10-708 Probabilistic Graphical Models
Machine Learning Department
School of Computer Science
Carnegie Mellon University
MACHINE LEARNING DEPARTMENT

Bayesian Nonparametrics: DPMM

$+$

Indian Buffet Process

Matt Gormley
Lecture 23
Apr. 23, 2021

Reminders

- Cloud Credits (AWS or GCP)
- first request deadline: Thu at 11:59pm
- Quiz 3
- Mon, May 3 during lecture slot
- Topics: Lectures 16-23

Exchangability

Question:

Answer:

Select All: Which of the following properties of an infinite sequence of random variables $X_{1}, X_{2}, X_{3}, \ldots$ ensure that they are infinitely exchangeable?

- For any pair of orderings $\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ and $\left(j_{1}\right.$, $\left.\dot{j}_{2}, \ldots, \dot{j}_{n}\right)$ of the indices $(1, \ldots, n)$ the joint probability of the two orderings is the same
- The joint distribution is invariant to permutation
- The joint distribution of the first n random variables can be represented as a mixture
- The random variables are independent and identically distributed

Chinese Restaurant Process \& Stick-breaking Constructions

DIRICHLET PROCESS MIXTURE MODEL

CRP Mixture Model

- Draw n cluster indices from a CRP:

$$
z_{1}, z_{2}, \ldots, z_{n} \sim \operatorname{CRP}(\alpha)
$$

- For each of the resulting K clusters:

$$
\begin{aligned}
& \theta_{k}^{*} \sim H \\
& \text { where } H \text { is a base distribution }
\end{aligned}
$$

- Draw n observations:

$$
x_{i} \sim p\left(x_{i} \mid \theta_{z_{i}}^{*}\right)
$$

Customer i orders a dish x_{i} (observation) from a tablespecific distribution over dishes $\theta_{k}{ }^{*}$ (cluster parameters)

(color denotes different values of x_{i})

CRP Mixture Model

- Draw n cluster indices from a CRP:
$z_{1}, z_{2}, \ldots, z_{n} \sim C R P(\alpha)$
- For each of the resulting K clusters:
$\theta_{k}{ }^{*} \sim H$
where H is a base distribution
- Draw n observations:

$$
x_{i} \sim p\left(x_{i} \mid \theta_{z_{i}}^{*}\right)
$$

- The Gibbs sampler is easy thanks to exchangeability
- For each observation, we remove the customer / dish from the restaurant and resample as if they were the last to enter
- If we collapse out the parameters, the Gibbs sampler draws from the conditionals:

$$
z_{i} \sim p\left(z_{i} \mid \boldsymbol{z}_{-i}, \boldsymbol{x}\right)
$$

CRP Mixture Model

Overview of 3 Gibbs Samplers for Conjugate Priors

- Alg. 1: (uncollapsed)
- Markov chain state: per-customer parameters $\theta_{1}, \ldots, \theta_{n}$
- For $i=1, \ldots, n$: Draw $\theta_{i} \sim p\left(\theta_{i} \mid \boldsymbol{\theta}_{-i}, \boldsymbol{x}\right)$
- Alg. 2: (uncollapsed)

All the thetas except θ_{i}

- Markov chain state: per-customer cluster indices z_{1}, \ldots, z_{n} and per-cluster parameters $\theta_{1}{ }^{*}, \ldots, \theta_{k}{ }^{*}$
- For $i=1, \ldots, n$: $\operatorname{Draw} z_{i} \sim p\left(z_{i} \mid \boldsymbol{z}_{-i}, \boldsymbol{x}, \boldsymbol{\theta}^{*}\right)$
- Set $K=$ number of clusters in z
- For $k=1, \ldots, K$: Draw $\theta_{k}{ }^{*} \sim p\left(\theta_{k}{ }^{*} \mid\left\{x_{i}: z_{i}=k\right\}\right)$
- Alg. 3: (collapsed)
- Markov chain state: per-customer cluster indices z_{1}, \ldots, z_{n}
- For $i=1, \ldots, n$: Draw $z_{i} \sim p\left(z_{i} \mid \boldsymbol{z}_{-i}, \boldsymbol{x}\right)$

CRP Mixture Model

- Q: How can the Alg. 2 Gibbs samplers permit an infinite set of clusters in finite space?
- A: Easy!
- We are only representing a finite number of clusters at a time - those to which the data have been assigned
- We can always bring back the parameters for the "next unoccupied table" if we need them

