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Reminders

• Cloud Credits (AWS or GCP)
– first request deadline: Thu at 11:59pm

• Final Project Milestones
– Final Poster Session

– Final Poster submission

– Final Executive Summary submission
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GAUSSIAN PROCESS
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Motivation: Gaussian Process

• Given data, estimate a probability density function that best explains it
• A nonparametric prior can be placed over an infinite set of distributions
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Density Estimation
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Motivation: Gaussian Process

• Given data, estimate a probability density function that best explains it
• A nonparametric prior can be placed over an infinite set of distributions
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Density Estimation

Figure from Teh MLSS 2007
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Gaussian Process

Whiteboard:
– Parametric vs. Nonparametric learning
– High level idea of GP regression
– GP Regression
• Example prior 
• Strawman inference algorithm
• Example posterior

– GP Classification
• approximate inference
• Example posterior
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Multivariate Gaussians
Problem Setup:
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Question 1: True or False: The marginals of the distribution are given by:

Question 2: True or False: The conditionals of the distribution are given by:



Background: Multivariate Gaussians

Whiteboard:
– Marginal of multivariate Gaussian
– Conditional of multivariate Gaussian
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Gaussian Process Regression
Whiteboard:
– Function-space view
• definition of Gaussian Process
• mean function
• covariance function

– Example kernels
– Weight-space view
• linear regression (linear model + Gaussian noise)
• ridge regression (adding a Gaussian prior)
• Bayesian linear regression
• Bayesian kernel regression (aka. GP Regression)

9



Gaussian Process Regression

Whiteboard:
– MBR Decoding
– Computational complexity
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GAUSSIAN PROCESS INFERENCE
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Gaussian Process Example
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Gaussian Process Example
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Gaussian Process Example
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Gaussian Process Example
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Gaussian Process Example
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Gaussian Process Example
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Gaussian Process Example
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GAUSSIAN PROCESS KERNELS
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Gaussian Process Example
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Gaussian Process Example
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Gaussian Process Example
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Gaussian Process Example

20



Gaussian Process Example
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Gaussian Process Example
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Gaussian Process Example
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Gaussian Process Example
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CAUSAL INFERENCE
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Correlation
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Figure from https://www.tylervigen.com/spurious-correlations



Correlation
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Figure from https://www.tylervigen.com/spurious-correlations



Correlation
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Figure from https://www.tylervigen.com/spurious-correlations



Motivation: Causal Inference

1. What is the efficacy of a given drug in a 
given population? 

2. Whether data can prove an employer guilty 
of hiring discrimination? 

3. What fraction of past crimes could have 
been avoided by a given policy? 

4. What was the cause of death of a given 
individual, in a specific incident?

32
Questions from Pearl (2009)



Motivation: Causal Inference
Question:
• Imagine you’re a sociologist attempting to understand the factors that have led to the sharp 

rise in depression amongst U.S. teens in the last half decade.
• Smartphones and social media are purported to be a likely cause, but how could you determine 

this?
• The gold standard would be data from a randomized control trial (RCT). 

What would such an RCT study require of its participants?
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Figure from Twenge et al. (2019) Figure from Berenguer et al. (2017)

Answer:



Motivation: Causal Inference
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Text from Pearl (2018)

Pearl (2018):



Causal Inference

Key Questions:
– What types of questions can causal inference 

answer?
– What type of data is needed to answer each 

question?
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Statistical vs. Causal Analysis

Whiteboard:
– Statistical vs. Causal Analysis
• Statistical analysis (goals, assumptions)
• Causal analysis (goals, assumptions)

– 3-Level Causal Hierarchy
• Association
• Intervention
• Counterfactual
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Causal Hierarchy
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Table from Pearl (2018)



Causal Models

Whiteboard:
– Causal Bayesian Networks

(i.e. where we are going…)
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SCM Inference Engine
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Figure from Pearl (2018)



Causal Models
Whiteboard:
– Structural Causal Models
• Example: Linear SCM (structural equation model)
• Example: Nonparametric SCM
• Intervention
• Graphical model induced by SCM

– Post-Intervention Distribution vs. Conditional
Distribution

– Treatment Efficacy
• average difference
• experimental risk ratio

40



Identification
Identification:

– whether the causal effects are identifiable
– the central question in analysis of causal effects
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Can the post-intervention distribution p(y | do(x0)) be 
estimated by data sampled from the pre-intervention 
distribution p(x, y, z)?

