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Stochastic Game Framework

Matrix Games
- Multiple Agent
- Single State

Stochastic Games
- Multiple Agent

- Multiple State




Markov Decision Processes

A Markov decision process (MDP) is a tuple, (S, A, T, R), where,

e A is the set of actions,
e T is a transition function S x A xS — [0, 1],
e R is a reward function § x A — R.




Matrix Games

A matrix game is a tuple (n, A1 ,,R1 ), Where,
e n iS the number of players,
e A, is the set of actions available to player 2
— A is the joint action space A7 x ... X Ap,
e R, is player i's payoff function A — R.

a2 a2

ai'--Rléa).... ai---Rzéa)----




Matrix Games — Example

Rock-Paper-5Scissors

e [ wo plavers. Each simultaneously picks an action:
Rock, Paper, or Scissors.
e [ he rules:

Rock beats Scissors
Scissors beats Paper
Paper beats Rock

e Represent game as two matrices, one for each player:

0 —1 1 O 1 -1
Ry = 1 0 -1 Roy=—-R;1=| —1 O 1
—1 1 0 1 -1 O



Matrix Games — Best Response

e No optimal opponent independent strategies.
e Mixed (i.e. stochastic) strategies does not help.

e Opponent dependent strategies,

Definition 1 For a game, define the best-response function for
player i, BR;(c_;), to be the set of all, possibly mixed,
strategies that are optimal given the other player(s) play the
possibly mixed joint strategy o_;.



Matrix Games — Equilibria

e Best-response equilibrium [Nash, 1950],

Definition 2 A Nash equilibrium is a collection of strategies
(possibly mixed) for all players, o;, with,

o; € BR;(0_;).

e An equilibrium in Rock-Paper-5Scissors consists of both players
randomizing evenly among all its actions.



Stochastic Game Framework

Matrix Games
- Multiple Agent
- Single State

Stochastic Games
- Multiple Agent

- Multiple State




Stochastic Games

A stochastic game is a tuple (n,S, A1 ,,,T,R1 ,), where,
e n iS the number of agents,

e A, is the set of actions available to agent ¢z,
— A is the joint action space Ay X ... X Ap,
e T is the transition function § x A x S — [0, 1],
e R, is the reward function for the i:th agent § x A — R.

R(s,@)=




Stochastic Games — Example

Players: Two

States: Players’ positions and possession of the ball (780).

Actions: N, S, E, W, Hold (5).

Transitions:

— Actions are selected simultaneously but executed in a
random order.

— If a player moves to another player’'s square, the stationary
play gets possession of the ball.

e Rewards: Reward is only received when the ball is moved into

one of the goals.

[Littman, 1994]



Solving Stochastic Games

Matrix Game

Stochastic Game

Solver Solver
MG 4+ MDP = Game Theory RL
LP TD(0) Shapley MiniMax-Q
LP TD(1) Pollatschek and Avi-Itzhak -
LP TD(N) Van der Wal —
QP TD(0) — Hu and Wellman
FP TD(0) Fictitious Play JALs / Opponent-Modeling
LP: linear programming QP: quadratic programming FP: fictitious play



Minimax-Q

1. Initialize Q(s € S,a € A) arbitrarily.
2. Repeat,

(a) From state s select action a; that solves the matrix game
[Q(s,a)qeca], With some exploration.

(b) Observing joint-action a, reward r, and next state s/,
Q(Sa CL) — (1 o Oé)Q(S, CI,) + Oé(’l" + ’YV(S/))7
where,
V(s) = Value ([Q(s,a)qea]) -

[Littman, 1994]

e In zero-sum games, learns equilibrium almost independent of
the actions selected by the opponent.



Joint-Action Learners

1. Initialize Q(s € S,a € A) arbitrarily.
2. Repeat,

(a) From state s select action a; that maximizes,

52 EE D00, anan)

(b) Observing other agents’ actions a_;, reward r, and next state ¢/,

a_;

C(s,a-i) «— C(s,a-)+1
n(s) «— n(s)+1
Q(s,(ai,a—)) «— (1 —a)Q(s,(ai,a—i)) + alr + 4V (s))
where,
C(s,a_;)

(3) ———~—Q(s,{ai, a)).

V(s) = maaxz

[Claus & Boutilier, 1998; Uther & Veloso, 1997]



Joint-Action Learners

e Finds equilibrium (when playing another JAL) in:
— Fully collaborative games [Claus & Boutilier, 1998],
— Iterated dominance solvable games [Fudenberg & Levine,
1998],
— Fully competitive games [Uther & Veloso, 1997].
e Plays deterministically (i.e. cannot play mixed policies).



Problems with EXisting Algorithms

e Minimax-Q
— Converges to an equilibrium, independent of the opponent’s
actions.
— Will not converge to a best-response unless the opponent
also plays the equilibrium solution.
x Consider a player that almost always plays Rock.

e (Q-Learning, JALS, etc.
— Always seeks to maximize reward.
— Does not converge to stationary policies if the opponent is
also learning.
x Cannot play mixed strategies.



Properties

Property 1 (Rational) If the other players’ strategies converge to
stationary strategies then the player will converge to a strategy
that is optimal given their strategies.

Property 2 (Convergent) Given that the other players are
following behaviors from a class of behaviors, B, all the players will
converge to stationary strategies.

Algorithm Rational Convergent
Minimax-Q No Yes
JAL Yes No

e If all players are rational and they converge to stationary
strategies, they must have converged to an equilibrium.

e If all players are both rational and convergent, then they are
guaranteed to converge to an equilibrium.



A New Algorithm — Policy Hill-Climbing

1. Let o« and § be learning rates. Initialize,

Q(s,a) < 0, m(s,a) —

| A;|
2. Repeat,

(a) From state s select action a according to mixed strategy «(s) with
some exploration.

(b) Observing reward r and next state ¢/,

Q(s,0) — (1 - )Q(s,a) + o (r +7maxQ(s,a) ) .
(c) Update w(s,a) and constrain it to a legal probability distribution,

) if a =argmax, Q(s,a)

m(s,a) < 7T(57a)+{ ﬁ Otherwise

e PHC is rational, but still not convergent.




A New Algorithm — Adjusted Policy Hill-Climbing

e APHC preserves rationality, while encouraging convergence.
— Makes a change only to the algorithm’s learning rate.
— "Learn faster while losing, slower while winning.”

1. Let «, §; > 6, be learning rates. Initialize,

1

Q(s,a) <0, m(s,a) — A

2. Repeat,

(a,b) Same as PHC.
(c) Maintain running estimate of average policy, .
(d) Update ©(s,a) and constrain it to a legal probability distribution,

§  if a = argmax, Q(s,da’)
n(s,a) <« m(s,a) ‘|'{ IA_|51 Otherwise ’

where,

5 — { dw If Y m(s,a)Q(s,a") >>  7(s,a)Q(s,a)

0; otherwise
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Results — Rock-Paper-Scissors
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Results — Soccer
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Discussion

e \Why convergence?
— Non-stationary policies are hard to evaluate.
— Complications with assigning delayed reward.
e \Why rationality?
— Multiple equilibria.
— Opponent may not be playing optimally.

e What's next?
— More experimental results on more interesting problems.
— Family of learning algorithms.

— T heoretical analysis of convergence.
— Learning in the presence of agents with limitations.

http://www.cs.cmu.edu/ "mhb/publications/
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