Dirichlet Process Mixture Model

Whiteboard

- Dirichlet Process Mixture Model (stick-breaking version)

CRP-MM vs. DP-MM

Dirichlet Process: For both the CRP and stickbreaking constructions, if we marginalize out G, we have the following predictive distribution:

$$
\theta_{n+1} \mid \theta_{1}, \ldots, \theta_{n} \sim \frac{1}{\alpha+n}\left(\alpha H+\sum_{i=1}^{n} \delta_{\theta_{i}}\right)
$$

(Blackwell-MacQueen Urn Scheme)

The Chinese Restaurant Process Mixture Model is just a different construction of the Dirichlet Process Mixture Model where we have marginalized out G

Graphical Models for DPMMs

The Pólya urn construction

The Stick-breaking construction

Example: DP Gaussian Mixture Model

Figure 2: The approximate predictive distribution given by variational inference at different stages of the algorithm. The data are 100 points generated by a Gaussian DP mixture model with fixed diagonal covariance.

Example: DP Gaussian Mixture Model

Figure 3: Mean convergence time and standard error across ten data sets per dimension for variational inference, TDP Gibbs sampling, and the collapsed Gibbs sampler.

Summary of DP and DP-MM

- DP has many different representations:
- Chinese Restaurant Process
- Stick-breaking construction
- Blackwell-MacQueen Urn Scheme
- Limit of finite mixtures
- etc.
- These representations give rise to a variety of inference techniques for the DP-MM and related models
- Gibbs sampler (CRP)
- Gibbs sampler (stick-breaking)
- Variational inference (stick-breaking)
- etc.

GMM VS. DPMM EXAMPLE

Example: Dataset

Example: GMM

Clustering with GMM ($k=6$, init=random, cov=full, iter=0)

Example: GMM

Clustering with GMM ($k=6$, init=random, cov=full, iter=5)

Example: GMM

Clustering with GMM ($k=6$, init=random, cov=full, iter=10)

Example: GMM

Clustering with GMM ($k=6$, init=random, cov=full, iter=15)

Example: GMM

Clustering with GMM ($k=6$, init=random, cov=full, iter=20)

Example: GMM

Clustering with GMM ($k=6$, init=random, cov=full, iter=25)

Example: GMM

Clustering with GMM ($k=6$, init=random, cov=full, iter=30)

Example: GMM

Clustering with GMM ($k=6$, init=random, cov=full, iter=35)

Example: GMM

Clustering with GMM ($k=6$, init=random, cov=full, iter=39)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=0)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=1)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=2)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=3)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=4)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=5)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=6)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=7)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=8)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=9)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=10)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=11)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=12)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=13)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=14)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=15)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=16)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=17)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=18)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=19)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=20)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=21)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=22)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=23)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=24)

Example: DPMM

Clustering with DPMM ($k=6$, init=random, cov=full, iter=25)

HIERARCHICAL DIRICHLET PROCESS (HDP)

Related Models

- Hierarchical Dirichlet Process Mixture Model (HDP-MM)
- Infinite HMM
- Infinite PCFG

HDP-MM

- In LDA, we have M independent samples from a Dirichlet ${ }^{\prime}$ distribution.
- The weights are different, but the topics are fixed to be the same.
- If we replace the Dirichlet distributions with Dirichlet processes, each atom of each Dirichlet process will pick a topic independently of the other topics.
- Because the base measure is continuous, we have zero probability of picking the same topic twice.
- If we want to pick the same topic twice, we need to use a discrete base measure.
- For example, if we chose the base measure to be $H=\sum_{k=1}^{K} \alpha_{k} \delta_{\beta_{k}}$ then we would have LDA again.
- We want there to be an infinite number of topics, so we want an infinite, discrete base measure.
- We want the location of the topics to be random, so we want an infinite, discrete, random base measure.

HDP-MM

Hierarchical Dirichlet process:

HDP-MM

Figure 6: (Left) Comparison of latent Dirichlet allocation and the hierarchical Dirichlet process mixture. Results are averaged over 10 runs; the error bars are one standard error. (Right) Histogram of the number of topics for the hierarchical Dirichlet process mixture over 100 posterior samples.

HDP-HMM (Infinite HMM)

Number of

 hidden states in Infinite HMM is countably infinite

Figure 9: A hierarchical Bayesian model for the infinite hidden Markov model.

