

Improved Relation Extraction with Feature-Rich Compositional Embedding Models

Mo Yu*

Matt Gormley*

Mark Dredze

September 21, 2015 EMNLP

FCM or: How I Learned to Stop Worrying (about Deep Learning) and Love Features

Mo Yu*

Matt Gormley*

Mark Dredze

September 21, 2015 EMNLP

Handcrafted Features

First word before M1 Second word before M1 Bag-of-words in M1 Head word of M1 Other word in between First word after M2 Second word after M2 Bag-of-words in M2 *Head word of M2* Bigrams in between Words on dependency path Country name list Personal relative triggers Personal title list WordNet Tags Heads of chunks in between Path of phrase labels Combination of entity types

Feature Learning

Feature Learning

Feature Learning

Feature Learning

Feature Learning

Goals for our Model:

- Incorporate semantic/syntactic structural information
- 2. Incorporate word meaning
- 3. Bridge the gap between feature engineering and feature learning but remain as simple as possible

Per-word Features:

Per-word Features:

```
on-path(w<sub>i</sub>)
is-between(w<sub>i</sub>)
head-of-M1(w<sub>i</sub>)
head-of-M2(w<sub>i</sub>)
before-M1(w<sub>i</sub>)
```


Per-word Features: (with conjunction)

```
on-path (w_i) & w_i = "depicted" is-between (w_i) & w_i = "depicted" head-of-M1 (w_i) & w_i = "depicted" head-of-M2 (w_i) & w_i = "depicted" before-M1 (w_i) & w_i = "depicted" before-M1 (w_i) & w_i = "depicted"
```


The $[movie]_{M_1}$ I watched depicted $[hope]_{M_2}$

Per-word Features: (with soft conjunction)

Per-word Features: (with soft conjunction)

watched depicted [hope]_{M2}

 $[movie]_{M1}$ I

Features for FCM

- Let M1 and M2 denote the left and right entity mentions
- Our per-word Binary Features:
 - head of M1
 - head of M2
 - in-between M1 and M2
 - -2, -1, +1, or +2 of M_1
 - -2, -1, +1, or +2 of M_2
 - \blacksquare on dependency path between M_1 and M_2
- Optionally:

Add the entity type of M1, M2, or both

FCM as a Neural Network

- Embeddings are (optionally) treated as model parameters
- A log-bilinear model
- We initialize, then fine-tune the embeddings

Baseline Model

- Multinomial logistic regression (standard approach)
- Bring in all the usual binary NLP features (Sun et al., 2011)
 - type of the left entity mention
 - dependency path between mentions
 - bag of words in right mention

— ...

Hybrid Model: Baseline + FCM

Product of Experts:

$$p(y|x) = \frac{1}{Z(x)} p_{Baseline}(y|x) p_{FCM}(y|x)$$

Experimental Setup

ACE 2005

- Data: 6 domains
 - Newswire (nw)
 - Broadcast Conversation (bc)
 - Broadcast News (bn)
 - Telephone Speech (cts)
 - Usenet Newsgroups (un)
 - Weblogs (wl)
- Train: bn+nw (~3600 relations)

Dev: ½ of bc

Test: ½ of bc, cts, wl`

Metric: Micro F1
 (given entity mention)

SemEval-2010 Task 8

Data: Web text

Train:
Dev:
Test:

Standard split from shared task

Metric: Macro F1
 (given entity boundaries)

ACE 2005 Results

Source	Classifier	F1	
Socher et al. (2012)	RNN	74.8	
Socher et al. (2012)	MVRNN	79.1	
Hashimoto et al. (2015)	RelEmb	81.8	
Rink and Harabagiu (2010)	SVM	82.2	
Best in S	emEval-2010 Shared Task		
Zeng et al. (2014)	CNN	82.7	
Santos et al. (2015)	CR-CNN (log-loss)	82.7	
Liu et al. (2015)	DepNN	82.8	
Hashimoto et al. (2015)	RelEmb (task-spec-emb)	82.8	

