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Reminders

• Cloud Credits (AWS or GCP)
– first request deadline: Thu at 11:59pm

• Quiz 3
– Mon, May 3 during lecture slot
– Topics: Lectures 16 - 23
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Exchangability
Question:
Select All: Which of the following 
properties of an infinite sequence of 
random variables X1, X2, X3, …ensure 
that they are infinitely exchangeable?

– For any pair of orderings (i1, i2, …, in) and (j1, 
j2, …, jn) of the indices (1,…,n) the joint 
probability of the two orderings is the same

– The joint distribution is invariant to 
permutation

– The joint distribution of the first n random 
variables can be represented as a mixture

– The random variables are independent and 
identically distributed
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Answer:



DIRICHLET PROCESS MIXTURE 
MODEL

Chinese Restaurant Process & Stick-breaking Constructions
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CRP Mixture Model
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• Draw n cluster indices from a CRP:
z1, z2, …, zn ~ CRP(α)

• For each of the resulting K clusters:
θk

*~ H
where H is a base distribution

• Draw n observations:
xi ⇠ p(xi | ✓⇤zi)

θ1
* θ3

*θ2
* θ4

* …

(color denotes different values of xi)

Customer i orders a dish xi
(observation) from a table-
specific distribution over 
dishes θk

* (cluster parameters)



CRP Mixture Model
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• Draw n cluster indices from a CRP:
z1, z2, …, zn ~ CRP(α)

• For each of the resulting K clusters:
θk

*~ H
where H is a base distribution

• Draw n observations:
xi ⇠ p(xi | ✓⇤zi)

θ1
* θ3

*θ2
* θ4

* …

(color denotes different values of xi)

• The Gibbs sampler is easy 
thanks to exchangeability

• For each observation, we 
remove the customer / dish 
from the restaurant and 
resample as if they were the 
last to enter

• If we collapse out the 
parameters, the Gibbs sampler 
draws from the conditionals:

zi ~ p(zi | z-i, x)



CRP Mixture Model
Overview of 3 Gibbs Samplers for Conjugate Priors
• Alg. 1: (uncollapsed)

– Markov chain state: per-customer parameters θ1, …, θn
– For i = 1, …, n: Draw θi ~ p(θi | θ-i, x)

• Alg. 2: (uncollapsed)
– Markov chain state: per-customer cluster indices z1, …, zn and 

per-cluster parameters θ1
*, …, θk

*

– For i = 1, …, n: Draw zi ~ p(zi | z-i, x, θ*)
– Set K = number of clusters in z
– For k = 1, …, K: Draw θk

* ~ p(θk
* | {xi : zi = k})

• Alg. 3: (collapsed)
– Markov chain state: per-customer cluster indices z1, …, zn
– For i = 1, …, n: Draw zi ~ p(zi | z-i, x)
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All the thetas except θi



CRP Mixture Model

• Q: How can the Alg. 2 Gibbs samplers permit 
an infinite set of clusters in finite space?

• A: Easy! 
– We are only representing a finite number of 

clusters at a time – those to which the data have 
been assigned

– We can always bring back the parameters for 
the “next unoccupied table” if we need them
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Dirichlet Process Mixture Model

Whiteboard
– Dirichlet Process Mixture Model

(stick-breaking version)
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CRP-MM vs. DP-MM

Dirichlet Process: For both the CRP and stick-
breaking constructions, if we marginalize out G, 
we have the following predictive distribution:

The Chinese Restaurant Process Mixture Model is 
just a different construction of the Dirichlet
Process Mixture Model where we have 
marginalized out G
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have:

G|✓1, . . . , ✓n ⇠ DP
⇣
↵+ n, ↵

↵+n
H + n

↵+n

Pn
i=1 �✓i
n

⌘
(4)

Notice that the posterior base distribution is a weighted average between the

prior base distribution H and the empirical distribution
Pn

i=1 �✓i
n

. The weight
associated with the prior base distribution is proportional to ↵, while the em-
pirical distribution has weight proportional to the number of observations n.
Thus we can interpret ↵ as the strength or mass associated with the prior. In
the next section we will see that the posterior base distribution is also the pre-
dictive distribution of ✓n+1 given ✓1, . . . , ✓n. Taking ↵ ! 0, the prior becomes
non-informative in the sense that the predictive distribution is just given by the
empirical distribution. On the other hand, as the amount of observations grows
large, n � ↵, the posterior is simply dominated by the empirical distribution
which is in turn a close approximation of the true underlying distribution. This
gives a consistency property of the DP: the posterior DP approaches the true
underlying distribution.

Predictive Distribution and the Blackwell-MacQueen Urn Scheme

Consider again drawingG ⇠ DP(↵, H), and drawing an i.i.d. sequence ✓1, ✓2, . . . ⇠
G. Consider the predictive distribution for ✓n+1, conditioned on ✓1, . . . , ✓n and
with Gmarginalized out. Since ✓n+1|G, ✓1, . . . , ✓n ⇠ G, for a measurable A ⇢ ⇥,
we have

P (✓n+1 2 A|✓1, . . . , ✓n) = E[G(A)|✓1, . . . , ✓n]

=
1

↵+ n

 
↵H(A) +

nX

i=1

�✓i(A)

!
(5)

where the last step follows from the posterior base distribution of G given the
first n observations. Thus with G marginalized out:

✓n+1|✓1, . . . , ✓n ⇠ 1

↵+ n

 
↵H +

nX

i=1

�✓i

!
(6)

Therefore the posterior base distribution given ✓1, . . . , ✓n is also the predictive
distribution of ✓n+1.

The sequence of predictive distributions (6) for ✓1, ✓2, . . . is called the Blackwell-
MacQueen urn scheme [7]. The name stems from a metaphor useful in inter-
preting (6). Specifically, each value in ⇥ is a unique color, and draws ✓ ⇠ G
are balls with the drawn value being the color of the ball. In addition we have
an urn containing previously seen balls. In the beginning there are no balls in
the urn, and we pick a color drawn from H, i.e. draw ✓1 ⇠ H, paint a ball with
that color, and drop it into the urn. In subsequent steps, say the n + 1st, we
will either, with probability ↵

↵+n
, pick a new color (draw ✓n+1 ⇠ H), paint a

ball with that color and drop the ball into the urn, or, with probability n

↵+n
,

5

(Blackwell-MacQueen Urn Scheme)



Graphical Models for DPMMs
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Slide from Eric Xing (2014)
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Example: DP Gaussian Mixture Model
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Figure from Blei & Jordan (2006)

D. M. Blei and M. I. Jordan 133
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Figure 2: The approximate predictive distribution given by variational inference at
different stages of the algorithm. The data are 100 points generated by a Gaussian DP
mixture model with fixed diagonal covariance.

5 Empirical comparison

Qualitatively, variational methods offer several potential advantages over Gibbs sam-
pling. They are deterministic, and have an optimization criterion given by Equa-
tion (16) that can be used to assess convergence. In contrast, assessing convergence
of a Gibbs sampler—namely, determining when the Markov chain has reached its sta-
tionary distribution—is an active field of research. Theoretical bounds on the mixing
time are of little practical use, and there is no consensus on how to choose among the
several empirical methods developed for this purpose (Robert and Casella 2004).