Figure 10: Comparing the infinite hidden Markov model (solid horizontal line) with ML, MAP and VB trained hidden Markov models. The error bars represent one standard error (those for the HDP-HMM are too small to see).

HDP-PCFG (Infinite PCFG)

Parametric vs. Nonparametric

Type of Model	Parametric Example	Nonparametric Example	
		Construction \#1	Construction \#2
distribution over counts	Dirichlet- Multinomial Model	Dirichlet Process (DP)	
		Chinese Restaurant Process (CRP)	Stick-breaking construction
mixture	Gaussian Mixture Model (GMM)	Dirichlet Process Mixture Model (DPMM)	
		CRP Mixture Model	Stick-breaking construction
admixture	Latent Dirichlet Allocation (LDA)	Hierarchical Dirichlet Process Mixture Model (HDPMM)	
		Chinese Restaurant Franchise	Stick-breaking construction

Summary of DP and DP-MM

- DP has many different representations:
- Chinese Restaurant Process
- Stick-breaking construction
- Blackwell-MacQueen Urn Scheme
- Limit of finite mixtures
- etc.
- These representations give rise to a variety of inference techniques for the DP-MM and related models
- Gibbs sampler (CRP)
- Gibbs sampler (stick-breaking)
- Variational inference (stick-breaking)
- etc.

INDIAN BUFFET PROCESS (IBP)

Outline

- Motivation: Infinite Latent Feature Models
- Finite Feature Model
- Beta-Bernoulli Model
- Marginalized Beta-Bernoulli Model
- Expected \# of non-zeros
- Taking the Infinite Limit
- Left-ordered form (equivalence classes)
- The Indian Buffet Process (IBP)
- Nonexchangeable IBP
- Exchangeable IBP
- Gibbs Sampling with Exchangeable IBP
- IBP properties
- Applications
- Summary

Motivation

* Latent Feature Models
- Examples:
- factor analysis
- probabilistic PCA
- cooperative vector quantization
- sparse PCA
* Applications
- object detection in images
- choice behavior (i.e. option A over option B)
- proteomics: modeling the functional interactions of proteins which can belong to multiple complexes at the same time
- collaborative filtering: modeling features of movie preferences (a la. Netflix challenge)
- structure learning for graphical models (i.e. bipartite graphs)

Latent Feature Models

Let \mathbf{x}_{i} be the i th data instance \mathbf{f}_{i} be its features

$$
\begin{aligned}
\text { Define } \mathbf{X} & =\left[\mathbf{x}_{1}^{T}, x_{2}^{T}, \ldots, x_{N}^{T}\right] \\
\mathbf{F} & =\left[\mathbf{f}_{1}^{T}, f_{2}^{T}, \ldots, f_{N}^{T}\right]
\end{aligned}
$$

Model: $p(\mathbf{X}, \mathbf{F})=p(\mathbf{X} \mid \mathbf{F}) p(\mathbf{F})$

Latent Feature Models

Decompose the feature matrix, F, into a sparse binary matrix, Z, and a value matrix, V.
$\mathbf{F}=\mathbf{Z} \otimes \mathbf{V} \quad$ where \otimes is the elementwise product

$$
\begin{aligned}
& z_{i j} \in\{0,1\} \\
& v_{i j} \in \mathcal{R}
\end{aligned}
$$

K features

Latent Feature Models

Decompose the feature matrix, F, into a sparse binary matrix, Z , and a value matrix, V .

$$
\begin{gathered}
\mathbf{F}=\mathbf{Z} \otimes \mathbf{V} \quad \text { where } \otimes \text { is the elementwise product } \\
z_{i j} \in\{0,1\} \\
v_{i j} \in \mathcal{R}
\end{gathered}
$$

Model: $p(\mathbf{X}, \mathbf{F})=p(\mathbf{X} \mid \mathbf{F}) p(\mathbf{F})$

$$
=p(\mathbf{X} \mid \mathbf{F}) p(\mathbf{Z}) p(\mathbf{V})
$$

The IBP will provide $p(Z)$ for the case of infinite columns!

