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Reminders

* Cloud Credits (AWS or GCP)
— first request deadline: Thu at 11:59pm

* Final Project Milestones

— Final Poster Session
— Final Poster submission
— Final Executive Summary submission




GAUSSIAN PROCESS



Figure from Teh MLSS 2007

Motivation: Gaussian Process

Density Estimation

* Given data, estimate a probability density function that best explains it
* A nonparametric prior can be placed over an infinite set of distributions
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Red: mean density. Blue: median density. Grey: 5-95 quantile.
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Figure from Teh MLSS 2007

Motivation: Gaussian Process

Density Estimation

* Given data, estimate a probability density function that best explains it
* A nonparametric prior can be placed over an infinite set of distributions

Posterior:
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Red: mean density. Blue: median density. Grey: 5-95 quantile.
Black: data. Others: draws.



Gaussian Process

Whiteboard:

— Parametric vs. Nonparametric learning
— High level idea of GP regression

— GP Regression
* Example prior
* Strawman inference algorithm
* Example posterior

— GP Classification
* approximate inference
* Example posterior



Multivariate Gaussians

Problem Setup: Suppose we have a Multivariate Gaussian:
p(x) ~ N(u, %)

where
X1 Ty 211 X2
X = = >
[XJ # [Nz] [221 2322]
x; € RP u; € R ¥;; € RPixD;
xo € RP2 u; € RP2
Recal: ¥ = ©7

Question 1: True or False: The marginals of the distribution are given by:

p(xi) ~ N(pi, Bis), Vie{l,2}

Question 2: True or False: The conditionals of the distribution are given by:

p(xi | [x5) ~ N(”’i + 34 575 (x5 — 1),
5, — sz-lzij),

17 i1

Vi, j € {(1,2),(22,1)}



Background: Multivariate Gaussians

Whiteboard:

— Marginal of multivariate Gaussian
— Conditional of multivariate Gaussian



Gaussian Process Regression

Whiteboard:

— Function-space view
 definition of Gaussian Process
 mean function
e covariance function

— Example kernels
— Weight-space view
* linear regression (linear model + Gaussian noise)
* ridge regression (adding a Gaussian prior)
* Bayesian linear regression
* Bayesian kernel regression (aka. GP Regression)



Gaussian Process Regression

Whiteboard:
— MBR Decoding
— Computational complexity



GAUSSIAN PROCESS INFERENCE



Gaussian Process Example

Prior (kernel: 1**2 * RBF(length_scale=1))
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Gaussian Process Example

Posterior (kernel: 1**2 * RBF(length_scale=1))
Log-Likelihood: -1.419
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Gaussian Process Example

Posterior (kernel: 0.728**2 * RBF(length_scale=1.6))
Log-Likelihood: -2.084
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Gaussian Process Example

Posterior (kernel: 1.49**2 * RBF(length_scale=0.528))
Log-Likelihood: -5.463




GAUSSIAN PROCESS KERNELS



Gaussian Process Example

Prior (kernel: 0.316**2 * DotProduct(sigma_0=1) ** 2)
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Gaussian Process Example

Prior (kernel: 1**2 * ExpSineSquared(length_scale=1, periodicity=3))
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Gaussian Process Example

Prior (kernel: 1**2 * Matern(length_scale=1, nu=1.5))
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Gaussian Process Example

Prior (kernel: 1**2 * RationalQuadratic(alpha=0.1, length_scale=1))
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Gaussian Process Example

Posterior (kernel: 0.49**2 * DotProduct(sigma_0=0.645) ** 2)
Log-Likelihood: -7960189420.761
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Gaussian Process Example

Posterior (kernel: 1.38**2 * ExpSineSquared(length_scale=1.02, periodicity=2.87))
Log-Likelihood: 1.878




Gaussian Process Example

Posterior (kernel: 1.25**2 * Matern(length_scale=0.98, nu=1.5))
Log-Likelihood: -4.339

Prior (kernel: 1**2 * Matern(length_scale=1, nu=1.5))
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Gaussian Process Example

Posterior (kernel: 1.24**2 * RationalQuadratic(alpha=0.12, length_scale=0.59))
Log-Likelihood: -2.674

0 1 2 3 4 5
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CAUSAL INFERENCE



