V(s')),$$

where,

$$V(s) = \text{Value}([Q(s, a)_{a \in \mathcal{A}}]).$$

[Littman, 1994]

- In zero-sum games, learns equilibrium almost independent of the actions selected by the opponent.

Joint-Action Learners

1. Initialize $Q(s \in \mathcal{S}, a \in \mathcal{A})$ arbitrarily.
2. Repeat,
 - (a) From state s select action a_i that maximizes,

$$\sum_{a_{-i}} \frac{C(s, a_{-i})}{n(s)} Q(s, \langle a_i, a_{-i} \rangle)$$

- (b) Observing other agents' actions a_{-i} , reward r , and next state s' ,

$$\begin{aligned} C(s, a_{-i}) &\leftarrow C(s, a_{-i}) + 1 \\ n(s) &\leftarrow n(s) + 1 \\ Q(s, \langle a_i, a_{-i} \rangle) &\leftarrow (1 - \alpha)Q(s, \langle a_i, a_{-i} \rangle) + \alpha(r + \gamma V(s')) \end{aligned}$$

where,

$$V(s) = \max_{a_i} \sum_{a_{-i}} \frac{C(s, a_{-i})}{n(s)} Q(s, \langle a_i, a_{-i} \rangle).$$

[Claus & Boutilier, 1998; Uther & Veloso, 1997]

Joint-Action Learners

- Finds equilibrium (when playing another JAL) in:
 - Fully collaborative games [Claus & Boutilier, 1998],
 - Iterated dominance solvable games [Fudenberg & Levine, 1998],
 - Fully competitive games [Uther & Veloso, 1997].
- Plays deterministically (i.e. cannot play mixed policies).

Problems with Existing Algorithms

- Minimax-Q
 - Converges to an equilibrium, independent of the opponent's actions.
 - Will not converge to a best-response unless the opponent also plays the equilibrium solution.
 - * Consider a player that almost always plays *Rock*.
- Q-Learning, JALs, etc.
 - Always seeks to maximize reward.
 - Does not converge to stationary policies if the opponent is also learning.
 - * Cannot play mixed strategies.

Properties

Property 1 (Rational) *If the other players' strategies converge to stationary strategies then the player will converge to a strategy that is optimal given their strategies.*

Property 2 (Convergent) *Given that the other players are following behaviors from a class of behaviors, \mathcal{B} , all the players will converge to stationary strategies.*

Algorithm	Rational	Convergent
Minimax-Q	No	Yes
JAL	Yes	No

- If all players are rational and they converge to stationary strategies, they must have converged to an equilibrium.
- If all players are both rational and convergent, then they are guaranteed to converge to an equilibrium.

A New Algorithm – Policy Hill-Climbing

1. Let α and δ be learning rates. Initialize,

$$Q(s, a) \leftarrow 0, \quad \pi(s, a) \leftarrow \frac{1}{|\mathcal{A}_i|}.$$

2. Repeat,

- From state s select action a according to mixed strategy $\pi(s)$ with some exploration.
- Observing reward r and next state s' ,

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha \left(r + \gamma \max_{a'} Q(s', a') \right).$$

- Update $\pi(s, a)$ and constrain it to a legal probability distribution,

$$\pi(s, a) \leftarrow \pi(s, a) + \begin{cases} \frac{\delta}{|A_i|-1} & \text{if } a = \text{argmax}_{a'} Q(s, a') \\ \frac{-\delta}{|A_i|-1} & \text{Otherwise} \end{cases}.$$

- PHC is rational, but still not convergent.

A New Algorithm – Adjusted Policy Hill-Climbing

- APHC preserves rationality, while encouraging convergence.
 - Makes a change only to the algorithm's learning rate.
 - “Learn faster while losing, slower while winning.”

1. Let $\alpha, \delta_l > \delta_w$ be learning rates. Initialize,

$$Q(s, a) \leftarrow 0, \quad \pi(s, a) \leftarrow \frac{1}{|\mathcal{A}_i|},$$

2. Repeat,

(a,b) Same as PHC.

(c) Maintain running estimate of average policy, $\bar{\pi}$.