But there are several potential disadvantages of variational methods as well. First,
the optimization procedure can fall prey to local maxima in the variational parameter
space. Local maxima can be mitigated with restarts, or removed via the incorporation
of additional variational parameters, but these strategies may slow the overall conver-
gence of the procedure. Second, any given fixed variational representation yields only
an approximation to the posterior. There are methods for considering hierarchies of
variational representations that approach the posterior in the limit, but these methods
may again incur serious computational costs. Lacking a theory by which these issues can
be evaluated in the general setting of DP mixtures, we turn to experimental evaluation.

We studied the performance of the variational algorithm of Section 3 and the Gibbs
samplers of Section 4 in the setting of DP mixtures of Gaussians with fixed inverse
covariance matrix Λ (i.e., the DP mixes over the mean of the Gaussian). The natural
conjugate base distribution for the DP is Gaussian, with covariance given by Λ/λ2 (see
Equation 7).

Figure 2 provides an illustrative example of variational inference on a small problem
involving 100 data points sampled from a two-dimensional DP mixture of Gaussians
with diagonal covariance. Each panel in the figure plots the data and presents the



Example: DP Gaussian Mixture Model
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Figure from Blei & Jordan (2006)

134 Variational inference for Dirichlet process mixtures

Figure 3: Mean convergence time and standard error across ten data sets per dimension
for variational inference, TDP Gibbs sampling, and the collapsed Gibbs sampler.

predictive distribution given by the variational inference algorithm at a given iteration
(see Equation (23)). The truncation level was set to 20. As seen in the first panel, the
initialization of the variational parameters yields a largely flat distribution. After one
iteration, the algorithm has found the modes of the predictive distribution and, after
convergence, it has further refined those modes. Even though 20 mixture components
are represented in the variational distribution, the fitted approximate posterior only
uses five of them.

To compare the variational inference algorithm to the Gibbs sampling algorithms, we
conducted a systematic set of simulation experiments in which the dimensionality of the
data was varied from 5 to 50. The covariance matrix was given by the autocorrelation
matrix for a first-order autoregressive process, chosen so that the components are highly
dependent (ρ = 0.9). The base distribution was a zero-mean Gaussian with covariance
appropriately scaled for comparison across dimensions. The scaling parameter α was
set equal to one.

In each case, we generated 100 data points from a DP mixture of Gaussians model
of the chosen dimensionality and generated 100 additional points as held-out data. In
testing on the held-out data, we treated each point as the 101st data point in the
collection and computed its conditional probability using each algorithm’s approximate
predictive distribution.



Summary of DP and DP-MM
• DP has many different representations:
– Chinese Restaurant Process
– Stick-breaking construction
– Blackwell-MacQueen Urn Scheme
– Limit of finite mixtures
– etc.

• These representations give rise to a variety of 
inference techniques for the DP-MM and related 
models
– Gibbs sampler (CRP)
– Gibbs sampler (stick-breaking)
– Variational inference (stick-breaking)
– etc.
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GMM VS. DPMM EXAMPLE
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Example: Dataset
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Example: GMM
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Example: GMM

18



Example: GMM
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Example: GMM
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Example: GMM
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Example: DPMM
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Example: DPMM
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Example: DPMM
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Example: DPMM

32



Example: DPMM
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Example: DPMM
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Example: DPMM
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Example: DPMM
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Example: DPMM
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Example: DPMM
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Example: DPMM
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Example: DPMM

50



Example: DPMM
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HIERARCHICAL DIRICHLET 
PROCESS (HDP)
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Related Models

• Hierarchical Dirichlet Process Mixture Model 
(HDP-MM)

• Infinite HMM
• Infinite PCFG

53
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Slide from 10-708, 2015

HDP-MM
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university-logo

Hierarchical Dirichlet Processes

Hierarchical Dirichlet process:

G0|�, H ⇠ DP(�, H)

Gj |↵, G0 ⇠ DP(↵, G0)

✓ji |Gj ⇠ Gj

�ji

Gj�

G0

i = 1, . . . , n

H

�

j = 1, . . . , J

Yee Whye Teh (Gatsby) DP August 2007 / MLSS 58 / 80

Figure from Teh MLSS 2007

���������

��

(�����*�	��
�
� 5�%�$�����%$�	%$����$�������������*��%8�+���


���%����������
��D�������$%	���
����*���
� <��*�*%������
��D����$%	���
����*����*��&�����$�%�
����
��� �%$�	%$���

� 3���'%	
������*����$�����%$�	%$�������

����*�*���&��%8�B���%�%���

� .�*%������������%������������	��������
��$��$��*�*%���
%����������������
��� �%$�	%$���

� .�*%���������%�������������
��$�������%�&�	��$��*�*%���
%����������������
�����
�������%$�	%$���

!@�������������.����%	$������������������ �!"�#

4�����
��
�������
���	 ���
����
5��� �	����� ""67

� ��������1��%	
������%$�	%$������	�%��������� 
���$$E

# �������������.����%	$������������������ �!"�#

HDP-MM



56

Figure from Teh 2004

HDP-MM
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Figure 6: (Left) Comparison of latent Dirichlet allocation and the hierarchical Dirichlet process mixture.
Results are averaged over 10 runs; the error bars are one standard error. (Right) Histogram of the number of
topics for the hierarchical Dirichlet process mixture over 100 posterior samples.

consisting of words w1, . . . , wI is defined to be:

exp

(

−
1

I
log p(w1, . . . , wI |Training corpus)

)

(54)

where p(·) is the probability mass function for a given model. The perplexity can be understood as
the average inverse probability of single words given the training set.

The results are shown in Figure 6.1. For LDA we evaluated the perplexity for mixture com-
ponent cardinalities ranging between 10 and 120. As seen in Figure 6.1(Left), the hierarchical DP
mixture approach—which integrates over the mixture component cardinalities—performs as well
as the best LDA model, doing so without any form of model selection procedure as would be re-
quired for LDA. Moreover, as shown in Figure 6.1(Right), the posterior over the number of topics
obtained under the hierarchical DP mixture model is consistent with this range of the best-fitting
LDA models.

6.2 Multiple corpora

We now consider the problem of sharing clusters among the documents in multiple corpora. We
approach this problem by extending the hierarchical Dirichlet process to a third level. A draw from
a top-level DP yields the base measure for each of a set of corpus-level DPs. Draws from each
of these corpus-level DPs yield the base measures for DPs associated with the documents within a
corpus. Finally, draws from the document-level DPs provide a representation of each document as
a probability distribution across “topics,” which are distributions across words. The model allows
topics to be shared both within corpora and between corpora.

