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Reminders

* Cloud Credits (AWS or GCP)
— first request deadline: Thu at 11:59pm

* Quiz3
— Mon, May 3 during lecture slot
— Topics: Lectures 16 - 23




Exchangability

Question: Answer:
Select All: Which of the following

properties of an infinite sequence of
random variables X,, X,, X;, ... ensure
that they are infinitely exchangeable?

— For any pair of orderings (i,, i, .., i,) and (j,,
j5 -+, jn) Of the indices (1,...,n) the joint
probability of the two orderings is the same

— The joint distribution is invariant to
permutation

— The joint distribution of the first n random
variables can be represented as a mixture

— The random variables are independent and
identically distributed



DIRICHLET PROCESS MIXTURE
MODEL



CRP Mixture Model

* Draw n cluster indices from a CRP:
Z5, 2y ..., 2, ~ CRP(0)

* For each of the resulting K clusters:
9]{*’\“ H
where H is a base distribution

 Draw n observations: Customer i orders a dish x;
e / (observation) from a table-
Lg N p(xz ‘ HZZ ) specific distribution over
dishes 6," (cluster parameters)
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(color denotes different values of x,)



CRP Mixture Model

Draw n cluster indices from a CRP:
Z1, 23, - Zyp ~ CRP(at)
For each of the resulting K clusters:

0, ~H
where H is a base distribution

Draw n observations:

zi ~p(z; | 07)

(color denotes different values of x,)




CRP Mixture Model

Overview of 3 Gibbs Samplers for Conjugate Priors
* Alg. 1: (uncollapsed)

— Markov chain state: per-customer parameters 9, ..., 0,
— Fori=1, .., n:Draw 6, ~p(0, | 0_, x)
 Alg. 2: (uncollapsed) \ All the thetas except 6,

— Markov chain state: per-customer clusterindices z,, ..., z, and
*
per-cluster parameters 0, ..., 6,

— Fori=1, .., m:Drawz;~p(z |z, x, 07)
— Set K = number of clustersin z
— Fork=1, .., K:Draw 0, ~p(6,” | {x;: z; = k})
* Alg. 3:(collapsed)
— Markov chain state: per-customer clusterindices z,, ..., z
— Fori=1, ..., n:Draw z; ~ p(z; | 2, X)

n



CRP Mixture Model

* Q: How can the Alg. 2 Gibbs samplers permit
an infinite set of clusters in finite space?
* A: Easy!

— We are only representing a finite number of
clusters at a time — those to which the data have
been assigned

— We can always bring back the parameters for
the “next unoccupied table” if we need them



Dirichlet Process Mixture Model

Whiteboard

— Dirichlet Process Mixture Model
(stick-breaking version)



CRP-MM vs. DP-MM

Dirichlet Process: For both the CRP and stick-
breaking constructions, if we marginalize out G,
we have the following predictive distribution:

1 n
n gy Up 7 H 5
1

(Blackwell-MacQueen Urn Scheme)

The Chinese Restaurant Process Mixture Model is
just a different construction of the Dirichlet
Process Mixture Model where we have
marginalized out G
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Slide from Eric Xing (2014)

Graphical Models for DPMMs

The Poélya urn construction The Stick-breaking construction
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Figure from Blei & Jordan (2006)

Example: DP Gaussian Mixture Model

initial iteration 2

iteration 5

-20
1
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Figure 2: The approximate predictive distribution given by variational inference at

different stages of the algorithm. The data are 100 points generated by a Gaussian DP
mixture model with fixed diagonal covariance.
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Figure from Blei & Jordan (2006)

Example: DP Gaussian Mixture Model
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Figure 3: Mean convergence time and standard error across ten data sets per dimension
for variational inference, TDP Gibbs sampling, and the collapsed Gibbs sampler.
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Summary of DP and DP-MM

* DP has many different representations:
— Chinese Restaurant Process
— Stick-breaking construction
— Blackwell-MacQueen Urn Scheme

— etc.

