Improved Relation Extraction with Feature-Rich Compositional Embedding Models

Mo Yu* Matt Gormley*
Mark Dredze

September 21, 2015
EMNLP

*Co-first authors
FCM or: How I Learned to Stop Worrying (about Deep Learning) and Love Features

Mo Yu* Matt Gormley*
Mark Dredze

September 21, 2015
EMNLP

*Co-first authors
Handcrafted Features

\[p(y|x) \propto \exp(\Theta_y \cdot f) \]
Where do features come from?

- **Hand-crafted features**:
 - First word before M1
 - Second word before M1
 - Bag-of-words in M1
 - Head word of M1
 - Other word in between
 - First word after M2
 - Second word after M2
 - Bag-of-words in M2
 - Head word of M2
 - Bigrams in between
 - Words on dependency path
 - Country name list
 - Personal relative triggers
 - Personal title list
 - WordNet Tags
 - Heads of chunks in between
 - Path of phrase labels
 - Combination of entity types

- **Feature Engineering**:
 - Sun et al., 2011

- **Feature Learning**:
 - Zhou et al., 2005
Where do features come from?

Feature Engineering

- **hand-crafted features**
 - Sun et al., 2011
 - Zhou et al., 2005

Feature Learning

- **word embeddings**
 - Mikolov et al., 2013

Unsupervised learning

CBOW model in Mikolov et al. (2013)

```
cat: 0.11 0.23 ... -0.45

dog: 0.13 0.26 ... -0.52
```

- Look-up table
 - input (context words)
 - embedding
 - missing word

- Similar words, similar embeddings

- Input (context words)

- Classifier

- CBOW model in Mikolov et al. (2013)
Where do features come from?

- Feature Engineering
 - Sun et al., 2011
- Feature Learning
 - Zhou et al., 2005
 - Word embeddings: Mikolov et al., 2013
 - String embeddings: Socher, 2011
 - Convolutional Neural Networks (Collobert and Weston 2008)
 - The movie showed wars
 - Recursive Auto Encoder (Socher 2011)
 - The movie showed wars
Where do features come from?

- Feature Engineering
- Feature Learning

- Word embeddings: Mikolov et al., 2013
- Tree embeddings: Socher et al., 2013
- String embeddings: Socher, 2011
- String embeddings: Collobert & Weston, 2008

The [movie] showed [wars]
Where do features come from?

Hand-crafted features
- Sun et al., 2011
- Zhou et al., 2005

Word embedding features
- Turian et al., 2010
- Koo et al., 2008

Word embeddings
- Mikolov et al., 2013

Tree embeddings
- Socher et al., 2013
- Hermann & Blunsom, 2013

String embeddings
- Socher, 2011
- Collobert & Weston, 2008

Refine embedding features with semantic/syntactic info
Where do features come from?

Our model (FCM)

- Mikolov et al., 2013
- Collobert & Weston, 2008

Feature Learning

- Socher et al., 2013
- Hermann & Blunsom, 2013

Feature Engineering

- Sun et al., 2011
- Koo et al., 2008
- Turian et al., 2010
- Hermann et al., 2014

hand-crafted features

- Zhou et al., 2005

word embeddings

- Mikolov et al., 2013

word embedding features
Feature-rich Compositional Embedding Model (FCM)

Goals for our Model:
1. Incorporate semantic/syntactic structural information
2. Incorporate word meaning
3. Bridge the gap between feature engineering and feature learning – but remain as simple as possible
Feature-rich Compositional Embedding Model (FCM)

Per-word Features:

<table>
<thead>
<tr>
<th>Feature</th>
<th>(f_1)</th>
<th>(f_2)</th>
<th>(f_3)</th>
<th>(f_4)</th>
<th>(f_5)</th>
<th>(f_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{on-path}(w_i)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>\text{is-between}(w_i)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>\text{head-of-M1}(w_i)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>\text{head-of-M2}(w_i)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>\text{before-M1}(w_i)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>\text{before-M2}(w_i)</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

The \([\text{movie}]_{M1}\) I watched depicted \([\text{hope}]_{M2}\)
Feature-rich Compositional Embedding Model (FCM)

Per-word Features:

- on-path(w_i)
- is-between(w_i)
- head-of-M_1(w_i)
- head-of-M_2(w_i)
- before-M_1(w_i)
- before-M_2(w_i)

\[f_5 \]

\[
\begin{array}{c}
1 \\
1 \\
0 \\
0 \\
0 \\
1 \\
\ldots \\
\end{array}
\]

\[
\begin{array}{c}
\text{- nil} \\
\text{- noun-other} \\
\text{- noun-person} \\
\text{- verb-percep.} \\
\text{- verb-comm.} \\
\text{- noun-other} \\
\end{array}
\]

