Bayesian Nonparametrics:
Gaussian Process
Reminders

• Cloud Credits (AWS or GCP)
 – first request deadline: Thu at 11:59pm

• Quiz 3
 – Mon, May 3 during lecture slot
 – Topics: Lectures 16 - 23
QUIZ 2 LOGISTICS
Quiz 2

• **Time / Location**
 – **Time:** In-Class Quiz
 Wed, Apr. 14 during lecture time
 – **Location:** The same Zoom meeting as lecture/recitation. Please arrive online early.
 – Please watch Piazza carefully for announcements.

• **Logistics**
 – Covered material: Lecture 9 – Lecture 15
 (and unavoidably some material from Lectures 1 – 8)
 – **Format of questions:**
 • Multiple choice
 • True / False (with justification)
 • Derivations
 • Short answers
 • Interpreting figures
 • Implementing algorithms on paper
 • Drawing
 – No electronic devices
 – You are allowed to **bring** one 8½ x 11 sheet of notes (front and back)
Quiz 2

• **Advice (for before the exam)**
 – Try out the Gradescope quiz-style interface in the “Fake Quiz” now available

• **Advice (for during the exam)**
 – Solve the easy problems first (e.g. multiple choice before derivations)
 • if a problem seems extremely complicated you’re likely missing something
 – Don’t leave any answer blank!
 – If you make an assumption, write it down
 – If you look at a question and don’t know the answer:
 • we probably haven’t told you the answer
 • but we’ve told you enough to work it out
 • imagine arguing for some answer and see if you like it
Topics for Quiz 1

• Graphical Model Representation
 – Directed GMs vs. Undirected GMs vs. Factor Graphs
 – Bayesian Networks vs. Markov Random Fields vs. Conditional Random Fields

• Graphical Model Learning
 – Fully observed Bayesian Network learning
 – Fully observed MRF learning
 – Fully observed CRF learning
 – Parameterization of a GM
 – Neural potential functions

• Exact Inference
 – Three inference problems: (1) marginals, (2) partition function, (3) most probably assignment
 – Variable Elimination
 – Belief Propagation (sum-product and max-product)
Topics for Quiz 2

• Learning for Structure Prediction
 – Structured Perceptron
 – Structured SVM
 – Neural network potentials

• (Approximate) MAP Inference
 – MAP Inference via MILP
 – MAP Inference via LP relaxation

• Approximate Inference by Sampling
 – Monte Carlo Methods
 – Gibbs Sampling
 – Metropolis-Hastings
 – Markov Chains and MCMC

• Parameter Estimation
 – Bayesian inference
 – Topic Modeling
Topics for Quiz 3

• Approximate Inference by Optimization
 – Variational Inference
 – Mean Field Variational Inference
 – Coordinate Ascent V.I. (CAVI)
 – Variational EM
 – Variational Bayes

• Deep Generative Models
 – Variational Autoencoders
 – Sigmoid Belief Networks, Restricted Boltzmann Machines, Deep Belief Nets, Deep Boltzmann Machines

• Bayesian Nonparametrics
 – Dirichlet Process
 – DP Mixture Model
 – Indian Buffet Process
GAUSSIAN PROCESS
Motivation: Gaussian Process

Density Estimation

- Given data, estimate a probability density function that best explains it
- A nonparametric prior can be placed over an infinite set of distributions

Prior:

Motivation: Gaussian Process

Density Estimation

- Given data, estimate a probability density function that best explains it
- A nonparametric prior can be placed over an infinite set of distributions

Posterior:

Gaussian Process

Whiteboard:

– Parametric vs. Nonparametric learning
– High level idea of GP regression
– GP Regression
 • Example prior
 • Strawman inference algorithm
 • Example posterior
– GP Classification
 • approximate inference
 • Example posterior
Background: Multivariate Gaussians

Whiteboard:

– Marginal of multivariate Gaussian
– Conditional of multivariate Gaussian
Gaussian Process Regression

Whiteboard:

– Function-space view
 - definition of Gaussian Process
 - mean function
 - covariance function

– Example kernels

– Weight-space view
 - linear regression (linear model + Gaussian noise)
 - ridge regression (adding a Gaussian prior)
 - Bayesian linear regression
 - Bayesian kernel regression (aka. GP Regression)
Gaussian Process Regression

Whiteboard:

- MBR Decoding
- Computational complexity
GAUSSIAN PROCESS INFERENACE
Gaussian Process Example

Posterior (kernel: 1**2 * RBF(length_scale=1))
Log-Likelihood: -1.419
Gaussian Process Example

Posterior (kernel: 0.728**2 * RBF(length_scale=1.6))
Log-Likelihood: -2.084
Gaussian Process Example

Posterior (kernel: $1.49^2 \times \text{RBF}(\text{length}_\text{scale}=0.528))$
Log-Likelihood: -5.463