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• Existing Techniques ...

... and Their Shortcomings

• A New Algorithm

• Experimental Results



Stochastic Game Framework

Stochastic Games

- Multiple State
- Multiple Agent

MDPs
- Single Agent
- Multiple State

Matrix Games

- Single State
- Multiple Agent



Markov Decision Processes

A Markov decision process (MDP) is a tuple, (S,A, T, R), where,

• S is the set of states,

• A is the set of actions,

• T is a transition function S ×A× S → [0,1],

• R is a reward function S ×A → <.
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Matrix Games

A matrix game is a tuple (n,A1...n, R1...n), where,

• n is the number of players,

• Ai is the set of actions available to player i

– A is the joint action space A1 × . . .×An,

• Ri is player i’s payoff function A → <.
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Matrix Games – Example

Rock-Paper-Scissors

• Two players. Each simultaneously picks an action:

Rock, Paper, or Scissors.

• The rules:

Rock beats Scissors
Scissors beats Paper
Paper beats Rock

• Represent game as two matrices, one for each player:

R1 =

 0 −1 1
1 0 −1
−1 1 0

 R2 = −R1 =

 0 1 −1
−1 0 1

1 −1 0





Matrix Games – Best Response

• No optimal opponent independent strategies.

• Mixed (i.e. stochastic) strategies does not help.

• Opponent dependent strategies,

Definition 1 For a game, define the best-response function for

player i, BRi(σ−i), to be the set of all, possibly mixed,

strategies that are optimal given the other player(s) play the

possibly mixed joint strategy σ−i.



Matrix Games – Equilibria

• Best-response equilibrium [Nash, 1950],

Definition 2 A Nash equilibrium is a collection of strategies

(possibly mixed) for all players, σi, with,

σi ∈ BRi(σ−i).

• An equilibrium in Rock-Paper-Scissors consists of both players

randomizing evenly among all its actions.



Stochastic Game Framework

Stochastic Games

- Multiple State
- Multiple Agent

MDPs
- Single Agent
- Multiple State

Matrix Games

- Single State
- Multiple Agent



Stochastic Games

A stochastic game is a tuple (n,S,A1...n, T, R1...n), where,

• n is the number of agents,

• S is the set of states,

• Ai is the set of actions available to agent i,

– A is the joint action space A1 × . . .×An,

• T is the transition function S ×A× S → [0,1],

• Ri is the reward function for the ith agent S ×A → <.
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Stochastic Games – Example

A

B

• Players: Two
• States: Players’ positions and possession of the ball (780).
• Actions: N, S, E, W, Hold (5).
• Transitions:

– Actions are selected simultaneously but executed in a
random order.

– If a player moves to another player’s square, the stationary
play gets possession of the ball.

• Rewards: Reward is only received when the ball is moved into
one of the goals.

[Littman, 1994]



Solving Stochastic Games

Matrix Game
Solver

+
MDP
Solver

=
Stochastic Game

Solver

MG + MDP = Game Theory RL

LP TD(0) Shapley MiniMax-Q
LP TD(1) Pollatschek and Avi-Itzhak –
LP TD(λ) Van der Wal –
QP TD(0) – Hu and Wellman
FP TD(0) Fictitious Play JALs / Opponent-Modeling

LP: linear programming QP: quadratic programming FP: fictitious play



Minimax-Q

1. Initialize Q(s ∈ S, a ∈ A) arbitrarily.

2. Repeat,

(a) From state s select action ai that solves the matrix game
[Q(s, a)a∈A ], with some exploration.

(b) Observing joint-action a, reward r, and next state s′,

Q(s, a)← (1− α)Q(s, a) + α(r + γV (s′)),

where,

V (s) = Value ( [Q(s, a)a∈A ] ) .

[Littman, 1994]

• In zero-sum games, learns equilibrium almost independent of

the actions selected by the opponent.