Finite Feature Model

Beta-Bernoulli Model

Generative Story:

- for each feature $k \in\{1, \ldots, K\}$:
- $\pi_{k} \sim \operatorname{Beta}\left(\frac{\alpha}{K}, 1\right)$ where $\alpha>0$
- for each object $i \in\{1, \ldots, N\}$:
- $z_{i k} \sim \operatorname{Bernoulli}\left(\pi_{k}\right)$
[row]
[prob. of feat. k] [column]
[is feat. ON/OFF]

$$
p(\mathbf{Z}, \boldsymbol{\pi} \mid \alpha)
$$

Finite Feature Model
 Marginalized Beta-Bernoulli Model

Because of the conjugacy of the Beta and Bernoulli, we can analytically marginalize out the feature prevalence parameters, π_{k}.

$$
\begin{aligned}
P(\mathbf{Z}) & =\prod_{k=1}^{K} \int\left(\prod_{i=1}^{N} P\left(z_{i k} \mid \pi_{k}\right)\right) p\left(\pi_{k}\right) d \pi_{k} \\
& =\prod_{k=1}^{K} \frac{\frac{\alpha}{K} \Gamma\left(m_{k}+\frac{\alpha}{K}\right) \Gamma\left(N-m_{k}+1\right)}{\Gamma\left(N+1+\frac{\alpha}{K}\right)} . \\
& \text { where } m_{k}=\sum_{i=1}^{N} z_{i k} \text { is \# features ON in column } k,
\end{aligned}
$$

Γ is the Gamma function

Finite Feature Model

Expected \# of non-zeroes

Generative Story:

- for each feature $k \in\{1, \ldots, K\}$:
- $\pi_{k} \sim \operatorname{Beta}\left(\frac{\alpha}{K}, 1\right)$ where $\alpha>0$
- for each object $i \in\{1, \ldots, N\}$:
- $z_{i k} \sim \operatorname{Bernoulli}\left(\pi_{k}\right)$

Recall: if $X \sim \operatorname{Beta}(r, s)$,
then $\mathbb{E}[X]=\frac{r}{r+s}$ if $Y \sim \operatorname{Bernoulli}(p), \quad$ then $\mathbb{E}[Y]=p$

$$
\begin{aligned}
& \mathbb{E}\left[z_{i k}\right]=\frac{\frac{\alpha}{K}}{1+\frac{\alpha}{K}} \\
\Rightarrow & \mathbb{E}\left[\mathbf{1}^{T} \mathbf{Z} \mathbf{1}\right]=\mathbb{E}\left[\sum_{i=1}^{N} \sum_{k=1}^{K} z_{i k}\right]=\frac{N \alpha}{1+\frac{\alpha}{K}}
\end{aligned}
$$

What happens as $K \rightarrow \infty$?

Finite Feature Model
 Taking the Infinite Limit

$$
\begin{aligned}
\lim _{K \rightarrow \infty} p(\mathbf{Z}) & =\lim _{K \rightarrow \infty} \prod_{k=1}^{K} \frac{\frac{\alpha}{K} \Gamma\left(m_{k}+\frac{\alpha}{K}\right) \Gamma\left(N-m_{k}+1\right)}{\Gamma\left(N+1+\frac{\alpha}{K}\right)} \\
& =0
\end{aligned}
$$

Problem: Every matrix has zero probability!

Finite Feature Model
 Left-Ordered Form (lof)

Topic Modeling:

- Consider many samples of the $\mathrm{k}^{\text {th }}$ topic from the Markov chain $\dot{\boldsymbol{\phi}}_{k}^{(1)}, \phi_{k}^{(2)}, \ldots, \phi_{k}^{(T)}$

This topic will "drift" over time (e.g. from \{politics\} at time (t) to \{geology\} at time ($\mathrm{t}+\mathrm{m}$))

- Instead of averaging, it's common to use a MAP estimate of the topics
- The order of the topics is not important to the model (i.e. the topics are not identifiable)

Finite Feature Model Left-Ordered Form (lof)

Back to our model:

- Q: In a latent feature model, what's the difference between feature $\mathrm{k}=13$ and $\mathrm{k}=27$?
- A: Nothing!