The documents that we used for these experiments consist of articles from the proceedings
of the Neural Information Processing Systems (NIPS) conference for the years 1988-1999. The
original articles are available at http://books.nips.cc; we use a preprocessed version available at
http://www.cs.utoronto.ca/∼roweis/nips. The NIPS conference deals with a range of topics cover-
ing both human and machine intelligence. Articles are separated into nine prototypical sections:
algorithms and architectures (AA), applications (AP), cognitive science (CS), control and naviga-
tion (CN), implementations (IM), learning theory (LT), neuroscience (NS), signal processing (SP),
vision sciences (VS). (These are the sections used in the years 1995-1999. The sectioning in earlier

24



HDP-HMM (Infinite HMM)

57

θk

kπ

8

0α

H

γ β

v

y

T

T

v1 v

y2

2

y1

v0

Figure 9: A hierarchical Bayesian model for the infinite hidden Markov model.

refer to the resulting model as a hierarchical Dirichlet process hidden Markov model (HDP-HMM).
The HDP-HMM provides an alternative to methods that place an explicit parametric prior on the
number of states or make use of model selection methods to select a fixed number of states (Stolcke
and Omohundro 1993).

In work that served as an inspiration for the HDP-HMM, Beal et al. (2002) discussed a model
known as the infinite hidden Markov model, in which the number of hidden states of a hidden
Markov model is allowed to be countably infinite. Indeed, Beal et al. (2002) defined a notion of
“hierarchical Dirichlet process” for this model, but their “hierarchical Dirichlet process” is not hier-
archical in the Bayesian sense—involving a distribution on the parameters of a Dirichlet process—
but is instead a description of a coupled set of urn models. In this section we briefly review this
construction, and relate it to our formulation.

Beal et al. (2002) considered the following two-level procedure for determining the transition
probabilities of a Markov chain with an unbounded number of states. At the first level, the prob-
ability of transitioning from a state u to a state v is proportional to the number of times the same
transition is observed at other time steps, while with probability proportional to α0 an “oracle” pro-
cess is invoked. At this second level, the probability of transitioning to state v is proportional to
the number of times state v has been chosen by the oracle (regardless of the previous state), while
the probability of transitioning to a novel state is proportional to γ. The intended role of the oracle
is to tie together the transition models so that they have destination states in common, in much the
same way that the baseline distribution G0 ties together the group-specific mixture components in
the hierarchical Dirichlet process.

To relate this two-level urn model to the hierarchical DP framework, let us describe a repre-
sentation of the latter using the stick-breaking formalism. In particular, consider the hierarchical
Dirichlet process representation shown in Figure 9. The parameters in this representation have the
following distributions:

β | γ ∼ Stick(γ) πk | α0, β ∼ DP(α0, β) θk | H ∼ H , (55)

for each k = 1, 2, . . ., while for each time step t = 1, . . . , T the state and observation distributions
are:

vt | vt−1, (πk)
∞
k=1 ∼ πvt−1

yt | vt, (θk)
∞
k=1 ∼ F (θvt) , (56)

where we assume for simplicity that there is a distinguished initial state v0. If we now consider the
Chinese restaurant franchise representation of this model as discussed in Section 5, it turns out that
the result is equivalent to the coupled urn model of Beal et al. (2002).
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Figure 10: Comparing the infinite hidden Markov model (solid horizontal line) with ML, MAP and VB
trained hidden Markov models. The error bars represent one standard error (those for the HDP-HMM are too
small to see).

We have described three different representations that capture aspects of the hierarchical Dirich-
let process. In particular, we described a stick-breaking representation that describes the random
measures explicitly, a representation of marginals in terms of an urn model that we referred to as
the “Chinese restaurant franchise,” and a representation of the process in terms of an infinite limit
of finite mixture models.

These representations led to the formulation of twoMarkov chainMonte Carlo sampling schemes
for posterior inference under hierarchical Dirichlet process mixtures. The first scheme is based di-
rectly on the Chinese restaurant franchise representation, while the second scheme is an auxiliary
variable method that represents the stick-breaking weights explicitly.

Clustering is an important activity in many large-scale data analysis problems in engineering
and science, reflecting the heterogeneity that is often present when data are collected on a large
scale. Clustering problems can be approached within a probabilistic framework via finite mixture
models (and their dynamical cousins the HMM), and recent years have seen numerous examples
of applications of finite mixtures and HMMs in areas such as bioinformatics (Durbin et al. 1998),
speech recognition (Huang et al. 2001), information retrieval (Blei et al. 2003), computational vi-
sion (Forsyth and Ponce 2002) and robotics (Thrun 2000). These areas also provide numerous
instances of data analyses which involve multiple, linked sets of clustering problems, for which clas-
sical clustering methods (model-based or non-model-based) provide little in the way of leverage. In
bioinformatics we have already alluded to the problem of finding haplotype structure in subpopula-
tions. Other examples in bioinformatics include the use of HMMs for amino acid sequences, where
a hierarchical DP version of the HMM would allow motifs to be discovered and shared among dif-
ferent families of proteins. In speech recognition multiple HMMs are already widely used, in the
form of word-specific and speaker-specific models, and adhoc methods are generally used to share
statistical strength among models. We have discussed examples of grouped data in information re-
trieval; other examples include problems in which groups indexed by author or by language. Finally,
computational vision and robotics problems often involve sets of descriptors or objects that are ar-
ranged in a taxonomy. Examples such as these, in which there is substantial uncertainty regarding
appropriate numbers of clusters, and in which the sharing of statistical strength among groups is
natural and desirable, suggest that the hierarchical nonparametric Bayesian approach to clustering
presented here may provide a generally useful extension of model-based clustering.

31



HDP-PCFG (Infinite PCFG)
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HDP-PCFG

� ⇠ GEM(↵) [draw top-level symbol weights]
For each grammar symbol z 2 {1, 2, . . . }:
��T

z ⇠ Dirichlet(↵T ) [draw rule type parameters]
��E

z ⇠ Dirichlet(↵E) [draw emission parameters]
��B

z ⇠ DP(↵B , ��T ) [draw binary production parameters]

For each node i in the parse tree:
�ti ⇠ Multinomial(�T

zi
) [choose rule type]

�If ti = EMISSION:
��xi ⇠ Multinomial(�E

zi
) [emit terminal symbol]

�If ti = BINARY-PRODUCTION:
��(zL(i), zR(i)) ⇠ Multinomial(�B

zi
) [generate children symbols]

�

�B
z

�T
z

�E
z

z 1

z1

z2

x2

z3

x3

Figure 2: The definition and graphical model of the HDP-PCFG. Since parse trees have unknown structure,
there is no convenient way of representing them in the visual language of traditional graphical models.
Instead, we show a simple fixed example tree. Node 1 has two children, 2 and 3, each of which has one
observed terminal child. We use L(i) and R(i) to denote the left and right children of node i.

In the HMM, the transition parameters of a state
specify a distribution over single next states; simi-
larly, the binary production parameters of a gram-
mar symbol must specify a distribution over pairs
of grammar symbols for its children. We adapt the
HDP machinery to tie these binary production distri-
butions together. The key difference is that now we
must tie distributions over pairs of grammar sym-
bols together via distributions over single grammar
symbols.