Joint-Action Learners

1. Initialize Q(s ∈ S, a ∈ A) arbitrarily.

2. Repeat,

(a) From state s select action ai that maximizes,∑
a−i

C(s, a−i)

n(s)
Q(s, 〈ai, a−i〉)

(b) Observing other agents’ actions a−i, reward r, and next state s′,

C(s, a−i) ← C(s, a−i) + 1

n(s) ← n(s) + 1

Q(s, 〈ai, a−i〉) ← (1− α)Q(s, 〈ai, a−i〉) + α(r + γV (s′))

where,

V (s) = max
ai

∑
a−i

C(s, a−i)

n(s)
Q(s, 〈ai, a−i〉).

[Claus & Boutilier, 1998; Uther & Veloso, 1997]



Joint-Action Learners

• Finds equilibrium (when playing another JAL) in:

– Fully collaborative games [Claus & Boutilier, 1998],

– Iterated dominance solvable games [Fudenberg & Levine,

1998],

– Fully competitive games [Uther & Veloso, 1997].

• Plays deterministically (i.e. cannot play mixed policies).



Problems with Existing Algorithms

• Minimax-Q

– Converges to an equilibrium, independent of the opponent’s

actions.

– Will not converge to a best-response unless the opponent

also plays the equilibrium solution.

∗ Consider a player that almost always plays Rock.

• Q-Learning, JALs, etc.

– Always seeks to maximize reward.

– Does not converge to stationary policies if the opponent is

also learning.

∗ Cannot play mixed strategies.



Properties

Property 1 (Rational) If the other players’ strategies converge to

stationary strategies then the player will converge to a strategy

that is optimal given their strategies.

Property 2 (Convergent) Given that the other players are

following behaviors from a class of behaviors, B, all the players will

converge to stationary strategies.

Algorithm Rational Convergent
Minimax-Q No Yes
JAL Yes No

• If all players are rational and they converge to stationary

strategies, they must have converged to an equilibrium.

• If all players are both rational and convergent, then they are

guaranteed to converge to an equilibrium.



A New Algorithm – Policy Hill-Climbing

1. Let α and δ be learning rates. Initialize,

Q(s, a)← 0, π(s, a)←
1

|Ai|
.

2. Repeat,

(a) From state s select action a according to mixed strategy π(s) with
some exploration.

(b) Observing reward r and next state s′,

Q(s, a)← (1− α)Q(s, a) + α
(
r + γmax

a′
Q(s′, a′)

)
.

(c) Update π(s, a) and constrain it to a legal probability distribution,

π(s, a) ← π(s, a) +

{
δ if a = argmaxa′Q(s, a′)
−δ
|Ai|−1

Otherwise .

• PHC is rational, but still not convergent.



A New Algorithm – Adjusted Policy Hill-Climbing

• APHC preserves rationality, while encouraging convergence.
– Makes a change only to the algorithm’s learning rate.
– “Learn faster while losing, slower while winning.”

1. Let α, δl > δw be learning rates. Initialize,

Q(s, a)← 0, π(s, a)←
1

|Ai|
,

2. Repeat,

(a,b) Same as PHC.
(c) Maintain running estimate of average policy, π̄.
(d) Update π(s, a) and constrain it to a legal probability distribution,

π(s, a) ← π(s, a) +

{
δ if a = argmaxa′Q(s, a′)
−δ
|Ai|−1

Otherwise ,

where,

δ =

{
δw if

∑
a′ π(s, a′)Q(s, a′) >

∑
a′ π̄(s, a′)Q(s, a′)

δl otherwise
.



Results – Rock-Paper-Scissors
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Results – Soccer
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Discussion

• Why convergence?

– Non-stationary policies are hard to evaluate.

– Complications with assigning delayed reward.

• Why rationality?

– Multiple equilibria.

– Opponent may not be playing optimally.

• What’s next?

– More experimental results on more interesting problems.

– Family of learning algorithms.

– Theoretical analysis of convergence.

– Learning in the presence of agents with limitations.

http://www.cs.cmu.edu/~mhb/publications/
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