The use of left-ordered form capitalizes on the fact that features are not identifiable (i.e. order of features doesn't matter to the model)

Finite Feature Model
 Left-Ordered Form (lof)

Define the history of feature k to be the magnitude of
Same history the binary value given by the column:

$$
\begin{aligned}
& h_{k}=\sum_{i=1}^{N} 2^{(N-i)} z_{i k} \\
& K_{h}=\# \text { of features with history } h \\
& K_{0}=\# \text { of features with } m_{k}=0 \text { (i.e. } h=0 \text {) } \\
& K_{+}=\sum_{h=1}^{2^{N}-1} K_{h}, \# \text { of features with non-zero history } \\
& \Rightarrow K=K_{0}+K_{+}
\end{aligned}
$$

Define $\operatorname{lof}(Z)$ to be sorted left-to-right by the history of each feature.

Figure from Griffiths \& Ghahramani (2005)

Finite Feature Model

> Left-Ordered Form (lof)

Define $\operatorname{lof}(Z)$ to be sorted left-to-right by the history of each feature.

> Define equivalence class $[Z]=\left\{Z^{\prime}: \operatorname{lof}\left(Z^{\prime}\right)=\operatorname{lof}(Z)\right\}$
> Cardinality of $[Z]=\frac{K!}{\prod_{h=0}^{2^{N}-1} K_{h}!}$

Finite Feature Model Taking the Infinite Limit

$$
\begin{aligned}
\lim _{K \rightarrow \infty} p(\mathbf{Z}) & =\lim _{K \rightarrow \infty} \prod_{k=1}^{K} \frac{\frac{\alpha}{K} \Gamma\left(m_{k}+\frac{\alpha}{K}\right) \Gamma\left(N-m_{k}+1\right)}{\Gamma\left(N+1+\frac{\alpha}{K}\right)} \\
& =0
\end{aligned}
$$

Problem: Every matrix has zero probability!

$$
\begin{aligned}
\lim _{K \rightarrow \infty} p([\mathbf{Z}])= & \lim _{K \rightarrow \infty} \frac{K!}{\prod_{h=0}^{2^{N}-1} K_{h}!} p(\mathbf{Z}) \\
= & \frac{\alpha^{K_{+}}}{\prod_{h=1}^{2^{N}-1} K_{h}!} \cdot \exp \left\{-\alpha H_{N}\right\} \quad \cdot \prod_{k=1}^{K_{+}} \frac{\left(N-m_{k}\right)!\left(m_{k}-1\right)!}{N!}, \\
& \quad \text { where } H_{N}=\sum_{j=1}^{N} \frac{1}{j} \text { is the } N \text { th harmonic number }
\end{aligned}
$$

Solution: Every equivalence class has non-zero probability!

The, Indian Buffet Process
 Non-exchangeable

- Imagine an Indian restaurant with a buffet containing an infinite \# of dishes.
- N customers make a plate by selecting dishes from the buffet:
- $1^{\text {st }}$ customer:

Starts at the left and selects a Poisson(α) number of dishes

- $i^{\text {th }}$ customer:

1. Samples previously sampled dishes according to their popularity:
(i.e. with prob. m_{k} / i where m_{k} is the \# of
previous customers who tried dish k)
2. Then selects a Poisson(α / i) number of new dishes

Problem: the process is not exchangeable dishes sampled as "new" depend on the customer order.

The Indian Buffet Process
 Exchangeable

- Imagine an Indian restaurant with a buffet containing an infinite \# of dishes.
- N customers make a plate by selecting dishes from the buffet:
- $1^{\text {st }}$ customer:

Starts at the left and selects a Poisson(α) number of dishes

- $i^{\text {th }}$ customer:

1. Makes a single decision for dishes with same history, h :
(i.e. If there are K_{h} dishes $w /$ history h sampled by m_{h} customers, then she samples a Binomial $\left(m_{h} / l, K_{h}\right)$ number starting at the left)
2. Then selects a Poisson(α / i) number of new dishes

This yields a lof matrix, Z.

Does so with probability $p([z])$!

Figure from Griffiths \& Ghahramani (2005)

The Indian Buffet Process

Example:

Gibbs Sampler for IBP

Consider a "prior only" sampler of $p(Z \mid \alpha)$

- For finite K:

$$
\begin{aligned}
P\left(z_{i k}=1 \mid \mathbf{z}_{-i, k}\right) & =\int_{0}^{1} P\left(z_{i k} \mid \pi_{k}\right) p\left(\pi_{k} \mid \mathbf{z}_{-i, k}\right) d \pi_{k} \\
& =\frac{m_{-i, k}+\frac{\alpha}{K}}{N+\frac{\alpha}{K}}
\end{aligned}
$$

where $z_{-i, k}$ is the k th column except row i,
$m_{-i, k}$ is the \# of rows w/feat. k except i