The $\text{[movie]}_{M_1} \ I \ \text{watched} \ \text{depicted} \ \text{[hope]}_{M_2}$
Feature-rich Compositional Embedding Model (FCM)

Per-word Features: (with conjunction)

- on-path\((w_i) \) & \(w_i = \text{"depicted"} \)
- is-between\((w_i) \) & \(w_i = \text{"depicted"} \)
- head-of-M1\((w_i) \) & \(w_i = \text{"depicted"} \)
- head-of-M2\((w_i) \) & \(w_i = \text{"depicted"} \)
- before-M1\((w_i) \) & \(w_i = \text{"depicted"} \)
- before-M2\((w_i) \) & \(w_i = \text{"depicted"} \)

...
Feature-rich Compositional Embedding Model (FCM)

Per-word Features: (with soft conjunction)

- on-path(w_i)
- is-between(w_i)
- head-of-M1(w_i)
- head-of-M2(w_i)
- before-M1(w_i)
- before-M2(w_i)

...
Feature-rich Compositional Embedding Model (FCM)

Per-word Features: (with soft conjunction)

on-path\((w_i)\)
is-between\((w_i)\)
head-of-\(M_1\)(\(w_i)\)
head-of-\(M_2\)(\(w_i)\)
before-\(M_1\)(\(w_i)\)
before-\(M_2\)(\(w_i)\)

\[
\begin{array}{cccc}
1 & -.3 & .9 & .1 & -1 \\
1 & -.3 & .9 & .1 & -1 \\
0 & -.3 & .9 & .1 & -1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & -.3 & .9 & .1 & -1 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
-.3 & .9 & .1 & -1 \\
\end{array}
\]

\[e_{\text{depicted}}\]
Feature-rich Compositional Embedding Model (FCM)

\[p(y|x) \propto \exp \left(\sum_{i=1}^{n} f_i \right) \]

And finally, exponentiates and renormalizes

Then takes the dot-product with a parameter tensor

Our full model sums over each word in the sentence

The [movie]_{M1} I watched depicted [hope]_{M2}
Features for FCM

• Let M_1 and M_2 denote the left and right entity mentions

• Our per-word Binary Features:
 ▪ head of M_1
 ▪ head of M_2
 ▪ in-between M_1 and M_2
 ▪ −2, −1, +1, or +2 of M_1
 ▪ −2, −1, +1, or +2 of M_2
 ▪ on dependency path between M_1 and M_2

• Optionally:
 Add the entity type of M_1, M_2, or both
FCM as a Neural Network

- Embeddings are (optionally) treated as model parameters
- A log-bilinear model
- We initialize, then fine-tune the embeddings

Binary features

Embeddings

Parameter tensor

\[p(y|x) \]

\[e_x \]

\[f_1 \]

\[h_1 \]

\[e_{w_1} \]

\[f_n \]

\[h_n \]

\[e_{w_n} \]
Baseline Model

\[Y_{i,j} \]

- Multinomial logistic regression (*standard approach*)
- Bring in all the usual binary NLP features (Sun et al., 2011)
 - type of the left entity mention
 - dependency path between mentions
 - bag of words in right mention
 - …

\[\exp(\Theta_y f) \]
Hybrid Model: Baseline + FCM

\[p(y|x) \propto \exp(\Theta_y f(y|x)) \]

Product of Experts:

\[p(y|x) = \frac{1}{Z(x)} p_{\text{Baseline}}(y|x) p_{\text{FCM}}(y|x) \]
Experimental Setup

ACE 2005

- **Data:** 6 domains
 - Newswire (nw)
 - Broadcast Conversation (bc)
 - Broadcast News (bn)
 - Telephone Speech (cts)
 - Usenet Newsgroups (un)
 - Weblogs (wl)

- **Train:** bn+nw (~3600 relations)
- **Dev:** ½ of bc
- **Test:** ½ of bc, cts, wl

- **Metric:** Micro F1
 (given entity mention)

SemEval-2010 Task 8

- **Data:** Web text

- **Train:**
- **Dev:**
- **Test:** Standard split from shared task

- **Metric:** Macro F1
 (given entity boundaries)
ACE 2005 Results

Baseline
FCM
Baseline+FCM

Broadcast Conversation
Conversational Telephone Speech Test Set
Weblogs
SemEval-2010 Results