Source	Classifier	F1		
Socher et al. (2012)	RNN	74.8		
Socher et al. (2012)	MVRNN	79.1		
Hashimoto et al. (2015)	RelEmb	81.8		
Rink and Harabagiu (2010)	SVM	82.2		
Best in S	emEval-2010 Shared Task			
Zeng et al. (2014)	CNN	82.7		
Santos et al. (2015)	CR-CNN (log-loss)	82.7		
Liu et al. (2015)	DepNN	82.8		
Hashimoto et al. (2015)	RelEmb (task-spec-emb)	82.8		
	FCM (log-linear)	81.4		
	FCM (log-bilinear)	83.0		
			7 7 7 7 8 8	<u>~</u>

Classifier	F1	
RNN	74.8	
MVRNN	79.1	
RelEmb	81.8	
SVM	82.2	
CNN	82.7	
CR-CNN (log-loss)	82.7	
DepNN	82.8	
RelEmb (task-spec-emb)	82.8	
FCM (log-linear)	81.4	
FCM (log-bilinear)	83.0	
	RNN MVRNN RelEmb SVM CNN CR-CNN (log-loss) DepNN RelEmb (task-spec-emb) FCM (log-linear)	RNN 74.8 MVRNN 79.1 RelEmb 81.8 SVM 82.2 CNN 82.7 CR-CNN (log-loss) 82.7 DepNN 82.8 RelEmb (task-spec-emb) 82.8 FCM (log-linear) 81.4

Source	Classifier	F1	
Socher et al. (2012)	RNN	74.8	
Socher et al. (2012)	MVRNN	79.1	
Hashimoto et al. (2015)	RelEmb	81.8	
Rink and Harabagiu (2010)	SVM	82.2	
Xu et al. (2015)	SDP-LSTM	82.4	
Zeng et al. (2014)	CNN	82.7	
Santos et al. (2015)	CR-CNN (log-loss)	82.7	
Liu et al. (2015)	DepNN	82.8	
Hashimoto et al. (2015)	RelEmb (task-spec-emb)	82.8	
Xu et al. (2015)	SDP-LSTM (full)	83.7	
	FCM (log-linear)	81.4	
	FCM (log-bilinear)	83.0	
		•	

Source	Classifier	F1
Socher et al. (2012)	RNN	74.8
Socher et al. (2012)	MVRNN	79.1
Hashimoto et al. (2015)	RelEmb	81.8
Rink and Harabagiu (2010)	SVM	82.2
Xu et al. (2015)	SDP-LSTM	82.4
Zeng et al. (2014)	CNN	82.7
Santos et al. (2015)	CR-CNN (log-loss)	82.7
Liu et al. (2015)	DepNN	82.8
Hashimoto et al. (2015)	RelEmb (task-spec-emb)	82.8
Xu et al. (2015)	SDP-LSTM (full)	83.7
	FCM (log-linear)	81.4
	FCM (log-bilinear)	83.0
	FCM (log-bilinear) (task-spec-emb)	83.7
		70 70

Source	Classifier	F1
Socher et al. (2012)	RNN	74.8
Socher et al. (2012)	MVRNN	79.1
Hashimoto et al. (2015)	RelEmb	81.8
Rink and Harabagiu (2010)	SVM	82.2
Xu et al. (2015)	SDP-LSTM	82.4
Zeng et al. (2014)	CNN	82.7
Santos et al. (2015)	CR-CNN (log-loss)	82.7
Liu et al. (2015)	DepNN	82.8
Hashimoto et al. (2015)	RelEmb (task-spec-emb)	82.8
Xu et al. (2015)	SDP-LSTM (full)	83.7
Santos et al. (2015)	CR-CNN (ranking-loss)	84.1
	FCM (log-linear)	81.4
	FCM (log-bilinear)	83.0
	FCM (log-bilinear) (task-spec-emb)	83.7

Takeaways

FCM bridges the gap between feature engineering and feature learning

If you are allergic to deep learning:

 Try the FCM for your task: it is simple, easy-toimplement, and was shown to be effective for two relation benchmarks

If you are a deep learning expert:

 Inject the FCM (i.e. outer product of features and embeddings) into your fancy deep network

Questions?

Two open source implementations:

- Java: (Within the Pacaya framework) https://github.com/mgormley/pacaya
- C++: (From our NAACL 2015 paper on LRFCM) https://github.com/Gorov/ERE_RE