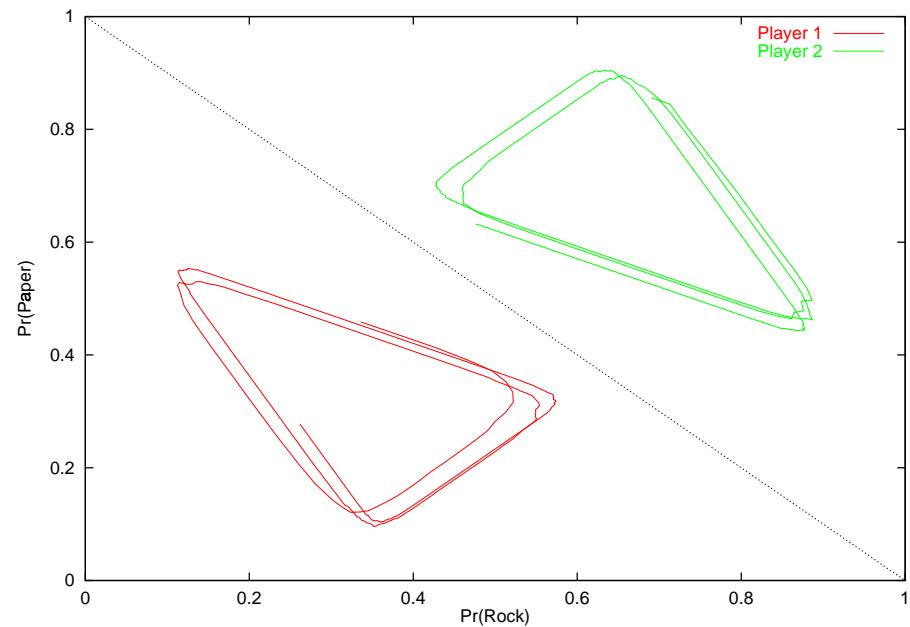
(d) Update $\pi(s, a)$ and constrain it to a legal probability distribution,

$$\pi(s, a) \leftarrow \pi(s, a) + \begin{cases} \frac{\delta}{|\mathcal{A}_i|-1} & \text{if } a = \text{argmax}_{a'} Q(s, a') \\ -\frac{\delta}{|\mathcal{A}_i|-1} & \text{Otherwise} \end{cases},$$

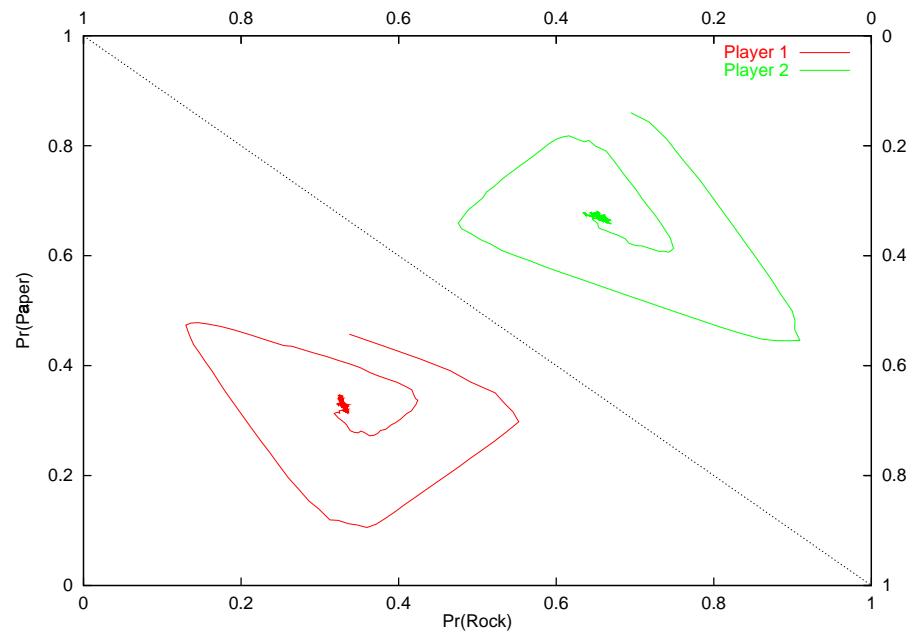
where,

$$\delta = \begin{cases} \delta_w & \text{if } \sum_{a'} \pi(s, a') Q(s, a') > \sum_{a'} \bar{\pi}(s, a') Q(s, a') \\ \delta_l & \text{otherwise} \end{cases}.$$