Correlation

Total revenue generated by arcades

correlates with

Computer science doctorates awarded in the US
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Correlation

Worldwide non-commercial space launches

correlates with

Sociology doctorates awarded (US)
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Per capita consumption of chicken
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Motivation: Causal Inference

1. What is the efficacy of a given drug in a
given population?

2. Whether data can prove an employer guilty
of hiring discrimination?

3. What fraction of past crimes could have
been avoided by a given policy?

4. What was the cause of death of a given
individual, in a specific incident?



Motivation: Causal Inference

Question:

e Imagine you’re a sociologist attempting to understand the factors that have led to the sharp
rise in depression amongst U.S. teens in the last half decade.

* Smartphones and social media are purported to be a likely cause, but how could you determine
this?
*  The gold standard would be data from a randomized control trial (RCT).

What would such an RCT study require of its participants?

Answer:
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Figure 3. Percent with major depressive episode in the past 12 months, by age group, 2009-2017.

Figure from Twenge et al. (2019) Figure from Berenguer et al. (2017)
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Motivation: Causal Inference

Pearl (2018):

Text from Pearl (2018)

Unlike the rules of geometry, mechan-
ics, optics, or probabilities, the rules of
cause and effect have been denied the
benefits of mathematical analysis.

To appreciate the extent of this de-
nial readers would likely be stunned
to learn that only a few decades ago
scientists were unable to write down
a mathematical equation for the ob-
vious fact that “Mud does not cause
rain.” Even today, only the top echelon
of the scientific community can write
such an equation and formally distin-
guish “mud causes rain” from “rain
causes mud.”

34



Causal Inference

Key Questions:

— What types of questions can causal inference
answer?

— What type of data is needed to answer each
question?



Statistical vs. Causal Analysis

Whiteboard:

— Statistical vs. Causal Analysis
» Statistical analysis (goals, assumptions)
* Causal analysis (goals, assumptions)

— 3-Level Causal Hierarchy
* Association

* [Intervention
 Counterfactual



Causal Hierarchy

Figure 1. The causal hierarchy. Questions at level 1 can be answered only if information

from level | or higher is available.

Level (Symbol) Typical Activity Typical Questions Examples
1. Association Seeing What is? How would What does a symptom
Plylx) seeing X change my tell me about a disease?
belief inY? What does a survey tell
us about the election
results?
2. Intervention Doing, What if? What if I do X? What if I take aspirin,
Plyldo(x), 2) Intervening will my headache be
cured? What if we ban
cigarettes?
3. Counterfactuals Imagining, Why? Was it X that Was it the aspirin that
Ply Ix, y) Retrospection caused Y? Whatif I had stopped my headache?
acted differently? Would Kennedy be alive
had Oswald not shot

him? What if I had not
been smoking the past
two years?

Table from Pearl (2018)



Causal Models

Whiteboard:

— Causal Bayesian Networks
(i.e. where we are going... )



SCM Inference Engine

Figure 2. How the SCM “inference engine” combines data with a causal model (or assump-

tions) to produce answers to queries of interest.

Inputs Outputs
Estimand
Query - (Recipe for el
/ answering the query)
Assumptions Estimate £
(Graphical model) (Answer to query) -
Data ™ Fit Indices " F

Figure from Pearl (2018)



Causal Models

Whiteboard:

— Structural Causal Models
« Example: Linear SCM (structural equation model)
* Example: Nonparametric SCM
* Intervention
* Graphical model induced by SCM

— Post-Intervention Distribution vs. Conditional
Distribution

— Treatment Efficacy

* average difference
* experimental risk ratio



|dentification

|dentification:
— whether the causal effects are identifiable
— the central question in analysis of causal effects

Can the post-intervention distribution p(y | do(x,)) be
estimated by data sampled from the pre-intervention
distribution p(x, y, z)?

Yes! (Sometimes.)

One very useful case: when the model M is acyclic with all
error terms (Uy, Uy, U,) jointly independent, all causal
effects are identifiable.




Causal Markov Theorem

Theorem 1 (The Causal Markov Condition). Any distribution generated by a
Markovian model M can be factorized as:

P(Ul,vg, .. .,'Un) = HP(valpat) (15)

where Vi, Va, ..., V, are the endogenous variables in M, and pa; are (values of)
the endogenous “parents” of V; in the causal diagram associated with M.