* These representations give rise to a variety of
inference techniques for the DP-MM and related
models

— Gibbs sampler (CRP)

— Gibbs sampler (stick-breaking)

— Variational inference (stick-breaking)
— etc.




GMM VS. DPMM EXAMPLE
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Example: Dataset
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Example: GMM

Clustering with GMM (k=6, init=random, cov=full, iter=0)
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Example: GMM

Clustering with GMM (k=6, init=random, cov=full, iter=5)
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Example: GMM

Clustering with GMM (k=6, init=random, cov=full, iter=10)
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Example: GMM

Clustering with GMM (k=6, init=random, cov=full, iter=15)




Example: GMM

Clustering with GMM (k=6, init=random, cov=full, iter=20)
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Example: GMM

Clustering with GMM (k=6, init=random, cov=full, iter=25)
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Example: GMM

Clustering with GMM (k=6, init=random, cov=full, iter=30)
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Example: GMM

Clustering with GMM (k=6, init=random, cov=full, iter=35)
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Example: GMM

Clustering with GMM (k=6, init=random, cov=full, iter=39)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=0)




Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=1)




Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=2)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=3)

‘t?«.

29



Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=4)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=5)

31



Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=6)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=7)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=8)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=9)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=10)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=11)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=12)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=13)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=14)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=15)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=16)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=17)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=18)

44



Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=19)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=20)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=21)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=22)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=23)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=24)
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Example: DPMM

Clustering with DPMM (k=6, init=random, cov=full, iter=25)
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HIERARCHICAL DIRICHLET
PROCESS (HDP)



Related Models

* Hierarchical Dirichlet Process Mixture Model
(HDP-MM)

* [nfinite HMM

e [nfinite PCFG



Slide from 10-708, 2015

HDP-MM

In LDA, we have M independent samples from a Dirichlet
distribution.

The weights are different, but the topics are fixed to be the
same.

If we replace the Dirichlet distributions with Dirichlet
processes, each atom of each Dirichlet process will pick a
topic independently of the other topics.

Because the base measure is continuous, we have zero
probability of picking the same topic twice.

If we want to pick the same topic twice, we need to use a
discrete base measure.

For example, if we chose the base measure to be

K
H =) ads, then we would have LDA again.
=1

We want there to be an infinite number of topics, so we want
an infinite, discrete base measure.

We want the location of the topics to be random, so we want
an infinite, discrete, random base measure.
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HDP-MM

Hierarchical Dirichlet process:

GO|77 H ~ DP(V) H)
Gjla, Go ~ DP(a, Go)

0iilG; ~ G

“ N .\.|‘|

VRN
L Gzn.‘m‘.
X l X, l

Figure from Teh MLSS 2007
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Figure from Teh 2004

HDP-MM

Perplexity on test abstacts of LDA and HDP mixture Posterior over number of topics in HDP mixture
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Figure 6: (Left) Comparison of latent Dirichlet allocation and the hierarchical Dirichlet process mixture.
Results are averaged over 10 runs; the error bars are one standard error. (Right) Histogram of the number of
topics for the hierarchical Dirichlet process mixture over 100 posterior samples.



HDP-HMM (Infinite HMM)

Number of
hidden states in
Infinite HMM is

countably

infinite
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Figure 9: A hierarchical Bayesian model for the infinite hidden Markov model.
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Figure 10: Comparing the infinite hidden Markov model (solid horizontal line) with ML, MAP and VB
trained hidden Markov models. The error bars represent one standard error (those for the HDP-HMM are too

small to see).