Another difference is that in the HMM, at each
time step, both a transition and a emission are made,
whereas in the PCFG either a binary production or
an emission is chosen. Therefore, each grammar
symbol must also have a distribution over the type
of rule to apply. In a CNF PCFG, there are only
two types of rules, but this can be easily generalized
to include unary productions, which we use for our
parsing experiments.

To summarize, the parameters of each grammar
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Type of Model Parametric
Example

Nonparametric
Example

Construction #1 Construction #2

distribution over 
counts

Dirichlet-
Multinomial Model

Dirichlet Process (DP)

Chinese Restaurant 
Process (CRP)

Stick-breaking 
construction

mixture Gaussian Mixture 
Model (GMM)

Dirichlet Process Mixture Model (DPMM)

CRP Mixture Model Stick-breaking 
construction

admixture Latent Dirichlet 
Allocation (LDA)

Hierarchical Dirichlet Process Mixture 
Model (HDPMM)

Chinese Restaurant 
Franchise

Stick-breaking 
construction



Summary of DP and DP-MM
• DP has many different representations:
– Chinese Restaurant Process
– Stick-breaking construction
– Blackwell-MacQueen Urn Scheme
– Limit of finite mixtures
– etc.

• These representations give rise to a variety of 
inference techniques for the DP-MM and related 
models
– Gibbs sampler (CRP)
– Gibbs sampler (stick-breaking)
– Variational inference (stick-breaking)
– etc.
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Outline
• Motivation: Infinite Latent Feature Models
• Finite Feature Model

– Beta-Bernoulli Model
– Marginalized Beta-Bernoulli Model
– Expected # of non-zeros
– Taking the Infinite Limit
– Left-ordered form (equivalence classes)

• The Indian Buffet Process (IBP)
– Nonexchangeable IBP
– Exchangeable IBP
– Gibbs Sampling with Exchangeable IBP

• IBP properties
• Applications
• Summary
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Motivation
v Latent Feature Models

– Examples:
• factor analysis
• probabilistic PCA
• cooperative vector quantization
• sparse PCA

vApplications
– object detection in images
– choice behavior (i.e. option A over option B)
– proteomics: modeling the functional interactions of proteins –

which can belong to multiple complexes at the same time
– collaborative filtering: modeling features of movie 

preferences (a la. Netflix challenge)
– structure learning for graphical models (i.e. bipartite graphs)

63



Latent Feature Models

64

��� ti �� ��� i�� ���� ��������
7i �� ��� ��������

��Ƥ�� s = [tT
1 , xT

2 , . . . , xT
N ]

6 = [7T1 , fT
2 , . . . , fT

N ]

�����ǣ p(s, 6) =p(s|6)p(6)
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1 1 0

0 1 0

1 0 1

0 1 0

1.2 10 0.
3

-.3 9 0.
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9 -.1

0.7 10 -.1

6 = w � o6 = w � o
1.2 10 0

0 9 0

0.
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0 -.1

0 10 0

K features

N
 o

b
je
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s

6 = w � o ����� � �� ��� ����������� �������
zij � {0, 1}
vij � R

Decompose the feature matrix, F, into a 
sparse binary matrix, Z, and a value matrix, V. 
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6 = w � o ����� � �� ��� ����������� �������
zij � {0, 1}
vij � R

Decompose the feature matrix, F, into a 
sparse binary matrix, Z, and a value matrix, V. 

�����ǣ p(s, 6) =p(s|6)p(6)

=p(s|6)p(w)p(o)

The IBP will provide p(Z) for 
the case of infinite columns!
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INDIAN BUFFET PROCESS

zikπkα
N

K

Figure 4: Graphical model for the beta-binomial model used in defining the Indian buffet process.
Nodes are variables, arrows indicate dependencies, and plates (Buntine, 1994) indicate
replicated structures.

exploiting the recursive definition of the gamma function.3
The probability model we have defined is

πk |α ∼ Beta( αK ,1),
zik |πk ∼ Bernoulli(πk). (9)

Each zik is independent of all other assignments, conditioned on πk, and the πk are generated in-
dependently. A graphical model illustrating the dependencies among these variables is shown in
Figure 4. Having defined a prior on π, we can simplify this model by integrating over all values for
π rather than representing them explicitly. The marginal probability of a binary matrix Z is

P(Z) =
K

∏
k=1

∫ ( N

∏
i=1

P(zik|πk)

)

p(πk)dπk

=
K

∏
k=1

B(mk+
α
K ,N−mk+1)
B( αK ,1)

=
K

∏
k=1

α
KΓ(mk+

α
K )Γ(N−mk+1)

Γ(N+1+ α
K )

. (10)

Again, the result follows from conjugacy, this time between the binomial and beta distributions.
This distribution is exchangeable, depending only on the counts mk.

This model has the important property that the expectation of the number of non-zero entries
in the matrix Z, E

[

1TZ1
]

= E [∑ik zik], has an upper bound that is independent of K. Since each
column of Z is independent, the expectation is K times the expectation of the sum of a single
column, E

[

1T zk
]

. This expectation is easily computed,

E
[

1T zk
]

=
N

∑
i=1

E(zik) =
N

∑
i=1

∫ 1

0
πk p(πk) dπk = N

α
K

1+ α
K
, (11)

where the result follows from the fact that the expectation of a Beta(r,s) random variable is r
r+s .

Consequently, E
[

1TZ1
]

= KE
[

1T zk
]

= Nα
1+ α

K
. For finite K, the expectation of the number of entries

in Z is bounded above by Nα.

3. The motivation for choosing r = α
K will be clear when we take the limit K → ∞ in Section 4.3, while the choice of

s= 1 will be relaxed in Section 7.1.
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Figure from Griffiths & Ghahramani
(2011)

• ��� ���� ������� k � {1, . . . , K}ǣ
� �k � ����( �

K , 1) ����� � > 0
� ��� ���� ������ i � {1, . . . , N}ǣ

� zik � ���������(�k)

Generative Story:
[row]

[column]

[prob. of feat. k]

[is feat. ON/OFF]

p(w, � | �)

Beta-Bernoulli Model
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Because of the conjugacy of the Beta and 
Bernoulli, we can analytically marginalize out the 
feature prevalence parameters, πk.

68

INDIAN BUFFET PROCESS

zikπkα
N

K

Figure 4: Graphical model for the beta-binomial model used in defining the Indian buffet process.
Nodes are variables, arrows indicate dependencies, and plates (Buntine, 1994) indicate
replicated structures.
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Each zik is independent of all other assignments, conditioned on πk, and the πk are generated in-
dependently. A graphical model illustrating the dependencies among these variables is shown in
Figure 4. Having defined a prior on π, we can simplify this model by integrating over all values for
π rather than representing them explicitly. The marginal probability of a binary matrix Z is
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This model has the important property that the expectation of the number of non-zero entries
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= E [∑ik zik], has an upper bound that is independent of K. Since each
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. For finite K, the expectation of the number of entries

in Z is bounded above by Nα.