<table>
<thead>
<tr>
<th>Source</th>
<th>Classifier</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socher et al. (2012)</td>
<td>RNN</td>
<td>74.8</td>
</tr>
<tr>
<td>Socher et al. (2012)</td>
<td>MVRNN</td>
<td>79.1</td>
</tr>
<tr>
<td>Hashimoto et al. (2015)</td>
<td>RelEmb</td>
<td>81.8</td>
</tr>
<tr>
<td>Rink and Harabagiu (2010)</td>
<td>SVM</td>
<td>82.2</td>
</tr>
<tr>
<td>Zeng et al. (2014)</td>
<td>CNN</td>
<td>82.7</td>
</tr>
<tr>
<td>Santos et al. (2015)</td>
<td>CR-CNN (log-loss)</td>
<td>82.7</td>
</tr>
<tr>
<td>Liu et al. (2015)</td>
<td>DepNN</td>
<td>82.8</td>
</tr>
<tr>
<td>Hashimoto et al. (2015)</td>
<td>RelEmb (task-spec-emb)</td>
<td>82.8</td>
</tr>
</tbody>
</table>

Best in SemEval-2010 Shared Task
SemEval-2010 Results

<table>
<thead>
<tr>
<th>Source</th>
<th>Classifier</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socher et al. (2012)</td>
<td>RNN</td>
<td>74.8</td>
</tr>
<tr>
<td>Socher et al. (2012)</td>
<td>MVRNN</td>
<td>79.1</td>
</tr>
<tr>
<td>Hashimoto et al. (2015)</td>
<td>RelEmb</td>
<td>81.8</td>
</tr>
<tr>
<td>Rink and Harabagiu (2010)</td>
<td>SVM</td>
<td>82.2</td>
</tr>
<tr>
<td>Zeng et al. (2014)</td>
<td>CNN</td>
<td>82.7</td>
</tr>
<tr>
<td>Santos et al. (2015)</td>
<td>CR-CNN (log-loss)</td>
<td>82.7</td>
</tr>
<tr>
<td>Liu et al. (2015)</td>
<td>DepNN</td>
<td>82.8</td>
</tr>
<tr>
<td>Hashimoto et al. (2015)</td>
<td>RelEmb (task-spec-emb)</td>
<td>82.8</td>
</tr>
<tr>
<td></td>
<td>FCM (log-linear)</td>
<td>81.4</td>
</tr>
<tr>
<td></td>
<td>FCM (log-bilinear)</td>
<td>83.0</td>
</tr>
</tbody>
</table>

Best in SemEval-2010 Shared Task
<table>
<thead>
<tr>
<th>Source</th>
<th>Classifier</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socher et al. (2012)</td>
<td>RNN</td>
<td>74.8</td>
</tr>
<tr>
<td>Socher et al. (2012)</td>
<td>MVRNN</td>
<td>79.1</td>
</tr>
<tr>
<td>Hashimoto et al. (2015)</td>
<td>RelEmb</td>
<td>81.8</td>
</tr>
<tr>
<td>Rink and Harabagiu (2010)</td>
<td>SVM</td>
<td>82.2</td>
</tr>
<tr>
<td>Zeng et al. (2014)</td>
<td>CNN</td>
<td>82.7</td>
</tr>
<tr>
<td>Santos et al. (2015)</td>
<td>CR-CNN (log-loss)</td>
<td>82.7</td>
</tr>
<tr>
<td>Liu et al. (2015)</td>
<td>DepNN</td>
<td>82.8</td>
</tr>
<tr>
<td>Hashimoto et al. (2015)</td>
<td>RelEmb (task-spec-emb)</td>
<td>82.8</td>
</tr>
<tr>
<td></td>
<td>FCM (log-linear)</td>
<td>81.4</td>
</tr>
<tr>
<td></td>
<td>FCM (log-bilinear)</td>
<td>83.0</td>
</tr>
</tbody>
</table>
SemEval-2010 Results

<table>
<thead>
<tr>
<th>Source</th>
<th>Classifier</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socher et al. (2012)</td>
<td>RNN</td>
<td>74.8</td>
</tr>
<tr>
<td>Socher et al. (2012)</td>
<td>MVRNN</td>
<td>79.1</td>
</tr>
<tr>
<td>Hashimoto et al. (2015)</td>
<td>RelEmb</td>
<td>81.8</td>
</tr>
<tr>
<td>Rink and Harabagiu (2010)</td>
<td>SVM</td>
<td>82.2</td>
</tr>
<tr>
<td>Xu et al. (2015)</td>
<td>SDP-LSTM</td>
<td>82.4</td>
</tr>
<tr>
<td>Zeng et al. (2014)</td>
<td>CNN</td>
<td>82.7</td>
</tr>
<tr>
<td>Santos et al. (2015)</td>
<td>CR-CNN (log-loss)</td>
<td>82.7</td>
</tr>
<tr>
<td>Liu et al. (2015)</td>
<td>DepNN</td>
<td>82.8</td>
</tr>
<tr>
<td>Hashimoto et al. (2015)</td>
<td>RelEmb (task-spec-emb)</td>
<td>82.8</td>
</tr>
<tr>
<td>Xu et al. (2015)</td>
<td>SDP-LSTM (full)</td>
<td>83.7</td>
</tr>
<tr>
<td></td>
<td>FCM (log-linear)</td>
<td>81.4</td>
</tr>
<tr>
<td></td>
<td>FCM (log-bilinear)</td>
<td>83.0</td>
</tr>
</tbody>
</table>
SemEval-2010 Results