Figures from Liang et al. (2007)

HDP-PCFG (Infinite PCFG)

HDP-PCFG
B ~ GEM(«) [draw top-level symbol weights]
For each grammar symbol z € {1,2,... }:
¢ ~ Dirichlet(a®) [draw rule type parameters] be
¢E ~ Dirichlet(a®) [draw emission parameters]

»Z ~ DP(a®,887) [draw binary production parameters] a e
For each node 7 in the parse tree:
t; ~ Multinomial(qﬁfi) [choose rule type] *
If ¢; = EMISSION: @
z; ~ Multinomial (4% [emit terminal symbol] e e

If t;, = BINARY-PRODUCTION:
(zL(i), ZR(3)) ~ Multinomial(qszi ) [generate children symbols]

B ~ GEM() | 1.,

state

left child state

BB"

right child state

left child state

right child state



Parametric vs. Nonparametric

Type of Model

Parametric
Example

Nonparametric
Example

Construction #1

Construction #2

Dirichlet Process (DP)

distribution over Dirichlet-

counts Multinomial Model | Chinese Restaurant Stick-breaking

Process (CRP) construction

: : Dirichlet Process Mixture Model (DPMM)
mixture Gaussian Mixture

Model (GMM) CRP Mixture Model Stlck-breal.qng

construction
Hierarchical Dirichlet Process Mixture

. Latent Dirichlet Model (HDPMM)
admixture

Allocation (LDA)

Chinese Restaurant
Franchise

Stick-breaking
construction




Summary of DP and DP-MM

* DP has many different representations:
— Chinese Restaurant Process
— Stick-breaking construction
— Blackwell-MacQueen Urn Scheme

— etc.

* These representations give rise to a variety of
inference techniques for the DP-MM and related
models

— Gibbs sampler (CRP)

— Gibbs sampler (stick-breaking)

— Variational inference (stick-breaking)
— etc.




INDIAN BUFFET PROCESS (IBP)



Outline

Motivation: Infinite Latent Feature Models

Finite Feature Model

— Beta-Bernoulli Model

— Marginalized Beta-Bernoulli Model

— Expected # of non-zeros

— Taking the Infinite Limit

— Left-ordered form (equivalence classes)

The Indian Buffet Process (IBP)

— Nonexchangeable IBP
— Exchangeable IBP
— Gibbs Sampling with Exchangeable IBP

IBP properties
Applications
Summary



Motivation

+* Latent Feature Models

— Examples:
» factor analysis

* probabilistic PCA
* cooperative vector quantization
* sparse PCA
“* Applications
— object detection in images
— choice behavior (i.e. option A over option B)

— proteomics: modeling the functional interactions of proteins -
which can belong to multiple complexes at the same time

— collaborative filtering: modeling features of movie
preferences (a la. Netflix challenge)

— structure learning for graphical models (i.e. bipartite graphs)



Latent Feature Models

Let x, be the 7th data instance
f. be its features

T T T

F = [ffvfgavfjj\;]

Model: p(X,F) =p(X|F)p(F)



Decompose the feature matrix, F, into a
sparse binary matrix, Z, and a value matrix, V.

F=2®V

N objects

Latent Feature Models

zij € 10,1}
Vij € R

K features

where  is the elementwise product

VU1 O |W O
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Latent Feature Models

Decompose the feature matrix, F, into a
sparse binary matrix, Z, and a value matrix, V.

F=7ZxV where ® is the elementwise product
zij € 10,1}
Vij € R

Model: p(X, F) =p(X|F)p(F)
=p(X|F)p(Z)p(V)

The IBP will provide p(Z) for

the case of infinite columns!




Figure Trom GrirTitns & Ghanramani
(2011)

Finite Feature Model
Beta-Bernoulli Model

e foreachfeaturek € {1,..., K}:
o m ~ Beta(%,1) wherea > 0
o for each object: € {1,..., N}:

m 2. ~ Bernoulli(7y)

p(Z, 7 | )

000
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Finite Feature Model
Marginalized Beta-Bernoulli Model

Because of the conjugacy of the Beta and
Bernoulli, we can analytically marginalize out the
feature prevalence parameters, m,.