3. The motivation for choosing r = α
K will be clear when we take the limit K → ∞ in Section 4.3, while the choice of

s= 1 will be relaxed in Section 7.1.
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exploiting the recursive definition of the gamma function.3
The probability model we have defined is

πk |α ∼ Beta( αK ,1),
zik |πk ∼ Bernoulli(πk). (9)

Each zik is independent of all other assignments, conditioned on πk, and the πk are generated in-
dependently. A graphical model illustrating the dependencies among these variables is shown in
Figure 4. Having defined a prior on π, we can simplify this model by integrating over all values for
π rather than representing them explicitly. The marginal probability of a binary matrix Z is
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Again, the result follows from conjugacy, this time between the binomial and beta distributions.
This distribution is exchangeable, depending only on the counts mk.

This model has the important property that the expectation of the number of non-zero entries
in the matrix Z, E

[

1TZ1
]

= E [∑ik zik], has an upper bound that is independent of K. Since each
column of Z is independent, the expectation is K times the expectation of the sum of a single
column, E

[
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. This expectation is easily computed,
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����� mk =
N�

i=1

zik �� ͓ �������� �� �� ������ k,

� �� ��� 
���� ��������

Marginalized Beta-Bernoulli Model
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Expected # of non-zeroes

������ǣ �� X � ����(r, s), ���� E[X] =
r

r + s
�� Y � ���������(p), ���� E[Y ] = p

• ��� ���� ������� k � {1, . . . , K}ǣ
� �k � ����( �

K , 1) ����� � > 0
� ��� ���� ������ i � {1, . . . , N}ǣ

� zik � ���������(�k)

Generative Story:

[row]

[column]

[prob. of feat. k]

[is feat. ON/OFF]

E[zik] =
�
K

1 + �
K

�E[RT wR] = E
�

N�

i=1

K�

k=1

zik

�
=

N�

1 + �
K

���� ������� �� K � �ǫ

E[zik] =
�
K

1 + �
K

�E[RT wR] = E
�

N�

i=1

K�

k=1

zik

�
=

N�

1 + �
K

So the expected 
number of non-zero 
entries in Z is ≤ Nα
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Taking the Infinite Limit

INDIAN BUFFET PROCESS

zikπkα
N

K

Figure 4: Graphical model for the beta-binomial model used in defining the Indian buffet process.
Nodes are variables, arrows indicate dependencies, and plates (Buntine, 1994) indicate
replicated structures.

exploiting the recursive definition of the gamma function.3
The probability model we have defined is

πk |α ∼ Beta( αK ,1),
zik |πk ∼ Bernoulli(πk). (9)

Each zik is independent of all other assignments, conditioned on πk, and the πk are generated in-
dependently. A graphical model illustrating the dependencies among these variables is shown in
Figure 4. Having defined a prior on π, we can simplify this model by integrating over all values for
π rather than representing them explicitly. The marginal probability of a binary matrix Z is
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. (10)

Again, the result follows from conjugacy, this time between the binomial and beta distributions.
This distribution is exchangeable, depending only on the counts mk.

This model has the important property that the expectation of the number of non-zero entries
in the matrix Z, E

[

1TZ1
]

= E [∑ik zik], has an upper bound that is independent of K. Since each
column of Z is independent, the expectation is K times the expectation of the sum of a single
column, E

[

1T zk
]

. This expectation is easily computed,
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=
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∑
i=1

E(zik) =
N

∑
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∫ 1
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πk p(πk) dπk = N

α
K

1+ α
K
, (11)

where the result follows from the fact that the expectation of a Beta(r,s) random variable is r
r+s .

Consequently, E
[

1TZ1
]

= KE
[

1T zk
]

= Nα
1+ α

K
. For finite K, the expectation of the number of entries

in Z is bounded above by Nα.

3. The motivation for choosing r = α
K will be clear when we take the limit K → ∞ in Section 4.3, while the choice of

s= 1 will be relaxed in Section 7.1.
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p(w) = HBK
K��

= 0
Problem: Every matrix has zero probability!
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Left-Ordered Form (lof)
Topic Modeling:
• Consider many samples of the kth topic from 

the Markov chain:

This topic will “drift” over time (e.g. from 
{politics} at time (t) to {geology} at time (t+m))

• Instead of averaging, it’s common to use a MAP 
estimate of the topics

• The order of the topics is not important to the 
model (i.e. the topics are not identifiable)

�(1)
k , �(2)

k , . . . , �(T )
k
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Left-Ordered Form (lof)
Back to our model:
• Q: In a latent feature model, what’s the 

difference between feature k=13 and k=27?

• A: Nothing!

The use of left-ordered form capitalizes on the 

fact that features are not identifiable 
(i.e. order of features doesn’t matter to the 

model)
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Left-Ordered Form (lof)
��Ƥ�� ��� ������� �� ������� k �� �� ��� ��������� ��
��� ������ ����� ����� �� ��� ������ǣ

hk =
N�

i=1

2(N�i)zik

Kh = ͓ �� �������� ���� ������� h

K0 = ͓ �� �������� ���� mk = 0 ȋ�Ǥ�Ǥ h = 0Ȍ

K+ =
2N �1�

h=1

Kh, ͓ �� �������� ���� ���Ǧ���� �������

� K = K0 + K+

10 13 2 13

1 1 0 1

0 1 0 1

1 0 1 0

0 1 0 1

Same 
history

Define lof(Z) to be sorted left-to-right 
by the history of each feature.
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Left-Ordered Form (lof)

Define lof(Z) to be sorted left-to-right 
by the history of each feature.

��Ƥ�� ����������� ����� [Z] = {Z � : lof(Z �) = lof(Z)}

����������� �� [Z] =
K!

�2N �1
h=0 Kh!

lof

Figure 4: Binary matrices and the left-ordered form. The binary matrix on the left is trans-
formed into the left-ordered binary matrix on the right by the function lof(·). This left-ordered
matrix was generated from the exchangeable Indian buffet process with α = 10. Empty
columns are omitted from both matrices.

to define a set of equivalence classes. Any two binary matrices Y and Z are lof -equivalent if
lof(Y) = lof(Z), that is, if Y and Z map to the same left-ordered form. The lof -equivalence
class of a binary matrix Z, denoted [Z], is the set of binary matrices that are lof -equivalent
to Z. lof -equivalence classes are preserved through permutation of either the rows or the
columns of a matrix, provided the same permutations are applied to the other members of the
equivalence class. Performing inference at the level of lof -equivalence classes is appropriate
in models where feature order is not identifiable, with p(X|F) being unaffected by the order
of the columns of F. Any model in which the probability of X is specified in terms of a linear
function of F, such as PCA or CVQ, has this property.

We need to evaluate the cardinality of [Z], being the number of matrices that map to the
same left-ordered form. The columns of a binary matrix are not guaranteed to be unique:
since an object can possess multiple features, it is possible for two features to be possessed by
exactly the same set of objects. The number of matrices in [Z] is reduced if Z contains identical
columns, since some re-orderings of the columns of Z result in exactly the same matrix. Taking

this into account, the cardinality of [Z] is
(

K
K0...K2N

−1

)

= K!
Q2N

−1
h=0 Kh!