Corollary 1 (Truncated factorization). For any Markovian model, the distri-
bution generated by an intervention do(X = xy) on a set X of endogenous
variables is given by the truncated factorization

P(vy,v2,...,v|do(z0)) = ] P(vilpai)|s=z, (17)
t|VigX

where P(v;|pa;) are the pre-intervention conditional probabilities.”

Figures from Pearl (2009)
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ldentification

Example: Model M 1. All of the terms in the post-
(error terms not shown) intervention distribution
2 , are from the pre-
92

intervention distribution

> 2. Those terms could be
3 learned from observational
X T N data

Pre-intervention distribution:
P(CU, R1y %2y %3, y) — P(Zl)P(ZQ)P(Z3|Zl, zQ)P(xlzla Z3)P(y|z27 239 x)

Post-intervention distribution:
P(z1, 22, 23, y|do(z0)) = P(21)P(22) P (23|21, 22) P (y| 22, 23, T0)

Causal effectof Xon Y:
P(y|do(zo)) Z P(z1)P(22)P (23|21, 22) P (y|22, 23, Z0)

Z1,%2,23

Figures from Pearl (2009)



|dentification

|dentification:
— whether the causal effects are identifiable
— the central question in analysis of causal effects

Can the post-intervention distribution p(y | do(x,)) be
estimated by data sampled from the pre-intervention
distribution p(x, y, z)?

Yes! (Sometimes.)

One very useful case: when the model M is acyclic with all
error terms (Uy, Uy, U,) jointly independent, all causal
effects are identifiable.




Unmeasured Confounders

Example: Model M
(error terms not shown)

Z
1 7

Z3

X

Y
Pre-intervention distribution:

P(z, 21, 22, 23,y) = P(21)P(22) P(23]21, 22) P(2|21, 23) P (y|22, 23, )

Post-intervention distribution:
P(z1, 22, 23, y|do(z0)) = P(21)P(22) P (23|21, 22) P(y|22, 23, T0)

Causal effect of Xon Y:
P(y|do(xo)) = Z P(z1)P(22)P(z3|21, 22) P(y| 22, 23, T0)

Z1,22,23

P(y|do(z0)) = )  P(21)P(z321)P(y|z1, 23, 0)

21,23

FiguresfromPeart(2009)



Unmeasured Confounders

* Suppose we wish to measure causal effect of XonY

* But some confounding variables are unmeasurable (e.g. genetic trait) and
some are measureable (e.g. height)

 How to pick an admissible set of confounders which, if measured, would
enable inference?

Definition 3 (Admissible sets — the back-door criterion). A set S is admissible
(or “sufficient”) for adjustment if two conditions hold:

1. No element of S is a descendant of X
2. The elements of S “block™ all “back-door” paths from X to Y, namely all
paths that end with an arrow pointing to X.

Definition 1 (d-separation). A set S of nodes is said to block a path p if either
(i) p contains at least one arrow-emitting node that is in S, or (ii) p contains
at least one collision node that is outside S and has no descendant in S. If S
blocks all paths from X to Y, it is said to “d-separate X and Y,” and then, X
and Y are independent given S, written X 1L Y'|S.

46
Figures from Pearl (2009)



Unmeasured Confounders

* Suppose we wish to measure causal effect of XonY
* But some confounding variables are unmeasurable (e.g. genetic trait) and
some are measureable (e.g. height)

 How to pick an admissible set of confounders which, if measured, would
enable inference?

Definition 3 (Admissible sets — the back-door criterion). A set S is admissible
(or “sufficient”) for adjustment if two conditions hold:

1. No element of S is a descendant of X
2. The elements of S “block™ all “back-door” paths from X to Y, namely all

paths that end with an arrow pointing to X.