<table>
<thead>
<tr>
<th>Source</th>
<th>Classifier</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socher et al. (2012)</td>
<td>RNN</td>
<td>74.8</td>
</tr>
<tr>
<td>Socher et al. (2012)</td>
<td>MVRNN</td>
<td>79.1</td>
</tr>
<tr>
<td>Hashimoto et al. (2015)</td>
<td>RelEmb</td>
<td>81.8</td>
</tr>
<tr>
<td>Rink and Harabagiu (2010)</td>
<td>SVM</td>
<td>82.2</td>
</tr>
<tr>
<td>Xu et al. (2015)</td>
<td>SDP-LSTM</td>
<td>82.4</td>
</tr>
<tr>
<td>Zeng et al. (2014)</td>
<td>CNN</td>
<td>82.7</td>
</tr>
<tr>
<td>Santos et al. (2015)</td>
<td>CR-CNN (log-loss)</td>
<td>82.7</td>
</tr>
<tr>
<td>Liu et al. (2015)</td>
<td>DepNN</td>
<td>82.8</td>
</tr>
<tr>
<td>Hashimoto et al. (2015)</td>
<td>RelEmb (task-spec-emb)</td>
<td>82.8</td>
</tr>
<tr>
<td>Xu et al. (2015)</td>
<td>SDP-LSTM (full)</td>
<td>83.7</td>
</tr>
<tr>
<td>FCM (log-linear)</td>
<td></td>
<td>81.4</td>
</tr>
<tr>
<td>FCM (log-bilinear)</td>
<td></td>
<td>83.0</td>
</tr>
<tr>
<td>FCM (log-bilinear)</td>
<td>(task-spec-emb)</td>
<td>83.7</td>
</tr>
</tbody>
</table>
SemEval-2010 Results

<table>
<thead>
<tr>
<th>Source</th>
<th>Classifier</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socher et al. (2012)</td>
<td>RNN</td>
<td>74.8</td>
</tr>
<tr>
<td>Socher et al. (2012)</td>
<td>MVRNN</td>
<td>79.1</td>
</tr>
<tr>
<td>Hashimoto et al. (2015)</td>
<td>RelEmb</td>
<td>81.8</td>
</tr>
<tr>
<td>Rink and Harabagiu (2010)</td>
<td>SVM</td>
<td>82.2</td>
</tr>
<tr>
<td>Xu et al. (2015)</td>
<td>SDP-LSTM</td>
<td>82.4</td>
</tr>
<tr>
<td>Zeng et al. (2014)</td>
<td>CNN</td>
<td>82.7</td>
</tr>
<tr>
<td>Santos et al. (2015)</td>
<td>CR-CNN (log-loss)</td>
<td>82.7</td>
</tr>
<tr>
<td>Liu et al. (2015)</td>
<td>DepNN</td>
<td>82.8</td>
</tr>
<tr>
<td>Hashimoto et al. (2015)</td>
<td>RelEmb (task-spec-emb)</td>
<td>82.8</td>
</tr>
<tr>
<td>Xu et al. (2015)</td>
<td>SDP-LSTM (full)</td>
<td>83.7</td>
</tr>
<tr>
<td>Santos et al. (2015)</td>
<td>CR-CNN (ranking-loss)</td>
<td>84.1</td>
</tr>
<tr>
<td></td>
<td>FCM (log-linear)</td>
<td>81.4</td>
</tr>
<tr>
<td></td>
<td>FCM (log-bilinear)</td>
<td>83.0</td>
</tr>
<tr>
<td></td>
<td>FCM (log-bilinear) (task-spec-emb)</td>
<td>83.7</td>
</tr>
</tbody>
</table>
Takeaways

FCM bridges the gap between feature engineering and feature learning

If you are allergic to deep learning:

– Try the FCM for your task: it is simple, easy-to- implement, and was shown to be effective for two relation benchmarks

If you are a deep learning expert:

– Inject the FCM (i.e. outer product of features and embeddings) into your fancy deep network
Questions?

Two open source implementations:

- **Java**: (Within the Pacaya framework)
 [GitHub](https://github.com/mgormley/pacaya)

- **C++**: (From our NAACL 2015 paper on LRFCM)
 [GitHub](https://github.com/Gorov/ERE_RE)