, where Kh is the count of

the number of columns with full history h.
lof -equivalence classes play the same role for binary matrices as partitions do for assign-

ment vectors: they collapse together all binary matrices (assignment vectors) that differ only
in column ordering (class labels). This relationship can be made precise by examining the lof -
equivalence classes of binary matrices constructed from assignment vectors. Define the class
matrix generated by an assignment vector c to be a binary matrix Z where zik = 1 if and only
if ci = k. It is straightforward to show that the class matrices generated by two assignment
vectors that correspond to the same partition belong to the same lof -equivalence class, and
vice versa.

4.3 Taking the infinite limit

Under the distribution defined by Equation 27, the probability of a particular lof -equivalence
class of binary matrices, [Z], is

P ([Z]) =
∑

Z∈[Z]

P (Z) (29)

=
K!

∏2N−1
h=0 Kh!

K
∏

k=1

α
K Γ(mk + α

K )Γ(N − mk + 1)

Γ(N + 1 + α
K )

. (30)

In order to take the limit of this expression as K → ∞, we will divide the columns of Z into two
subsets, corresponding to the features for which mk = 0 and the features for which mk > 0.

11

Figure from Griffiths & Ghahramani (2005)
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Taking the Infinite Limit

INDIAN BUFFET PROCESS

zikπkα
N

K

Figure 4: Graphical model for the beta-binomial model used in defining the Indian buffet process.
Nodes are variables, arrows indicate dependencies, and plates (Buntine, 1994) indicate
replicated structures.

exploiting the recursive definition of the gamma function.3
The probability model we have defined is

πk |α ∼ Beta( αK ,1),
zik |πk ∼ Bernoulli(πk). (9)

Each zik is independent of all other assignments, conditioned on πk, and the πk are generated in-
dependently. A graphical model illustrating the dependencies among these variables is shown in
Figure 4. Having defined a prior on π, we can simplify this model by integrating over all values for
π rather than representing them explicitly. The marginal probability of a binary matrix Z is

P(Z) =
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)
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=
K
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B(mk+
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=
K
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α
KΓ(mk+

α
K )Γ(N−mk+1)

Γ(N+1+ α
K )

. (10)

Again, the result follows from conjugacy, this time between the binomial and beta distributions.
This distribution is exchangeable, depending only on the counts mk.

This model has the important property that the expectation of the number of non-zero entries
in the matrix Z, E

[

1TZ1
]

= E [∑ik zik], has an upper bound that is independent of K. Since each
column of Z is independent, the expectation is K times the expectation of the sum of a single
column, E

[

1T zk
]

. This expectation is easily computed,

E
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=
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∑
i=1
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N
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∫ 1
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πk p(πk) dπk = N

α
K

1+ α
K
, (11)

where the result follows from the fact that the expectation of a Beta(r,s) random variable is r
r+s .

Consequently, E
[

1TZ1
]

= KE
[

1T zk
]

= Nα
1+ α

K
. For finite K, the expectation of the number of entries

in Z is bounded above by Nα.

3. The motivation for choosing r = α
K will be clear when we take the limit K → ∞ in Section 4.3, while the choice of

s= 1 will be relaxed in Section 7.1.

1195

HBK
K��

p(w) = HBK
K��

= 0
Problem: Every matrix has zero probability!

HBK
K��

p([w]) = HBK
K��

K!
�2N �1

h=0 Kh!
p(w)

GRIFFITHS AND GHAHRAMANI

where we have used the fact that Γ(x) = (x− 1)Γ(x− 1) for x > 1. Substituting Equation 13 into
Equation 12 and rearranging terms, we can compute our limit

lim
K→∞

αK+

∏2N−1
h=1 Kh!

·
K!

K0!KK+
·

(

N!
∏N

j=1( j+
α
K )

)K

·
K+

∏
k=1

(N−mk)!∏mk−1
j=1 ( j+ α

K )

N!

=
αK+

∏2N−1
h=1 Kh!

· 1 · exp{−αHN} ·
K+

∏
k=1

(N−mk)!(mk−1)!
N!

, (14)

where HN is the Nth harmonic number, HN = ∑N
j=1

1
j . The details of the steps taken in computing

this limit are given in Appendix A. Again, this distribution is exchangeable: neither the number of
identical columns nor the column sums are affected by the ordering on objects.

4.4 The Indian Buffet Process

The probability distribution defined in Equation 14 can be derived from a simple stochastic process.
As with the CRP, this process assumes an ordering on the objects, generating the matrix sequen-
tially using this ordering. We will also use a culinary metaphor in defining our stochastic process,
appropriately adjusted for geography.4 Many Indian restaurants offer lunchtime buffets with an
apparently infinite number of dishes. We can define a distribution over infinite binary matrices by
specifying a procedure by which customers (objects) choose dishes (features).

In our Indian buffet process (IBP), N customers enter a restaurant one after another. Each cus-
tomer encounters a buffet consisting of infinitely many dishes arranged in a line. The first customer
starts at the left of the buffet and takes a serving from each dish, stopping after a Poisson(α) number
of dishes as his plate becomes overburdened. The ith customer moves along the buffet, sampling
dishes in proportion to their popularity, serving himself with probability mk

i , where mk is the number
of previous customers who have sampled a dish. Having reached the end of all previous sampled
dishes, the ith customer then tries a Poisson(αi ) number of new dishes.

We can indicate which customers chose which dishes using a binary matrix Z with N rows and
infinitely many columns, where zik = 1 if the ith customer sampled the kth dish. Figure 6 shows
a matrix generated using the IBP with α = 10. The first customer tried 17 dishes. The second
customer tried 7 of those dishes, and then tried 3 new dishes. The third customer tried 3 dishes tried
by both previous customers, 5 dishes tried by only the first customer, and 2 new dishes. Vertically
concatenating the choices of the customers produces the binary matrix shown in the figure.

Using K(i)
1 to indicate the number of new dishes sampled by the ith customer, the probability of

any particular matrix being produced by this process is

P(Z) =
αK+

∏N
i=1K

(i)
1 !

exp{−αHN}
K+

∏
k=1

(N−mk)!(mk−1)!
N!