P(Z) — H/( P(Zikﬂik)) p(ﬁk)dﬂik

where m; = Z zi1 is # features ON in column £,
i=1
[''is the Gamma function
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Finite Feature Model

e for each feature k € {1,..., K}:
o m, ~ Beta(#,1) wherea >0
o foreach objecti € {1,..., N}:
B 2 Bernoulli(wk)

Recall: if X ~ Beta(r, s),

if Y ~ Bernoulli(p),

then E| X| =
then E|

Expected # of non-zeroes

Elzin] = —5
1+ 2

- N K

SERTZ1 =E | )z

L 1=1 k=1

So the expected
number of non-zero

entriesin Zis < Nao

What happens as K — o0?
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Finite Feature Model
Taking the Infinite Limit

K QI‘(mk—l— %)I‘(N—mk —+ 1)

lim p(Z) = lim JJX

Koo K—oo L4 T(N+1+%2)

=0

Problem: Every matrix has zero probability!
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Finite Feature Model
Left-Ordered Form (lof)

Topic Modeling:
 Consider many samples of the k" topic from

the Markov chaing® 42 T

This topic will “drift” over time (e.g. from
{politics} at time (t) to {geology} at time (t+m))

* Instead of averaging, it’'s common to use a MAP
estimate of the topics

* The order of the topics is not important to the
model (i.e. the topics are not identifiable)



Finite Feature Model
Left-Ordered Form (lof)

Back to our model:

* Q: In alatent feature model, what’s the
difference between feature k=13 and k=27?

* A: Nothing!

The use of left-ordered form capitalizes on the
fact that features are not identifiable

(i.e. order of features doesn’t matter to the
model)



Finite Feature Model
Left-Ordered Form (lof) Same

Define the history of feature k to be the magnitude of history
the binary value given by the column:

10 13 2 13

N
hg = Z 2N =02,
i=1

K, = # of features with history A
Ko = # of features with m;, = 0 (i.e. h = 0)

2™V -1

K, = Z K, # of features with non-zero history
h=1

= K =Ko+ K4

Define lof(Z) to be sorted left-to-right
by the history of each feature.
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Figure from Griffiths & Ghahramani (2005)

Finite Feature Model
Left-Ordered Form (lof)

Define /lof(Z) to be sorted left-to-right
by the history of each feature.

(2 :10f(Z') = lof(2)}

Define equivalence class [ 7]

K!
0

h

[

Cardinality of [Z] =
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Finite Feature Model
Taking the Infinite Limit

hm p(Z) _ llm K %F(Mk‘l‘%)r(N—Wlk—Fl).

K — 00 K—oo £+ C(N+1+%)
=0
Problem: Every matrix has zero probability!
K
Aim p(|Z]) = lim 1K 'p(Z)
h=0 h
K K,
ot N—mp)!(my—1)!
— 2V-1 - exp{—aHy} l_[ | 3\[(1 | ’
[Tr=1 &' =1 ’
Al
where Hy = Z ; is the Nth harmonic number

g=1

Solution: Every equivalence class has non-zero probability!



Figure from Griffiths & Ghahramani (2005)

The Indian Buffet Process
Non-exchangeable

* Imagine an Indian restaurant with a buffet containing an infinite # of dishes.

* N customers make a plate by selecting dishes from the buffet:

15t customer:
Starts at the left and selects a Poisson(a) number of dishes

— ith customer:

1. Samples previously sampled dishes according to their popularity: Problem: the
(i.e. with prob. m,/i where m, is the # of ,
previous customers who tried dish k) process is not

2. Then selects a Poisson(a/i) number of new dishes exchangeable -

dishes sampled
as “new”
depend on the
customer order.

customer 1

customer 2

customer 3

customer 4




Figure from Griffiths & Ghahramani (2005)

The/\lndian Buffet Process
Exchangeaple

* Imagine an Indian restaurant with a buffet containing an infinite # of dishes.

* N customers make a plate by selecting dishes from the buffet:

15t customer:
Starts at the left and selects a Poisson(a) number of dishes

— it customer:
1. Makes a single decision for dishes with same history, h: -
(i.e. If there are K;, dishes w/history h sampled by m,, customers, | This yields a lof

then she samples a Binomial(my/l, K) number starting at the left) .
2. Then selects a Poisson(a/i) number of new dishes matrix, Z.