Yes! (Sometimes.)

One very useful case: when the model M is acyclic with all 
error terms (UX, UY, UZ) jointly independent, all causal 
effects are identifiable.



Causal Markov Theorem
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Figures from Pearl (2009)



Identification
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Example: Model M 
(error terms not shown)

Pre-intervention distribution:

Post-intervention distribution:

Causal effect of X on Y:

1. All of the terms in the post-
intervention distribution 
are from the pre-
intervention distribution

2. Those terms could be 
learned from observational 
data

Figures from Pearl (2009)



Identification
Identification:

– whether the causal effects are identifiable
– the central question in analysis of causal effects
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Can the post-intervention distribution p(y | do(x0)) be 
estimated by data sampled from the pre-intervention 
distribution p(x, y, z)?

Yes! (Sometimes.)

One very useful case: when the model M is acyclic with all 
error terms (UX, UY, UZ) jointly independent, all causal 
effects are identifiable.



Unmeasured Confounders
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Example: Model M 

(error terms not shown)

Pre-intervention distribution:

Post-intervention distribution:

Causal effect of X on Y:

Suppose in our previous 

identifiability example, we 

didn’t observe z2 in our data. 

Can we still estimate p(y | 

do(x0))? 

Yes! Just marginalize 

over z2Figures from Pearl (2009)



Unmeasured Confounders
• Suppose we wish to measure causal effect of X on Y
• But some confounding variables are unmeasurable (e.g. genetic trait) and 

some are measureable (e.g. height)
• How to pick an admissible set of confounders which, if measured, would 

enable inference?
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Figures from Pearl (2009)



Unmeasured Confounders
• Suppose we wish to measure causal effect of X on Y
• But some confounding variables are unmeasurable (e.g. genetic trait) and 

some are measureable (e.g. height)
• How to pick an admissible set of confounders which, if measured, would 

enable inference?
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Figures from Pearl (2009)



EXAMPLE: IDENTIFYING CAUSAL 
EFFECT
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Simpson’s Paradox
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Figure from Kun Zhang’s Spring 2019 10-708 Guest Lectures



50
Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures



Identification of Causal Effects

Whiteboard:
– Stone-size example:
• Model 1: path diagram for randomized control trial
• Model 2: path diagram for observational data
• Model 3: path diagram for intervention
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52
Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures
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Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures
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Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures
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Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures



COUNTERFACTUAL INFERENCE
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57
Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures
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Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures
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Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures
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Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures
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Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures



CAUSAL DISCOVERY
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Causal Discovery

• Goal: 
– Find a path diagram (i.e. causal model) that is best 

supported by the data

• Key Idea:
– find causal structures that are consistent (in a d-

separation sense) with the set of conditional
independencies supported by the data

• Where to learn more?
– Kun Zhang (CMU, Philosophy / ML) guest lectures 

from Spring 2020 10-708: 
http://www.cs.cmu.edu/~epxing/Class/10708-
20/lectures.html
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http://www.cs.cmu.edu/~epxing/Class/10708-20/lectures.html
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Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures
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Slide from Kun Zhang’s Spring 2019 10-708 Guest Lectures



RL AS INFERENCE
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67
Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures
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Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures
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Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures
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Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures



BASIC CONCEPTS IN RL
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Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures



73
Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures
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Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures
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Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures
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Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures
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Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures
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Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures
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Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures
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Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures



RL & CONTROL AS INFERENCE IN A 
GRAPHICAL MODEL
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Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures
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Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures
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Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures
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Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures
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Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures
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Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures
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Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures
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Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures
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Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures
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Slide from Maruan Al-Shedivat’s Spring 2020 10-708 Guest Lectures
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