. (15)

As can be seen from Figure 6, the matrices produced by this process are generally not in left-ordered
form. However, these matrices are also not ordered arbitrarily because the Poisson draws always
result in choices of new dishes that are to the right of the previously sampled dishes. Customers
are not exchangeable under this distribution, as the number of dishes counted as K(i)

1 depends upon

4. This work was started when both authors were at the Gatsby Computational Neuroscience Unit in London, where the
Indian buffet is the dominant culinary metaphor.
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The Indian Buffet Process

• Imagine an Indian restaurant with a buffet containing an infinite # of dishes.
• N customers make a plate by selecting dishes from the buffet:

– 1st customer: 
Starts at the left and selects a Poisson(α) number of dishes

– ith customer: 
1. Samples previously sampled dishes according to their popularity:

(i.e. with prob. mk/i where mk is the # of
previous customers who tried dish k)

2. Then selects a Poisson(α/i) number of new dishes

76

^Non-exchangeable

Figure from Griffiths & Ghahramani (2005)
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The Indian Buffet Process

• Imagine an Indian restaurant with a buffet containing an infinite # of dishes.
• N customers make a plate by selecting dishes from the buffet:

– 1st customer: 
Starts at the left and selects a Poisson(α) number of dishes

– ith customer: 
1. Makes a single decision for dishes with same history, h:

(i.e. If there are Kh dishes w/history h sampled by mh customers, 
then she samples a Binomial(mh/I, Kh) number starting at the left)

2. Then selects a Poisson(α/i) number of new dishes
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^Exchangeable

Figure from Griffiths & Ghahramani (2005)
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The Indian Buffet Process
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Figure from Griffiths & Ghahramani (2005)

Example:

INDIAN BUFFET PROCESS
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Figure 6: A binary matrix generated by the Indian buffet process with α= 10.

the order in which the customers make their choices. However, if we only pay attention to the
lo f -equivalence classes of the matrices generated by this process, we obtain the exchangeable dis-
tribution P([Z]) given by Equation 14: ∏N

i=1K
(i)
1 !

∏2
N−1
h=1 Kh!

matrices generated via this process map to the same

left-ordered form, and P([Z]) is obtained by multiplying P(Z) from Equation 15 by this quantity.
It is possible to define a similar sequential process that directly produces a distribution on lo f

equivalence classes in which customers are exchangeable, but this requires more effort on the part
of the customers. In the exchangeable Indian buffet process, the first customer samples a Poisson(α)
number of dishes, moving from left to right. The ith customer moves along the buffet, and makes
a single decision for each set of dishes with the same history. If there are Kh dishes with history h,
under which mh previous customers have sampled each of those dishes, then the customer samples a
Binomial(mhi ,Kh) number of those dishes, starting at the left. Having reached the end of all previous
sampled dishes, the ith customer then tries a Poisson(αi ) number of new dishes. Attending to the
history of the dishes and always sampling from the left guarantees that the resulting matrix is in
left-ordered form, and it is easy to show that the matrices produced by this process have the same
probability as the corresponding lo f -equivalence classes under Equation 14.

4.5 A Distribution over Collections of Histories

In Section 4.2, we noted that lo f -equivalence classes of binary matrices generated from assignment
vectors correspond to partitions. Likewise, lo f -equivalence classes of general binary matrices cor-
respond to simple combinatorial structures: vectors of non-negative integers. Fixing some ordering
of N objects, a collection of feature histories on those objects can be represented by a frequency

1199



Gibbs Sampler for IBP
Consider a “prior only” sampler of p(Z | α)

• For finite K: 
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customers must also choose a Poisson(α) number of dishes, since we can always specify an
ordering on customers which begins with a particular customer.

Finally, it is possible to show that Z remains sparse as K → ∞. The simplest way to do
this is to exploit the previous result: if the number of features possessed by each object follows
a Poisson(α) distribution, then the expected number of entries in Z is Nα. This is consistent
with the quantity obtained by taking the limit of this expectation in the finite model, which
is given in Equation 28: limK→∞ E

[

1TZ1
]

= limK→∞
Nα

1+ α
K

= Nα. More generally, we can

use the property of sums of Poisson random variables described above to show that 1TZ1 will
follow a Poisson(Nα) distribution. Consequently, the probability of values higher than the
mean decreases exponentially.

4.7 Inference by Gibbs sampling

We have defined a distribution over infinite binary matrices that satisfies one of our desider-
ata – objects (the rows of the matrix) are exchangeable under this distribution. It remains
to be shown that inference in infinite latent feature models is tractable, as was the case for
infinite mixture models. We will derive a Gibbs sampler for latent feature models in which
the exchangeable IBP is used as a prior. The critical quantity needed to define the sampling
algorithm is the full conditional distribution

P (zik = 1|Z−(ik),X) ∝ p(X|Z)P (zik = 1|Z−(ik)), (39)

where Z−(ik) denotes the entries of Z other than zik, and we are leaving aside the issue of the
feature values V for the moment. The prior on Z contributes to this probability by specifying
P (zik = 1|Z−(ik)).

In the finite model, where P (Z) is given by Equation 27, it is straightforward to compute
the full conditional distribution for any zik. Integrating over πk gives

P (zik = 1|z−i,k) =

∫ 1

0
P (zik|πk)p(πk|z−i,k) dπk

=
m−i,k + α

K

N + α
K

, (40)

where z−i,k is the set of assignments of other objects, not including i, for feature k, and m−i,k

is the number of objects possessing feature k, not including i. We need only condition on z−i,k

rather than Z−(ik) because the columns of the matrix are generated independently under this
prior.

In the infinite case, we can derive the conditional distribution from the exchangeable IBP.
Choosing an ordering on objects such that the ith object corresponds to the last customer to
visit the buffet, we obtain

P (zik = 1|z−i,k) =
m−i,k

N
, (41)

for any k such that m−i,k > 0. The same result can be obtained by taking the limit of Equation
40 as K → ∞. Similarly the number of new features associated with object i should be drawn
from a Poisson( α

N ) distribution. This can also be derived from Equation 40, using the same
kind of limiting argument as that presented above to obtain the terms of the Poisson.

5 A latent feature model with binary features

We have derived a prior for infinite sparse binary matrices, and indicated how statistical in-
ference can be done in models defined using this prior. In this section, we will show how this
prior can be put to use in models for unsupervised learning, illustrating some of the issues

15

����� z�i,k �� ��� k�� ������ ������ ��� i,

m�i,k �� ��� ͓ �� ���� �Ȁ����Ǥ k ������ i

• For infinite K:
– The “Exchangeable IBP” is exchangeable!

– Choose an order s.t. the ith customer was the last to enter (just like CRP sampler)

– For any k s.t. m-i,k > 0, resample:

– Then draw a Poisson(α/i) # of new dishes.
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the exchangeable IBP is used as a prior. The critical quantity needed to define the sampling
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rather than Z−(ik) because the columns of the matrix are generated independently under this
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In the infinite case, we can derive the conditional distribution from the exchangeable IBP.
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visit the buffet, we obtain

P (zik = 1|z−i,k) =
m−i,k

N
, (41)

for any k such that m−i,k > 0. The same result can be obtained by taking the limit of Equation
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Properties of the Indian bu↵et process
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Figure 1: Stick-breaking construction for the DP and IBP.

The black stick at top has length 1. At each iteration the

vertical black line represents the break point. The brown

dotted stick on the right is the weight obtained for the DP,

while the blue stick on the left is the weight obtained for

the IBP.

where d  [0, 1) and  > ⇥ d. The Pitman-Yor IBP

weights decrease in expectation as a O (k ⇥ 1
d ) power-law,

and this may be a better fit for some naturally occurring

data which have a larger number of features with signifi-

cant but small weights [4].