Does so with
probability

p([2])!

customer 1

customer 2

customer 3

customer 4




Figure from Griffiths & Ghahramani (2005)

The Indian Buffet Process

Example

Dishes
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Gibbs Sampler for IBP

Consider a “prior only” sampler of p(Z | a)

 Forfinite K: )
Ploie = 1la_ip) = / P(eig|m)p(milz—i ) dr
0

m_;k+ %
N+&

J

where z_; 1. is the kth column except row 1,

m_; 1, is the # of rows w/feat. k except

* Forinfinite K:
— The “Exchangeable IBP”” is exchangeable!
— Choose an order s.t. the it" customer was the last to enter (just like CRP sampler)
— Foranyks.t. m;y >0, resample:

m—; k

P(zix = 1l|z_; %) = N

— Then draw a Poisson(a/i) # of new dishes.
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Slide from Ghahramani, Bayes Np. Workshop 2009

Properties of the Indian buffet process

N —mi)!(m. — 1)!
([ ]|a)_exp{—OLHN}Hh>OKh kH ( k?\[(' k )

Prior sample from IBP with a=10
0 r T T T T

objects (customers)

Figure 1: Stick-breaking construction for the DP and IBP.
The black stick at top has length 1. At each iteration the

EE A R vertical black line represents the break point. The brown
features (dishes) dotted stick on the right is the weight obtained for the DP,
Shown in (Griffiths and Ghahramani. 2005): glgli;lt)he blue stick on the left is the weight obtained for

e |t is infinitely exchangeable.

e The number of ones in each row is Poisson(«)

e The expected total number of ones is alV.

e The number of nonzero columns grows as O(«alog V).

Additional properties:

e Has a stick-breaking representation (Teh, Goriir, Ghahramani, 2007)

e Can be interpreted using a Beta-Bernoulli process (Thibaux and Jordan, 2007)
80



Slide from Ghahramani, Bayes Np. Workshop 2009

Posterior Inference in IBPs
P(Z,a|X) « P(X|Z)P(Z|a)P(c)

Gibbs sampling: P(an = 1|Z—(nk)7 X, 04) X P(an = 1|Z—(nk)7 a)P(X|Z)
m_n k

o If M _pn k > O, P(an = 1‘Z—n,ki) —

e For infinitely many k such that m_,, , = 0: Metropolis steps with truncation® to
sample from the number of new features for each object.
e |f o has a Gamma prior then the posterior is also Gamma — Gibbs sample.

Conjugate sampler: assumes that P(X|Z) can be computed.

Non-conjugate sampler: P(X|Z) = [ P(X|Z,0)P(0)df cannot be computed,
requires sampling latent 6 as well (c.f. (Neal 2000) non-conjugate DPM samplers).

*Slice sampler: non-conjugate case, is not approximate, and has an adaptive
truncation level using a stick-breaking construction of the IBP (Teh, et al, 2007).

Particle Filter: (Wood & Griffiths, 2007).

Accelerated Gibbs Sampling: maintaining a probability distribution over some of
the variables (Doshi-Velez & Ghahramani, 2009).

Variational inference: (Doshi-Velez, Miller, van Gael, & Teh, 2009).



Slide from Ghahramani, Bayes Np. Workshop 2009

Modelling Data

Latent variable model: let X be the N x D matrix of observed data, and Z be the
N x K matrix of binary latent features

P(X,Z|a) = P(X|Z)P(Z|)

By combining the IBP with different likelihood functions we can get different kinds
of models:

e Models for graph structures (w/ Wood, Griffiths, 2006)
e Models for protein complexes (w/ Chu, Wild, 2006)
e Models for overlapping clusters (w/ Heller, 2007)
e Models for choice behaviour (Goriir, Jakel & Rasmussen, 2006)
e Models for users in collaborative filtering (w/ Meeds, Roweis, Neal, 2006)
e Sparse latent factor models (w/ Knowles, 2007)
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Summary

Beta-Bernoulli model is a simple finite
feature model

Can treat features as latent

Infinite limit of Beta-Bernoulli yields the
Indian Buffet Process (IBP)

Many properties of the IBP are similar to the
CRP