Results – Rock-Paper-Scissors

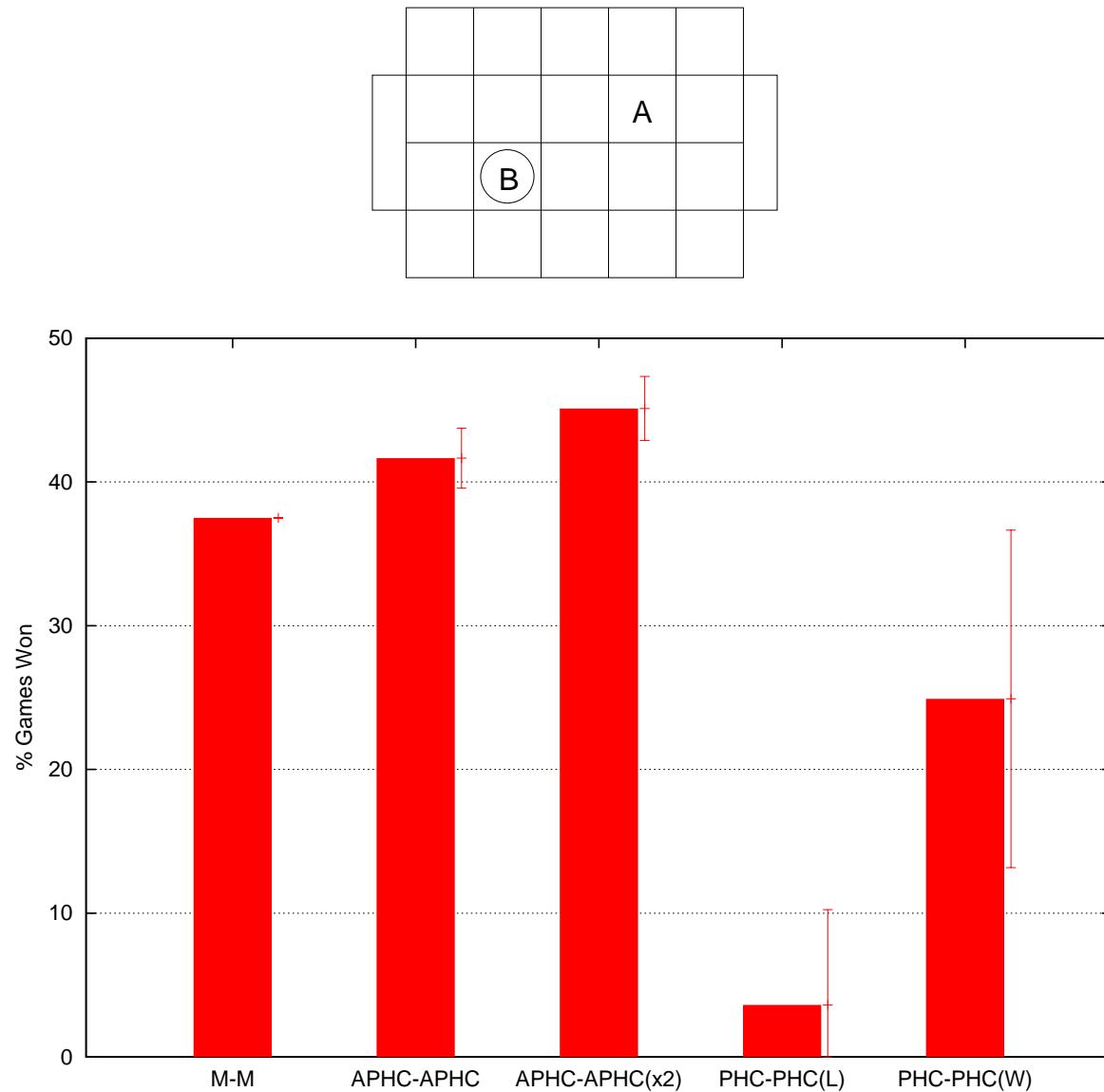


PHC



APHC

Results – Soccer



Discussion

- Why convergence?
 - Non-stationary policies are hard to evaluate.
 - Complications with assigning delayed reward.
- Why rationality?
 - Multiple equilibria.
 - Opponent may not be playing optimally.
- What's next?
 - More experimental results on more interesting problems.
 - Family of learning algorithms.
 - Theoretical analysis of convergence.
 - Learning in the presence of agents with limitations.