- For infinite K:
- The "Exchangeable IBP" is exchangeable!
- Choose an order s.t. the $\mathrm{i}^{\text {th }}$ customer was the last to enter (just like CRP sampler)
- For any ks.t. $\mathrm{m}_{-\mathrm{i}, \mathrm{k}}>0$, resample:

$$
P\left(z_{i k}=1 \mid \mathbf{z}_{-i, k}\right)=\frac{m_{-i, k}}{N}
$$

- Then draw a Poisson(a/i) \# of new dishes.

Properties of the Indian buffet process

Shown in (Griffiths and Ghahramani, 2005):

Figure 1: Stick-breaking construction for the DP and IBP. The black stick at top has length 1. At each iteration the vertical black line represents the break point. The brown dotted stick on the right is the weight obtained for the DP, while the blue stick on the left is the weight obtained for the IBP.

- It is infinitely exchangeable.
- The number of ones in each row is Poisson (α)
- The expected total number of ones is αN.
- The number of nonzero columns grows as $O(\alpha \log N)$.

Additional properties:

- Has a stick-breaking representation (Teh, Görür, Ghahramani, 2007)
- Can be interpreted using a Beta-Bernoulli process (Thibaux and Jordan, 2007)

Posterior Inference in IBPs

$$
P(\mathbf{Z}, \alpha \mid \mathbf{X}) \propto P(\mathbf{X} \mid \mathbf{Z}) P(\mathbf{Z} \mid \alpha) P(\alpha)
$$

Gibbs sampling: $\quad P\left(z_{n k}=1 \mid \mathbf{Z}_{-(n k)}, \mathbf{X}, \alpha\right) \propto P\left(z_{n k}=1 \mid \mathbf{Z}_{-(n k)}, \alpha\right) P(\mathbf{X} \mid \mathbf{Z})$

- If $m_{-n, k}>0, \quad P\left(z_{n k}=1 \mid \mathbf{z}_{-n, k}\right)=\frac{m_{-n, k}}{N}$
- For infinitely many k such that $m_{-n, k}=0$: Metropolis steps with truncation* to sample from the number of new features for each object.
- If α has a Gamma prior then the posterior is also Gamma \rightarrow Gibbs sample.

Conjugate sampler: assumes that $P(\mathbf{X} \mid \mathbf{Z})$ can be computed.
Non-conjugate sampler: $P(\mathbf{X} \mid \mathbf{Z})=\int P(\mathbf{X} \mid \mathbf{Z}, \theta) P(\theta) d \theta$ cannot be computed, requires sampling latent θ as well (c.f. (Neal 2000) non-conjugate DPM samplers).
*Slice sampler: non-conjugate case, is not approximate, and has an adaptive truncation level using a stick-breaking construction of the IBP (Teh, et al, 2007).

Particle Filter: (Wood \& Griffiths, 2007).
Accelerated Gibbs Sampling: maintaining a probability distribution over some of the variables (Doshi-Velez \& Ghahramani, 2009).

Variational inference: (Doshi-Velez, Miller, van Gael, \& Teh, 2009).

Slide from Ghahramani, Bayes Np. Workshop 2009

Modelling Data

Latent variable model: let \mathbf{X} be the $N \times D$ matrix of observed data, and \mathbf{Z} be the $N \times K$ matrix of binary latent features

$$
P(\mathbf{X}, \mathbf{Z} \mid \alpha)=P(\mathbf{X} \mid \mathbf{Z}) P(\mathbf{Z} \mid \alpha)
$$

By combining the IBP with different likelihood functions we can get different kinds of models:

- Models for graph structures
(w/ Wood, Griffiths, 2006)
- Models for protein complexes
(w/ Chu, Wild, 2006)
- Models for overlapping clusters
- Models for choice behaviour
(Görür, Jäkel \& Rasmussen, 2006)
- Models for users in collaborative filtering
(w/ Meeds, Roweis, Neal, 2006)
- Sparse latent factor models
(w/ Knowles, 2007)

Summary

- Beta-Bernoulli model is a simple finite feature model
- Can treat features as latent
- Infinite limit of Beta-Bernoulli yields the Indian Buffet Process (IBP)
- Many properties of the IBP are similar to the CRP