An example technique for the DP which we could adapt to

the IBP is to truncate the stick-breaking construction after a

certain number of break points and to perform inference in

the reduced space. [7] gave a bound for the error introduced

by the truncation in the DP case which can be used here as

well. Let K  be the truncation level. We set µ ( k ) = 0 for
each k > K  , while the joint density of µ ( 1: K  ) is,

p(µ ( 1: K  ) ) =
K   

k = 1

p(µ ( k ) |µ ( k ⇥ 1 ) ) (19)

=  K  
µ  

( K  )

K   

k = 1

µ ⇥ 1
( k ) I(0 ⇤ µ ( K  ) ⇤ · · · ⇤ µ ( 1 ) ⇤ 1)

The conditional distribution of Z given µ ( 1: K  ) is simply
1

p( Z |µ ( 1: K  ) ) =
N 

i = 1

K   

k = 1

µ z i k
( k ) (1 ⇥ µ ( k ) )1 ⇥ z i k (20)

with z i k = 0 for k > K  . Gibbs sampling in this represen-

tation is straightforward, the only point to note being that

adaptive rejection sampling (ARS) [3] should be used to

sample each µ ( k ) given other variables (see next section).

4 SLICE SAMPLER

Gibbs sampling in the truncated stick-breaking construc-

tion is simple to implement, however the predetermined

truncation level seems to be an arbitrary and unneces-

sary approximation. In this section, we propose a non-

approximate scheme based on slice sampling, which can be

1Note that we are making a slight abuse of notation by using
Z both to denote the original IBP matrix with arbitrarily ordered
columns, and the equivalent matrix with the columns reordered to
decreasing µ’s. Similarly for the feature parameters  ’s.

seen as adaptively choosing the truncation level at each it-

eration. Slice sampling is an auxiliary variable method that

samples from a distribution by sampling uniformly from

the region under its density function [12]. This turns the

problem of sampling from an arbitrary distribution to sam-

pling from uniform distributions. Slice sampling has been

successfully applied to DP mixture models [8], and our ap-

plication to the IBP follows a similar thread.

In detail, we introduce an auxiliary slice variable,

s| Z , µ ( 1: ⇤ )  U niform[0, µ  ] (21)

where µ  is a function of µ ( 1: ⇤ ) and Z , and is chosen to be
the length of the stick for the last active feature,

µ  = min
 

1, min
k :  i , z i k = 1

µ ( k )

 
. (22)

The joint distribution of Z and the auxiliary variable s is

p(s, µ ( 1: ⇤ ) , Z ) = p( Z , µ ( 1: ⇤ ) ) p(s| Z , µ ( 1: ⇤ ) ) (23)

where p(s| Z , µ ( 1: ⇤ ) ) = 1
µ  I(0 ⇤ s ⇤ µ  ). Clearly, integrat-

ing out s preserves the original distribution over µ ( 1: ⇤ ) and

Z , while conditioned on Z and µ ( 1: ⇤ ) , s is simply drawn
from (21). Given s, the distribution of Z becomes:

p( Z |x , s, µ ( 1: ⇤ ) )  p( Z |x , µ ( 1: ⇤ ) ) 1
µ  I(0 ⇤ s ⇤ µ  ) (24)

which forces all columns k of Z for which µ ( k ) < s to be
zero. Let K  be the maximal feature index with µ ( K  ) > s.
Thus z i k = 0 for all k > K  , and we need only consider

updating those features k ⇤ K  . Notice that K  serves

as a truncation level insofar as it limits the computational

costs to a finite amount without approximation.

Let K † be an index such that all active features have in-

dex k < K † (note that K † itself would be an inactive fea-

ture). The computational representation for the slice sam-

pler consists of the slice variables and the first K † features:

 s, K  , K † , Z 1: N , 1: K † , µ ( 1: K † ) ,  1: K †  . The slice sampler
proceeds by updating all variables in turn.

Update s. The slice variable is drawn from (21). If the new
value of s makes K  ⌅ K † (equivalently, s < µ ( K † )), then

we need to pad our representation with inactive features

until K  < K †. In the appendix we show that the stick

lengths µ ( k ) for new features k can be drawn iteratively
from the following distribution:

p(µ ( k ) |µ ( k ⇥ 1 ) , z : , > k = 0)  exp(  
 N

i = 1
1
i (1 ⇥ µ ( k ) ) i )

µ  ⇥ 1
( k ) (1 ⇥ µ ( k ) ) N I(0 ⇤ µ ( k ) ⇤ µ ( k ⇥ 1 ) ) (25)

We used ARS to draw samples from (25) since it is log-

concave in log µ ( k ) . The columns for these new features

are initialized to z : , k = 0 and their parameters drawn from
their prior  k  H .

Shown in (Gri�ths and Ghahramani, 2005):

• It is infinitely exchangeable.

• The number of ones in each row is Poisson(↵)

• The expected total number of ones is ↵N .

• The number of nonzero columns grows as O(↵ log N).

Additional properties:

• Has a stick-breaking representation (Teh, Görür, Ghahramani, 2007)

• Can be interpreted using a Beta-Bernoulli process (Thibaux and Jordan, 2007)
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Posterior Inference in IBPs

P (Z,↵|X) / P (X|Z)P (Z|↵)P (↵)

Gibbs sampling: P (znk = 1|Z�(nk),X,↵) / P (znk = 1|Z�(nk),↵)P (X|Z)

• If m�n,k > 0, P (znk = 1|z�n,k) =
m�n,k

N
• For infinitely many k such that m�n,k = 0: Metropolis steps with truncation

⇤
to

sample from the number of new features for each object.

• If ↵ has a Gamma prior then the posterior is also Gamma ! Gibbs sample.

Conjugate sampler: assumes that P (X|Z) can be computed.

Non-conjugate sampler: P (X|Z) =
R

P (X|Z, ✓)P (✓)d✓ cannot be computed,

requires sampling latent ✓ as well (c.f. (Neal 2000) non-conjugate DPM samplers).

⇤
Slice sampler: non-conjugate case, is not approximate, and has an adaptive

truncation level using a stick-breaking construction of the IBP (Teh, et al, 2007).

Particle Filter: (Wood & Gri�ths, 2007).

Accelerated Gibbs Sampling: maintaining a probability distribution over some of

the variables (Doshi-Velez & Ghahramani, 2009).

Variational inference: (Doshi-Velez, Miller, van Gael, & Teh, 2009). 81
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Modelling Data

Latent variable model: let X be the N ⇥D matrix of observed data, and Z be the

N ⇥K matrix of binary latent features

P (X,Z|↵) = P (X|Z)P (Z|↵)

By combining the IBP with di↵erent likelihood functions we can get di↵erent kinds

of models:

• Models for graph structures (w/ Wood, Gri�ths, 2006)

• Models for protein complexes (w/ Chu, Wild, 2006)

• Models for overlapping clusters (w/ Heller, 2007)

• Models for choice behaviour (Görür, Jäkel & Rasmussen, 2006)

• Models for users in collaborative filtering (w/ Meeds, Roweis, Neal, 2006)

• Sparse latent factor models (w/ Knowles, 2007)
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Summary

• Beta-Bernoulli model is a simple finite
feature model

• Can treat features as latent
• Infinite limit of Beta-Bernoulli yields the 

Indian Buffet Process (IBP)
• Many properties of the IBP are similar to the 

CRP
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