2l 2> Based on this criterion we see, for example, that the sets {Z1, Z>, Z3}, {Z1, Z3},
W, {Wi, Z3}, and {Ws, Z3}, each is sufficient for adjustment, because each blocks
L‘ 7 W all back-door paths between X and Y. The set {Z3}, however, is not suffi-
2 cient for adjustment because, as explained above, it does not block the path
X s Xe—W—Z1 > Z3—Zy—>Wy—-Y.
3

47
Figures from Pearl (2009)



EXAMPLE: IDENTIFYING CAUSAL
EFFECT



Simpson’s Paradox

TreatmentA  Treatment B
Group 1 Group 2

. 93% (81/87) '87%(2341270)
Group 3 Group 4
Large Stones
m(twm). 69% (55/80) Treatment

Both . — J A/B Recovery

49

Figure from Kun Zhang’s Spring 2019 10-708 Guest Lectures



Identification of Causal Effects
P(X3| o (X2=1))

® “Golden standard”: randomized controlled experiments

® All the other factors that influence the outcome
variable are either fixed or vary at random, so any
changes in the outcome variable must be due to the
controlled variable

&

\
Recovery

)

A/B

® Usually expensive or impossible to do!
Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures 27



ldentification of Causal Effects

Whiteboard:

— Stone-size example:
* Model 1: path diagram for randomized control trial
* Model 2: path diagram for observational data

* Model 3: path diagram for intervention



Identification of Causal Effects: Example

Treatment A Treatment B

Group 1 Grouwp 2
93% (81/87) B87% (234/270)

I : Group 3 Group 4
73% (192/263) 69% (55/80)

Bon  7ex@racso) smaswsy  P(R|T) = ZP(RlT S)P(S|T)

_A_
Stone size
F

Small Stones

P(R|do(T ZPRUS

\

/

Treatment
A/B

conditioning vs. manipulating

Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures 28



Identification of Causal Effects: Example

O Small stones

TreatmentA  Treatment B ~ Large stone
Gowp!  Group2 77 All patients
Small Stones 0% BIAT) | 87% 234270) 0.95 pa
Group 3 Growp 4 )
Large S1ones 3w (1927263) 9% (s580) P( R | do(T)) Y P(R|T,S)P(S
Both 78% (273/350) 83% (289/350) © 085 s
g 0.8
Q
@ 0.75
0'7 N
0.65
Treatment A Treatment B

Treatment
A/B

Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures 2

conditioning vs. manipulating



Identification of Causal

Effects: Example

© Small stones

TreatmentA  Treatment B “ Large stone
Small Stones x /;n ma;;;m | 0.95 7 All patients |’
e mG:;;m “ir?;:m P(R|do(T)) = Zp(m'r. S)P(S
Both 78% (273/350) 83% (289/350) w 085 s
g o8 (R|T) =
@ 0.75 = ; PIRIT, $)p(s7)
- A\
— 2 \ | 0.65
e Treatment A Treatment B

| Treatment A
A/B

Recovery

Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures 2

conditioning vs. manipulating



Identification of Causal

Effects: Example

© Small stones

TreatmentA  Treatment B “ Large stone
Small Stones x . ma;;;m | 0.95 7 All patients |’
e mG:;;m “ir?;:m P(R|do(T)) = Zp(m'r. S)P(S
Both 78% (273/350) 83% (289/350) © 0% ‘@
g o TRy = Sy
@ 0.75 = ; PIRIT, $)P(s7)
- A\
— / \ | 0.65
e Treatment A Treatment B

| Treatment A
A/B

Recovery

Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures 2

conditioning vs. manipulating



COUNTERFACTUAL INFERENCE



Counterfactual Inference vs. Prediction

® Suppose X—Y with Y = log(X + E + 3). For an individual
with (x,y), what would Y be if X had been x’ ?

Y = log(X + E + 3)

. _ I.
RFIL L

L (LA
» i',“..’?} ".‘ ~1"‘
A g~

£

-2 -1 0
Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures X
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Counterfactual Inference vs. Prediction

® Suppose X—Y with Y = log(X + E + 3). For an individual
with (x,y), what would Y be if X had been x’ ?

Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures X



Standard Counterfactual Questions

®* We talk about a particular situation (or unit) U = u, in
which X=xand Y =y

® What value would Y be had X been x’ in situation u?
[.e., we want to know Yy_,.(u), the value of Y in
situation u i1f we do(X=x")

® u is not directly observable, so P(Yy.. | X =x, Y = y)
instead

For identification of causal effects, U is randomized. It
is fixed for counterfactual inference.

Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures



Counterfactual Inference

X = fy (W, Uy) P(Yxor | X=X, Y =y, W=w)

W,
/\ ,
X\ / Z=1,(W,U,) evidence

Y=1{(X 2 U,

® Three steps
® Abduction: find P(U | evidence)
® Action: Replace the equation for X by X = x’

® Prediction: Use the modified model to predict Y

Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures



Counterfactual Inference vs. Prediction

¢ Suppose X—Y with Y = log(X + E + 3). For an individual
with (x,y), what would Y be if X had been x” ?

2

= log(X + E + 3)
|
o l
DL ' |
I /
_3 L lx A ':I: L J
-2 -1 0 1 2

Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures X



CAUSAL DISCOVERY



Causal Discovery

e Goal:

— Find a path diagram (i.e. causal model) that is best
supported by the data

* Key ldea:

— find causal structures that are consistent (in a d-
separation sense) with the set of conditional
independencies supported by the data

e Where to learn more?

— Kun Zhang (CMU, Philosophy [ ML) guest lectures
from Spring 2020 10-708:


http://www.cs.cmu.edu/~epxing/Class/10708-20/lectures.html

Causal Structure vs. Statistical Independence

(SGS, et al.)

Causal Markov condition: each variable is ind. of its non-

descendants

conditional on its parents

r

causal structure
(causal graph)
Y= X—-Z

Y--X--21

) 4

Statistical
independence(s)

Y I Z|X

v

Faithfulness: all observed (conditional) independencies

are entailed

in the causal graph

( Recall:Y 1 Z «P(Y|Z)=P(Y);Y LZ|X <P(Y|Z.X)=P(Y|X)

)

Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures
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Constraint-Based vs. Score-Based

® (Constraint-based methods
X3

® Score-based methods

Xi— X = X5—> X, ~

score |
X ‘ Which
93 ‘ score 2 oneis
the best?
‘ score 3

64 (Score may be BIC,AIC, etc.)

X ==X «—X; —> X,

Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures



RL AS INFERENCE



% A note on materials used in this module

a Sutton & Barto. Reinforcement Learning: An Introduction. 27¢ edition.

a David Silver's UCL course on reinforcement learning.

o Materials from UC Berkeley's Deep RL course.
a Sergey Levine's tutorial on RL and control as inference.

0 Brian Ziebart's PhD thesis (maximum causal entropy models).

Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures
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y Paradigms of machine learning

e Supervised learning

Given: a collection of data D = {(x;, y)}¥.,
Goal: learn a model that approximates P(y | x)

e Unsupervised learning

Given: a collection of data D = {(xy, x2, ...
Goal: learn a model that approximates P(x,, x3, ...,

¢ Reinforcement learning

Given:  an environment that an agent can perceive
and interact with

Goal: learn a controller (policy) that can maximize
the utility (reward) in the given environment

Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures

Xa)ites

GMs allow us to efficiently
represent, manipulate, and
perform learming and inference
on these probabikistic models,

DL gives the tools for learing
expressive latent representations
that lead to more accurate
probabilistic models of the data

L
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? Why sequential decision making and RL?

Ultimately, we want to build autonomous intelligent machines that:

e Can perceive and interact with the world sonr ey —
e Exhibit purposeful goal-directed behavior '9

/,——-\\ /
e Learn from interactions, adapt to changes, plan _ _%
and be able to maximize utility functions - G e
(specified by humans or inferred from situations)

=

RL gives us a formal framework for building such autonomous agents.

r
e e s S

69

Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures



4 Some recent success stories of RL

AlphaGo (DeepMind, 2016) AlphaStar (DeepMind, 2019)

Learning to play games

Robotics

FINGER PIVOTING SLIDING FINGER GAITING

Chebotar ot al., 2018 OpenAl, 2018 . )‘

70
Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures



BASIC CONCEPTS IN RL



y Markov Decision Processes (MDPs)

- % Agent
Markov Decision Process (MDP): - ,
rows acton
AY R,
e Environment has a set of states § 8. !
_5.. | Environment (e

e Agent is given a set of possible actions A

e Environment dynamics: transitions from state s, into a new state s,

according to the transition probability P(s.+1|s¢, a;) after agent takes action a,

o Reward function: r(s,a) = E[re.,ls: = s,a, = a] provides scalar rewards to the
agent at each time step

e “Life" of an agent (or trajectory):

T = (51,@9,7,52,a2,73,53,Q3,73, ...)

