While many recently proposed audio declipping algorithms are highly effective in their ability to restore clipped speech, the algorithms’ computational complexities inhibit their use in many practical situations. Real-time or nearly real-time performance is impossible using a typical laptop computer, with some algorithms taking as long as 400 times the actual duration of the input to complete restoration. This paper introduces a novel declipping algorithm, referred to as Regularized Blind Amplitude Reconstruction, which is capable of restoring clipped audio at rates much faster than real time and at restoration qualities comparable to existing algorithms. The quality of declipping is evaluated in terms of automatic speech recognition performance on declipped speech, as well as the degree to which each declipping algorithm improves the audio’s signal-to-noise ratio.

Audio Clipping

$x_c[n] = \{x[n] \text{ if } |x[n]| < \tau \}$

$x_c[n] = \{\tau \cdot \text{sgn}(x[n]) \text{ if } |x[n]| \geq \tau \}$

Audio clipping typically occurs in one of three ways:

1. Upon recording, as a result of exceeding the dynamic range limitations of the A/D converter.
2. As a result of writing improperly-amplitude-normalized data to a file.
3. On purpose, to achieve a desirable perceptual characteristic.

Constrained Blind Amplitude Reconstruction (CBAR)

- CBAR declips each speech frame by solving the following constrained optimization problem:

$$\begin{align*}
\text{minimize} & \quad |D_2(S_r^T x_r + S_c^T x_c)|_2^2 \\
\text{subject to} & \quad x_c = \underbrace{D_2(S_r^T x_r + S_c^T x_c)}_{\text{original signal}} - \langle \underbrace{S_r x_r}_{\text{reliable samples}} - \langle \underbrace{S_c x_c}_{\text{unclipped}} \rangle, \langle \underbrace{S_c x_c}_{\text{clipped samples}} \rangle \rangle \\
\end{align*}$$

- In the above, D_2 is the 2nd-derivative operator, S_r and S_c are masking matrices that separate unclipped and clipped samples, respectively; x_r contains all samples of the speech frame, x_c contain unclipped and clipped samples, respectively; τ is the clipping threshold, and $\langle \cdot \rangle$ represents the element-wise product.

Regularized Blind Amplitude Reconstruction (RBAR)

- Because the objective function in CBAR contains a hard constraint, the required iterative solution can render the algorithm prohibitively slow.
- RBAR circumvents this issue by employing a “soft” constraint in the form of regularization terms on the objective function.

Experimental Results

- The use of a soft constraint dramatically decreases computational complexity.
- The RBAR algorithm can achieve comparable results to CBAR and Kitic-IHT in significantly less time.
- Future work should focus on improving the estimate of the target vectors in the objective function.

Summary

- The reliable samples after clipping are shown in blue, and the clipped samples are shown in black. The original unclipped signal is in gray.