X

72
Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures



i Markov Decision Processes (MDPs) |« -~

Envieonmen! e

What can we do with MDPs:

(1) Palicy search: Find a policy n: § — A that outputs actions for each given
state such that the cumulative reward along the trajectory is maximized.

(2) Inverse BL: Given a set of optimal trajectories (e.g., generated by a human
expert), infer the corresponding MDP.

73
Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures



y Returns and Episodes

Maximization of the return:

e Return (cumulative reward) starting step t: Gy = 1pyq + Tegp + o

e If T = o0, we can use the notion of discounted return:

Ge = rg”u + Yresz + ¥ ireaz + o

— k
- Z Y Ttek+1

k=0
= Te41 T Y04

where 0 < y < 1 is called the discount rate

Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures

+r7'
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? Policies and Value Functions

e Value function of a state s:

T
Vz(s) :=Ez [G¢ | 3t = 8] = E; [Z Voresker | se=s
k=0

e Value function of the state-action pair (s, a):

Qx(s,a):=E; |G| st = s,a; = al

T
k —
E :"Y Te+k+1 | St = 8,0 = @
k=0

= [E,

Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures

|
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? Bellman Equation for Q. (s, a)

e Bellman equation for the value function of the state-action pair (s, a):

Qx(s,a) =7(s,a) +7 ) _p(s' | s,0) ) _w(a'| )Qx(s",a')

g=(8,a) ¢+« s5,a

Ge(s',a’) ¢ a’

Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures
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y Optimal Policies and Value Functions

e Solving an RL task means finding an optimal policy that achieves high
reward in the long run.

e Policy m is better or equal to ' (mr = ') if its expected return is greater or
equal to that of =’ for all states:

n2n & V(s)2Vy(s)VsES

e Optimal value functions (Bellman optimality):
Vi(s) := max Vi (s) = max ) _p(s’ | s,a) [r(s, a) + Vi (s")]
n a ;

Q.(s,a) = maxQx(s,a) = Y p(s | 5,a) [r(s,0) + 7 max Qu (s, )]
i - M
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? How to recover optimal policy and trajectories?

e We can recover an optimal policy from the optimal Q. (s, a):

Te(a|s)=24 (a = argmng*(s,a))

e To recover a set of optimal trajectories, just execute the optimal policy:

IR TR TR TR R
T = (81,01,7’1,82,02,7'2,..-)

St+1 ~ P(st41 | 8¢, af = argmax Q. (s, a))
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% Example: Grid World and an Optimal Policy

A B3 | 22.0024.4{22.0(19.4 17.51 — 0—}* .- ‘-I" -

' 19.8220{19.6{17.8(16.0 ol 1 |J|e— |

ac* B 17.8019.8)17.816.014.4 0 o R O PR

/ 16.0{17.8{16.0{14.4(13.0) L. t . R S

A'f 14.416.0114. 13.0(11.7 O I O o A ¢
Gridworld Vw T x

Figure 3.5: Optimal solutions to the gridworld example.
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7 Recap

[ agent ¢ Value functions:
s | | rewmard &
s | & . Va(s) := Eq Z‘r*"uun | 8¢ = 8]
A,
. sl Environment |e——— :*;o
Qx(s,a):=E, Z"rk"c+k+l | 8 = 8,44 = 0]
k=0
Initial state 0 ~ po(s)
Transition Se41 ™~ Plsesr | 8e,aq) ) . . "
Policy ae ~ (e | 5¢) e Recursive notion of optimality:
Rcvmnl re = r(g‘,a‘) (v.) ~ (g.) a0

v

AL A A

Figure 3,40 Backup dagrams for o, and 4. - g

85
Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures



RL & CONTROL AS INFERENCE IN A
GRAPHICAL MODEL



? MDP as a Graphical Model

controls

[

=

(a) (=) @ ~{2gem
' LR '
5. | Environment |ete——
\

state dynamics

C—

How do we define a distribution over rational/optimal trajectories? . x
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? MDP as a Graphical Model

ORONONS
(=) {)—{)

Initial state 0 ~ pols) . Initial state 0 ~ po(s)
Transition Se41 ~ PSes1 | 5e,ae) ' Transition S ~ M504 | 8¢ a0)
Policy ag ~ w(a | s¢) Policy ag ~ wlag | 5)
Reward re = r(8e, a) Reward re = r{sg,ay)
Optimality p(Of = 1| 8, a¢)»= exp{r{s:, ar))
- M
88
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% Why is this model interesting?

e Can solve control and planning problems using inference algorithms
e Allows to model suboptimal behavior (important for inverse RL)

e Provides and explanation for why stochastic behavior might be preferred
(from the exploration and transfer learning point of view)

Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures

89



y What can we do with this graphical model?

Here is what we can do:
e Given a reward, determine a likely optimal trajectory
e Given a collection of optimal trajectories, infer the reward and priors

e Given a reward, infer the optimal policy
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% Distribution over the optimal trajectories

(O | 5¢,a¢) = exp(r(se, a))

t=1
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% Inferring the reward & prior that generate trajectories

T

T
p(7 | Onr,0,0) x [P(Sl) HP(3t+l | Shat)] exp (Z relse, ar) + log pelag | s¢)
t=1

t=1

The model reminds a featurized CRF. (!
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f a‘ |‘ 02 ‘: ‘r a’ vl " a‘ ‘:
\ Jn' - __Jf.k A

? Optimal policy and planning via inference w L D »ﬁ g ‘:' ;

| T,
vy 'e 1y

::b./:' ! 0') ':\03/) l\o‘/l

¢ Unroll the dynamics and compute backward messages:
Bi(sesar) := p(Orr | 8¢, a)

e Compute optimal policy:
plag | s8¢, Opr)
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(a)

\
| az | (

| ‘)

1\

? Backward messages B\Vg;\@ ;
Be(se.a¢) = p(Oer | 50 ae) Probability that we can be optimal ‘ ‘

at steps ¢ through T given s, and a,
= /SP(Ot:T.Stﬂ | 8¢,@¢)dse41

(o)

= /sP(ozH:T | Se41)P(8¢41 | 8¢,ae)p(Or | 8¢, a¢)d5e 4y

"

Bes1(8e41)

P(Ot+l:T | 8:+ll - Lp(ot-i»l:’r | 8¢+1,0t+1)P(0c+l | 8:+1)dat+l

fort=T~-1tol:

&(8;,03) — p(Ot l 3¢’ai)Ea¢+|~p(au;|a¢.a.) [ﬂt+l(3t+l)]
B‘ (8‘) = E04~P(00|0¢) [B‘(s"at)]

- - 2 437 » o -~ wnrvronrmd o e are vt v el Y - o _—rr .
avine [ Z018). Kainforcams ieaming and 1ol as probadilistic iInferences x
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ay ) | 02 ) | ay ) | ay )
\ /~ L j“ — ,f.._\ S ‘:

? How are these messages related to RL? (=1 s oo
¢ "" l‘ 2 ;'? : /"’ : /;", '|
@ @ & @

let Vi(s,) = log 3(s;)
let Q,(s,.a;) = log .’_'I,(sf.ag) ""(Sl) - l()f.’./(‘X[)(Q(S(.ﬂ() + l()g p(a, |s,))a,

Deterministic dynamics: Q(s:,a.) = r(s;,a,) + V(s441)

Stochastic dynamics: Q(s,,a,) = r(s¢,a;) + 108 B, ., ~p(se. 1 /se.m0 [€xXp(V (8041))]
1 )
1

“optimistic” transition (not good)
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% Optimal policy

Be(se,ay)
Bi(se)

m(ayls,) =

m(a;|s) = exp(Qi(se, ar) — Vi(sy)) = exp(A¢(se, a;))

e (Derivation: exercise!)
e Natural interpretation: better actions are more probable + random tie breaking

e Approaches greedy policy as temperature decreases
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e Using auxiliary potentials and/or optimality variables, we reduced optimal
control to inference in a graphical model.

¢ “Solving MDP”" becomes very similar to inference in HMM / MEMM / CRF.

e The approach is quite similar to dynamic programming, value iterations, etc.

- X

97
Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures



