
Bayesian Nonparametrics:

Dirichlet Process
+

Dirichlet Process Mixture Model

1

10-708 Probabilistic Graphical Models

Matt Gormley
Lecture 22

Apr. 21, 2021

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Project Midway Milestones:

– Midway Poster Session:
Tue, Apr. 27 at 6:30pm – 8:30pm

– Midway Executive Summary
Due: Tue, Apr. 27 at 11:59pm

– New requirement: must have baseline results

• Quiz 3

– Mon, May 3 during lecture slot

– Topics: Lectures 16 - 23

2

DEEP BOLTZMAN MACHINES
(DBMS)

3

Outline

• Motivation
• Deep Neural Networks (DNNs)

– Background: Decision functions
– Background: Neural Networks
– Three ideas for training a DNN
– Experiments: MNIST digit classification

• Deep Belief Networks (DBNs)
– Sigmoid Belief Network
– Contrastive Divergence learning
– Restricted Boltzman Machines (RBMs)
– RBMs as infinitely deep Sigmoid Belief Nets
– Learning DBNs

• Deep Boltzman Machines (DBMs)
– Boltzman Machines
– Learning Boltzman Machines
– Learning DBMs

4

Deep Boltzman
Machines

• DBNs are a
hybrid
directed/undi
rected
graphical
model

• DBMs are a
purely
undirected
graphical
model

5

DBMs
Deep Boltzmann Machines

h3

h2

h1

v

W3

W2

W1

Deep Belief
Network

Deep Boltzmann
Machine

Pretraining

W W

W

h

h

hh

W

h

h

vv

Compose
W

W

v

RBM

RBM

1 1

2

1

1

22

2

1

2

2

1

Figure 2: Left: A three-layer Deep Belief Network and a three-layer Deep Boltzmann Machine. Right: Pretraining consists of learning
a stack of modified RBM’s, that are then composed to create a deep Boltzmann machine.

Consider a two-layer Boltzmann machine (see Fig. 2, right
panel) with no within-layer connections. The energy of the
state {v,h1,h2} is defined as:

E(v,h1,h2; θ) = −v
!
W

1
h

1 − h
1!

W
2
h

2, (9)

where θ = {W1,W2} are the model parameters, repre-
senting visible-to-hidden and hidden-to-hidden symmetric
interaction terms. The probability that the model assigns to
a visible vector v is:

p(v; θ) =
1

Z(θ)

∑

h1,h2

exp (−E(v,h1,h2; θ)). (10)

The conditional distributions over the visible and the two
sets of hidden units are given by logistic functions:

p(h1
j = 1|v,h2) = σ

(

∑

i

W 1
ijvi +

∑

m

W 2
jmh2

j

)

, (11)

p(h2
m = 1|h1) = σ

(

∑

j

W 2
imh1

i

)

, (12)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (13)

For approximate maximum likelihood learning, we could
still apply the learning procedure for general Boltzmann
machines described above, but it would be rather slow, par-
ticularly when the hidden units form layers which become
increasingly remote from the visible units. There is, how-
ever, a fast way to initialize the model parameters to sensi-
ble values as we describe in the next section.

3.1 Greedy Layerwise Pretraining of DBM’s

Hinton et al. (2006) introduced a greedy, layer-by-layer un-
supervised learning algorithm that consists of learning a
stack of RBM’s one layer at a time. After the stack of
RBM’s has been learned, the whole stack can be viewed
as a single probabilistic model, called a “deep belief net-
work”. Surprisingly, this model is not a deep Boltzmann
machine. The top two layers form a restricted Boltzmann
machine which is an undirected graphical model, but the
lower layers form a directed generative model (see Fig. 2).

After learning the first RBM in the stack, the generative
model can be written as:

p(v; θ) =
∑

h1

p(h1;W1)p(v|h1;W1), (14)

where p(h1;W1) =
∑

v
p(h1,v;W1) is an implicit

prior over h1 defined by the parameters. The second
RBM in the stack replaces p(h1;W1) by p(h1;W2) =
∑

h2 p(h1,h2;W2). If the second RBM is initialized cor-
rectly (Hinton et al., 2006), p(h1;W2) will become a bet-
ter model of the aggregated posterior distribution over h1,
where the aggregated posterior is simply the non-factorial
mixture of the factorial posteriors for all the training cases,
i.e. 1/N

∑

n p(h1|vn;W1). Since the second RBM is re-
placing p(h1;W1) by a better model, it would be possible
to infer p(h1;W1,W2) by averaging the two models of h1

which can be done approximately by using 1/2W1 bottom-
up and 1/2W2 top-down. Using W1 bottom-up and W2

top-down would amount to double-counting the evidence
since h2 is dependent on v.

To initialize model parameters of a DBM, we propose
greedy, layer-by-layer pretraining by learning a stack of
RBM’s, but with a small change that is introduced to elim-
inate the double-counting problem when top-down and
bottom-up influences are subsequently combined. For the
lower-level RBM, we double the input and tie the visible-
to-hidden weights, as shown in Fig. 2, right panel. In this
modified RBM with tied parameters, the conditional distri-
butions over the hidden and visible states are defined as:

p(h1
j = 1|v) = σ

(

∑

i

W 1
ijvi +

∑

i

W 1
ijvi

)

, (15)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (16)

Contrastive divergence learning works well and the modi-
fied RBM is good at reconstructing its training data. Con-
versely, for the top-level RBM we double the number of
hidden units. The conditional distributions for this model

Deep Boltzman
Machines

Can we use the same
techniques to train a DBM?

6

DBMs
Deep Boltzmann Machines

h3

h2

h1

v

W3

W2

W1

Deep Belief
Network

Deep Boltzmann
Machine

Pretraining

W W

W

h

h

hh

W

h

h

vv

Compose
W

W

v

RBM

RBM

1 1

2

1

1

22

2

1

2

2

1

Figure 2: Left: A three-layer Deep Belief Network and a three-layer Deep Boltzmann Machine. Right: Pretraining consists of learning
a stack of modified RBM’s, that are then composed to create a deep Boltzmann machine.

Consider a two-layer Boltzmann machine (see Fig. 2, right
panel) with no within-layer connections. The energy of the
state {v,h1,h2} is defined as:

E(v,h1,h2; θ) = −v
!
W

1
h

1 − h
1!

W
2
h

2, (9)

where θ = {W1,W2} are the model parameters, repre-
senting visible-to-hidden and hidden-to-hidden symmetric
interaction terms. The probability that the model assigns to
a visible vector v is:

p(v; θ) =
1

Z(θ)

∑

h1,h2

exp (−E(v,h1,h2; θ)). (10)

The conditional distributions over the visible and the two
sets of hidden units are given by logistic functions:

p(h1
j = 1|v,h2) = σ

(

∑

i

W 1
ijvi +

∑

m

W 2
jmh2

j

)

, (11)

p(h2
m = 1|h1) = σ

(

∑

j

W 2
imh1

i

)

, (12)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (13)

For approximate maximum likelihood learning, we could
still apply the learning procedure for general Boltzmann
machines described above, but it would be rather slow, par-
ticularly when the hidden units form layers which become
increasingly remote from the visible units. There is, how-
ever, a fast way to initialize the model parameters to sensi-
ble values as we describe in the next section.

3.1 Greedy Layerwise Pretraining of DBM’s

Hinton et al. (2006) introduced a greedy, layer-by-layer un-
supervised learning algorithm that consists of learning a
stack of RBM’s one layer at a time. After the stack of
RBM’s has been learned, the whole stack can be viewed
as a single probabilistic model, called a “deep belief net-
work”. Surprisingly, this model is not a deep Boltzmann
machine. The top two layers form a restricted Boltzmann
machine which is an undirected graphical model, but the
lower layers form a directed generative model (see Fig. 2).

After learning the first RBM in the stack, the generative
model can be written as:

p(v; θ) =
∑

h1

p(h1;W1)p(v|h1;W1), (14)

where p(h1;W1) =
∑

v
p(h1,v;W1) is an implicit

prior over h1 defined by the parameters. The second
RBM in the stack replaces p(h1;W1) by p(h1;W2) =
∑

h2 p(h1,h2;W2). If the second RBM is initialized cor-
rectly (Hinton et al., 2006), p(h1;W2) will become a bet-
ter model of the aggregated posterior distribution over h1,
where the aggregated posterior is simply the non-factorial
mixture of the factorial posteriors for all the training cases,
i.e. 1/N

∑

n p(h1|vn;W1). Since the second RBM is re-
placing p(h1;W1) by a better model, it would be possible
to infer p(h1;W1,W2) by averaging the two models of h1

which can be done approximately by using 1/2W1 bottom-
up and 1/2W2 top-down. Using W1 bottom-up and W2

top-down would amount to double-counting the evidence
since h2 is dependent on v.

To initialize model parameters of a DBM, we propose
greedy, layer-by-layer pretraining by learning a stack of
RBM’s, but with a small change that is introduced to elim-
inate the double-counting problem when top-down and
bottom-up influences are subsequently combined. For the
lower-level RBM, we double the input and tie the visible-
to-hidden weights, as shown in Fig. 2, right panel. In this
modified RBM with tied parameters, the conditional distri-
butions over the hidden and visible states are defined as:

p(h1
j = 1|v) = σ

(

∑

i

W 1
ijvi +

∑

i

W 1
ijvi

)

, (15)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (16)

Contrastive divergence learning works well and the modi-
fied RBM is good at reconstructing its training data. Con-
versely, for the top-level RBM we double the number of
hidden units. The conditional distributions for this model

LEARNING STANDARD BOLTZMAN
MACHINES

7

Boltzman Machine

• Undirected graphical
model of binary
variables with
pairwise potentials

• Parameterization of
the potentials:

8

DBMs

�ij(xi, xj) =

exp(xiWijxj)

(In English: higher value of
parameter Wij leads to higher
correlation between Xi and Xj on
value 1)

Xi X1 X1

Xj

X1 X1

Learning Standard
Boltzman Machines

9

DBMs

X1 X1

X1 X1

Deep Boltzmann Machines

Ruslan Salakhutdinov
Department of Computer Science

University of Toronto
rsalakhu@cs.toronto.edu

Geoffrey Hinton
Department of Computer Science

University of Toronto
hinton@cs.toronto.edu

Abstract

We present a new learning algorithm for Boltz-
mann machines that contain many layers of hid-
den variables. Data-dependent expectations are
estimated using a variational approximation that
tends to focus on a single mode, and data-
independent expectations are approximated us-
ing persistent Markov chains. The use of two
quite different techniques for estimating the two
types of expectation that enter into the gradient
of the log-likelihood makes it practical to learn
Boltzmann machines with multiple hidden lay-
ers and millions of parameters. The learning can
be made more efficient by using a layer-by-layer
“pre-training” phase that allows variational in-
ference to be initialized with a single bottom-
up pass. We present results on the MNIST and
NORB datasets showing that deep Boltzmann
machines learn good generative models and per-
form well on handwritten digit and visual object
recognition tasks.

1 Introduction

The original learning algorithm for Boltzmann machines
(Hinton and Sejnowski, 1983) required randomly initial-
ized Markov chains to approach their equilibrium distri-
butions in order to estimate the data-dependent and data-
independent expectations that a connected pair of binary
variables would both be on. The difference of these two ex-
pectations is the gradient required for maximum likelihood
learning. Even with the help of simulated annealing, this
learning procedure was too slow to be practical. Learning
can be made much more efficient in a restricted Boltzmann
machine (RBM), which has no connections between hidden

Appearing in Proceedings of the 12th International Confe-rence
on Artificial Intelligence and Statistics (AISTATS) 2009, Clearwa-
ter Beach, Florida, USA. Volume 5 of JMLR:W&CP 5. Copyright
2009 by the authors.

units (Hinton, 2002). Multiple hidden layers can be learned
by treating the hidden activities of one RBM as the data
for training a higher-level RBM (Hinton et al., 2006; Hin-
ton and Salakhutdinov, 2006). However, if multiple layers
are learned in this greedy, layer-by-layer way, the resulting
composite model is not a multilayer Boltzmann machine
(Hinton et al., 2006). It is a hybrid generative model called
a “deep belief net” that has undirected connections between
its top two layers and downward directed connections be-
tween all its lower layers.

In this paper we present a much more efficient learning
procedure for fully general Boltzmann machines. We also
show that if the connections between hidden units are re-
stricted in such a way that the hidden units form multi-
ple layers, it is possible to use a stack of slightly modified
RBM’s to initialize the weights of a deep Boltzmann ma-
chine before applying our new learning procedure.

2 Boltzmann Machines (BM’s)

A Boltzmann machine is a network of symmetrically cou-
pled stochastic binary units. It contains a set of visible units
v ∈ {0, 1}D, and a set of hidden units h ∈ {0, 1}P (see
Fig. 1). The energy of the state {v,h} is defined as:

E(v,h; θ) = −
1

2
v
!
Lv −

1

2
h
!
Jh− v

!
Wh, (1)

where θ = {W,L,J} are the model parameters1: W, L, J
represent visible-to-hidden, visible-to-visible, and hidden-
to-hidden symmetric interaction terms. The diagonal ele-
ments of L and J are set to 0. The probability that the
model assigns to a visible vector v is:

p(v; θ) =
p∗(v; θ)

Z(θ)
=

1

Z(θ)

∑

h

exp (−E(v,h; θ)), (2)

Z(θ) =
∑

v

∑

h

exp (−E(v,h; θ)), (3)

where p∗ denotes unnormalized probability, and Z(θ) is
the partition function. The conditional distributions over

1We have omitted the bias terms for clarity of presentation

Deep Boltzmann Machines

Ruslan Salakhutdinov
Department of Computer Science

University of Toronto
rsalakhu@cs.toronto.edu

Geoffrey Hinton
Department of Computer Science

University of Toronto
hinton@cs.toronto.edu

Abstract

We present a new learning algorithm for Boltz-
mann machines that contain many layers of hid-
den variables. Data-dependent expectations are
estimated using a variational approximation that
tends to focus on a single mode, and data-
independent expectations are approximated us-
ing persistent Markov chains. The use of two
quite different techniques for estimating the two
types of expectation that enter into the gradient
of the log-likelihood makes it practical to learn
Boltzmann machines with multiple hidden lay-
ers and millions of parameters. The learning can
be made more efficient by using a layer-by-layer
“pre-training” phase that allows variational in-
ference to be initialized with a single bottom-
up pass. We present results on the MNIST and
NORB datasets showing that deep Boltzmann
machines learn good generative models and per-
form well on handwritten digit and visual object
recognition tasks.

1 Introduction

The original learning algorithm for Boltzmann machines
(Hinton and Sejnowski, 1983) required randomly initial-
ized Markov chains to approach their equilibrium distri-
butions in order to estimate the data-dependent and data-
independent expectations that a connected pair of binary
variables would both be on. The difference of these two ex-
pectations is the gradient required for maximum likelihood
learning. Even with the help of simulated annealing, this
learning procedure was too slow to be practical. Learning
can be made much more efficient in a restricted Boltzmann
machine (RBM), which has no connections between hidden

Appearing in Proceedings of the 12th International Confe-rence
on Artificial Intelligence and Statistics (AISTATS) 2009, Clearwa-
ter Beach, Florida, USA. Volume 5 of JMLR:W&CP 5. Copyright
2009 by the authors.

units (Hinton, 2002). Multiple hidden layers can be learned
by treating the hidden activities of one RBM as the data
for training a higher-level RBM (Hinton et al., 2006; Hin-
ton and Salakhutdinov, 2006). However, if multiple layers
are learned in this greedy, layer-by-layer way, the resulting
composite model is not a multilayer Boltzmann machine
(Hinton et al., 2006). It is a hybrid generative model called
a “deep belief net” that has undirected connections between
its top two layers and downward directed connections be-
tween all its lower layers.

In this paper we present a much more efficient learning
procedure for fully general Boltzmann machines. We also
show that if the connections between hidden units are re-
stricted in such a way that the hidden units form multi-
ple layers, it is possible to use a stack of slightly modified
RBM’s to initialize the weights of a deep Boltzmann ma-
chine before applying our new learning procedure.

2 Boltzmann Machines (BM’s)

A Boltzmann machine is a network of symmetrically cou-
pled stochastic binary units. It contains a set of visible units
v ∈ {0, 1}D, and a set of hidden units h ∈ {0, 1}P (see
Fig. 1). The energy of the state {v,h} is defined as:

E(v,h; θ) = −
1

2
v
!
Lv −

1

2
h
!
Jh− v

!
Wh, (1)

where θ = {W,L,J} are the model parameters1: W, L, J
represent visible-to-hidden, visible-to-visible, and hidden-
to-hidden symmetric interaction terms. The diagonal ele-
ments of L and J are set to 0. The probability that the
model assigns to a visible vector v is:

p(v; θ) =
p∗(v; θ)

Z(θ)
=

1

Z(θ)

∑

h

exp (−E(v,h; θ)), (2)

Z(θ) =
∑

v

∑

h

exp (−E(v,h; θ)), (3)

where p∗ denotes unnormalized probability, and Z(θ) is
the partition function. The conditional distributions over

1We have omitted the bias terms for clarity of presentation

Deep Boltzmann Machines

Ruslan Salakhutdinov
Department of Computer Science

University of Toronto
rsalakhu@cs.toronto.edu

Geoffrey Hinton
Department of Computer Science

University of Toronto
hinton@cs.toronto.edu

Abstract

We present a new learning algorithm for Boltz-
mann machines that contain many layers of hid-
den variables. Data-dependent expectations are
estimated using a variational approximation that
tends to focus on a single mode, and data-
independent expectations are approximated us-
ing persistent Markov chains. The use of two
quite different techniques for estimating the two
types of expectation that enter into the gradient
of the log-likelihood makes it practical to learn
Boltzmann machines with multiple hidden lay-
ers and millions of parameters. The learning can
be made more efficient by using a layer-by-layer
“pre-training” phase that allows variational in-
ference to be initialized with a single bottom-
up pass. We present results on the MNIST and
NORB datasets showing that deep Boltzmann
machines learn good generative models and per-
form well on handwritten digit and visual object
recognition tasks.

1 Introduction

The original learning algorithm for Boltzmann machines
(Hinton and Sejnowski, 1983) required randomly initial-
ized Markov chains to approach their equilibrium distri-
butions in order to estimate the data-dependent and data-
independent expectations that a connected pair of binary
variables would both be on. The difference of these two ex-
pectations is the gradient required for maximum likelihood
learning. Even with the help of simulated annealing, this
learning procedure was too slow to be practical. Learning
can be made much more efficient in a restricted Boltzmann
machine (RBM), which has no connections between hidden

Appearing in Proceedings of the 12th International Confe-rence
on Artificial Intelligence and Statistics (AISTATS) 2009, Clearwa-
ter Beach, Florida, USA. Volume 5 of JMLR:W&CP 5. Copyright
2009 by the authors.

units (Hinton, 2002). Multiple hidden layers can be learned
by treating the hidden activities of one RBM as the data
for training a higher-level RBM (Hinton et al., 2006; Hin-
ton and Salakhutdinov, 2006). However, if multiple layers
are learned in this greedy, layer-by-layer way, the resulting
composite model is not a multilayer Boltzmann machine
(Hinton et al., 2006). It is a hybrid generative model called
a “deep belief net” that has undirected connections between
its top two layers and downward directed connections be-
tween all its lower layers.

In this paper we present a much more efficient learning
procedure for fully general Boltzmann machines. We also
show that if the connections between hidden units are re-
stricted in such a way that the hidden units form multi-
ple layers, it is possible to use a stack of slightly modified
RBM’s to initialize the weights of a deep Boltzmann ma-
chine before applying our new learning procedure.

2 Boltzmann Machines (BM’s)

A Boltzmann machine is a network of symmetrically cou-
pled stochastic binary units. It contains a set of visible units
v ∈ {0, 1}D, and a set of hidden units h ∈ {0, 1}P (see
Fig. 1). The energy of the state {v,h} is defined as:

E(v,h; θ) = −
1

2
v
!
Lv −

1

2
h
!
Jh− v

!
Wh, (1)

where θ = {W,L,J} are the model parameters1: W, L, J
represent visible-to-hidden, visible-to-visible, and hidden-
to-hidden symmetric interaction terms. The diagonal ele-
ments of L and J are set to 0. The probability that the
model assigns to a visible vector v is:

p(v; θ) =
p∗(v; θ)

Z(θ)
=

1

Z(θ)

∑

h

exp (−E(v,h; θ)), (2)

Z(θ) =
∑

v

∑

h

exp (−E(v,h; θ)), (3)

where p∗ denotes unnormalized probability, and Z(θ) is
the partition function. The conditional distributions over

1We have omitted the bias terms for clarity of presentation

Visible units:

Hidden units:

Likelihood:

Deep Boltzmann Machines

Ruslan Salakhutdinov
Department of Computer Science

University of Toronto
rsalakhu@cs.toronto.edu

Geoffrey Hinton
Department of Computer Science

University of Toronto
hinton@cs.toronto.edu

Abstract

We present a new learning algorithm for Boltz-
mann machines that contain many layers of hid-
den variables. Data-dependent expectations are
estimated using a variational approximation that
tends to focus on a single mode, and data-
independent expectations are approximated us-
ing persistent Markov chains. The use of two
quite different techniques for estimating the two
types of expectation that enter into the gradient
of the log-likelihood makes it practical to learn
Boltzmann machines with multiple hidden lay-
ers and millions of parameters. The learning can
be made more efficient by using a layer-by-layer
“pre-training” phase that allows variational in-
ference to be initialized with a single bottom-
up pass. We present results on the MNIST and
NORB datasets showing that deep Boltzmann
machines learn good generative models and per-
form well on handwritten digit and visual object
recognition tasks.

1 Introduction

The original learning algorithm for Boltzmann machines
(Hinton and Sejnowski, 1983) required randomly initial-
ized Markov chains to approach their equilibrium distri-
butions in order to estimate the data-dependent and data-
independent expectations that a connected pair of binary
variables would both be on. The difference of these two ex-
pectations is the gradient required for maximum likelihood
learning. Even with the help of simulated annealing, this
learning procedure was too slow to be practical. Learning
can be made much more efficient in a restricted Boltzmann
machine (RBM), which has no connections between hidden

Appearing in Proceedings of the 12th International Confe-rence
on Artificial Intelligence and Statistics (AISTATS) 2009, Clearwa-
ter Beach, Florida, USA. Volume 5 of JMLR:W&CP 5. Copyright
2009 by the authors.

units (Hinton, 2002). Multiple hidden layers can be learned
by treating the hidden activities of one RBM as the data
for training a higher-level RBM (Hinton et al., 2006; Hin-
ton and Salakhutdinov, 2006). However, if multiple layers
are learned in this greedy, layer-by-layer way, the resulting
composite model is not a multilayer Boltzmann machine
(Hinton et al., 2006). It is a hybrid generative model called
a “deep belief net” that has undirected connections between
its top two layers and downward directed connections be-
tween all its lower layers.

In this paper we present a much more efficient learning
procedure for fully general Boltzmann machines. We also
show that if the connections between hidden units are re-
stricted in such a way that the hidden units form multi-
ple layers, it is possible to use a stack of slightly modified
RBM’s to initialize the weights of a deep Boltzmann ma-
chine before applying our new learning procedure.

2 Boltzmann Machines (BM’s)

A Boltzmann machine is a network of symmetrically cou-
pled stochastic binary units. It contains a set of visible units
v ∈ {0, 1}D, and a set of hidden units h ∈ {0, 1}P (see
Fig. 1). The energy of the state {v,h} is defined as:

E(v,h; θ) = −
1

2
v
!
Lv −

1

2
h
!
Jh− v

!
Wh, (1)

where θ = {W,L,J} are the model parameters1: W, L, J
represent visible-to-hidden, visible-to-visible, and hidden-
to-hidden symmetric interaction terms. The diagonal ele-
ments of L and J are set to 0. The probability that the
model assigns to a visible vector v is:

p(v; θ) =
p∗(v; θ)

Z(θ)
=

1

Z(θ)

∑

h

exp (−E(v,h; θ)), (2)

Z(θ) =
∑

v

∑

h

exp (−E(v,h; θ)), (3)

where p∗ denotes unnormalized probability, and Z(θ) is
the partition function. The conditional distributions over

1We have omitted the bias terms for clarity of presentation

Learning Standard
Boltzman Machines

10

DBMs

X1 X1

X1 X1

Deep Boltzmann Machines

h

v

J

W

L

h

v

W

General Boltzmann
Machine

Restricted Boltzmann
Machine

Figure 1: Left: A general Boltzmann machine. The top layer
represents a vector of stochastic binary “hidden” features and
the bottom layer represents a vector of stochastic binary “visi-
ble” variables. Right: A restricted Boltzmann machine with no
hidden-to-hidden and no visible-to-visible connections.

hidden and visible units are given by:

p(hj = 1|v,h−j) = σ
(

D
∑

i=1

Wijvi +
P

∑

m=1\j

Jjmhj

)

, (4)

p(vi = 1|h,v−i) = σ
(

P
∑

j=1

Wijhj +
D

∑

k=1\i

Likvj

)

, (5)

where σ(x) = 1/(1 + exp(−x)) is the logistic function.
The parameter updates, originally derived by Hinton and
Sejnowski (1983), that are needed to perform gradient as-
cent in the log-likelihood can be obtained from Eq. 2:

∆W = α
(

EPdata
[vh

"]− EPmodel
[vh

"]
)

, (6)
∆L = α

(

EPdata
[vv

"]− EPmodel
[vv

"]
)

,

∆J = α
(

EPdata
[hh

"]− EPmodel
[hh

"]
)

,

where α is a learning rate, EPdata
[·] denotes an expec-

tation with respect to the completed data distribution
Pdata(h,v; θ) = p(h|v; θ)Pdata(v), with Pdata(v) =
1
N

∑

n δ(v − vn) representing the empirical distribution,
and EPmodel

[·] is an expectation with respect to the distri-
bution defined by the model (see Eq. 2). We will some-
times refer to EPdata

[·] as the data-dependent expectation,
and EPmodel

[·] as the model’s expectation.

Exact maximum likelihood learning in this model is in-
tractable because exact computation of both the data-
dependent expectations and the model’s expectations takes
a time that is exponential in the number of hidden units.
Hinton and Sejnowski (1983) proposed an algorithm that
uses Gibbs sampling to approximate both expectations. For
each iteration of learning, a separate Markov chain is run
for every training data vector to approximate EPdata

[·], and
an additional chain is run to approximate EPmodel

[·]. The
main problem with this learning algorithm is the time re-
quired to approach the stationary distribution, especially
when estimating the model’s expectations, since the Gibbs
chain may need to explore a highly multimodal energy

landscape. This is typical when modeling real-world dis-
tributions such as datasets of images in which almost all
of the possible images have extremely low probability, but
there are many very different images that occur with quite
similar probabilities.

Setting both J=0 and L=0 recovers the well-known re-
stricted Boltzmann machine (RBM) model (Smolensky,
1986) (see Fig. 1, right panel). In contrast to general BM’s,
inference in RBM’s is exact. Although exact maximum
likelihood learning in RBM’s is still intractable, learning
can be carried out efficiently using Contrastive Divergence
(CD) (Hinton, 2002). It was further observed (Welling
and Hinton, 2002; Hinton, 2002) that for Contrastive Di-
vergence to perform well, it is important to obtain exact
samples from the conditional distribution p(h|v; θ), which
is intractable when learning full Boltzmann machines.

2.1 Using Persistent Markov Chains to Estimate the
Model’s Expectations

Instead of using CD learning, it is possible to make use of a
stochastic approximation procedure (SAP) to approximate
the model’s expectations (Tieleman, 2008; Neal, 1992).
SAP belongs to the class of well-studied stochastic approx-
imation algorithms of the Robbins–Monro type (Robbins
and Monro, 1951; Younes, 1989, 2000). The idea behind
these methods is straightforward. Let θt andXt be the cur-
rent parameters and the state. Then Xt and θt are updated
sequentially as follows:

• GivenXt, a new state Xt+1 is sampled from a transi-
tion operator Tθt

(Xt+1; Xt) that leaves pθt
invariant.

• A new parameter θt+1 is then obtained by replacing
the intractable model’s expectation by the expectation
with respect to Xt+1.

Precise sufficient conditions that guarantee almost sure
convergence to an asymptotically stable point are given in
(Younes, 1989, 2000; Yuille, 2004). One necessary con-
dition requires the learning rate to decrease with time, i.e.
∑∞

t=0 αt = ∞ and
∑∞

t=0 α2
t < ∞. This condition can be

trivially satisfied by setting αt = 1/t. Typically, in prac-
tice, the sequence |θt| is bounded, and the Markov chain,
governed by the transition kernel Tθ, is ergodic. Together
with the condition on the learning rate, this ensures almost
sure convergence.

The intuition behind why this procedure works is the fol-
lowing: as the learning rate becomes sufficiently small
compared with the mixing rate of the Markov chain, this
“persistent” chain will always stay very close to the sta-
tionary distribution even if it is only run for a few MCMC
updates per parameter update. Samples from the persistent
chain will be highly correlated for successive parameter up-
dates, but again, if the learning rate is sufficiently small the

Full conditionals for Gibbs sampler:

Deep Boltzmann Machines

h

v

J

W

L

h

v

W

General Boltzmann
Machine

Restricted Boltzmann
Machine

Figure 1: Left: A general Boltzmann machine. The top layer
represents a vector of stochastic binary “hidden” features and
the bottom layer represents a vector of stochastic binary “visi-
ble” variables. Right: A restricted Boltzmann machine with no
hidden-to-hidden and no visible-to-visible connections.

hidden and visible units are given by:

p(hj = 1|v,h−j) = σ
(

D
∑

i=1

Wijvi +
P

∑

m=1\j

Jjmhj

)

, (4)

p(vi = 1|h,v−i) = σ
(

P
∑

j=1

Wijhj +
D

∑

k=1\i

Likvj

)

, (5)

where σ(x) = 1/(1 + exp(−x)) is the logistic function.
The parameter updates, originally derived by Hinton and
Sejnowski (1983), that are needed to perform gradient as-
cent in the log-likelihood can be obtained from Eq. 2:

∆W = α
(

EPdata
[vh

"]− EPmodel
[vh

"]
)

, (6)
∆L = α

(

EPdata
[vv

"]− EPmodel
[vv

"]
)

,

∆J = α
(

EPdata
[hh

"]− EPmodel
[hh

"]
)

,

where α is a learning rate, EPdata
[·] denotes an expec-

tation with respect to the completed data distribution
Pdata(h,v; θ) = p(h|v; θ)Pdata(v), with Pdata(v) =
1
N

∑

n δ(v − vn) representing the empirical distribution,
and EPmodel

[·] is an expectation with respect to the distri-
bution defined by the model (see Eq. 2). We will some-
times refer to EPdata

[·] as the data-dependent expectation,
and EPmodel

[·] as the model’s expectation.

Exact maximum likelihood learning in this model is in-
tractable because exact computation of both the data-
dependent expectations and the model’s expectations takes
a time that is exponential in the number of hidden units.
Hinton and Sejnowski (1983) proposed an algorithm that
uses Gibbs sampling to approximate both expectations. For
each iteration of learning, a separate Markov chain is run
for every training data vector to approximate EPdata

[·], and
an additional chain is run to approximate EPmodel

[·]. The
main problem with this learning algorithm is the time re-
quired to approach the stationary distribution, especially
when estimating the model’s expectations, since the Gibbs
chain may need to explore a highly multimodal energy

landscape. This is typical when modeling real-world dis-
tributions such as datasets of images in which almost all
of the possible images have extremely low probability, but
there are many very different images that occur with quite
similar probabilities.

Setting both J=0 and L=0 recovers the well-known re-
stricted Boltzmann machine (RBM) model (Smolensky,
1986) (see Fig. 1, right panel). In contrast to general BM’s,
inference in RBM’s is exact. Although exact maximum
likelihood learning in RBM’s is still intractable, learning
can be carried out efficiently using Contrastive Divergence
(CD) (Hinton, 2002). It was further observed (Welling
and Hinton, 2002; Hinton, 2002) that for Contrastive Di-
vergence to perform well, it is important to obtain exact
samples from the conditional distribution p(h|v; θ), which
is intractable when learning full Boltzmann machines.

2.1 Using Persistent Markov Chains to Estimate the
Model’s Expectations

Instead of using CD learning, it is possible to make use of a
stochastic approximation procedure (SAP) to approximate
the model’s expectations (Tieleman, 2008; Neal, 1992).
SAP belongs to the class of well-studied stochastic approx-
imation algorithms of the Robbins–Monro type (Robbins
and Monro, 1951; Younes, 1989, 2000). The idea behind
these methods is straightforward. Let θt andXt be the cur-
rent parameters and the state. Then Xt and θt are updated
sequentially as follows:

• GivenXt, a new state Xt+1 is sampled from a transi-
tion operator Tθt

(Xt+1; Xt) that leaves pθt
invariant.

• A new parameter θt+1 is then obtained by replacing
the intractable model’s expectation by the expectation
with respect to Xt+1.

Precise sufficient conditions that guarantee almost sure
convergence to an asymptotically stable point are given in
(Younes, 1989, 2000; Yuille, 2004). One necessary con-
dition requires the learning rate to decrease with time, i.e.
∑∞

t=0 αt = ∞ and
∑∞

t=0 α2
t < ∞. This condition can be

trivially satisfied by setting αt = 1/t. Typically, in prac-
tice, the sequence |θt| is bounded, and the Markov chain,
governed by the transition kernel Tθ, is ergodic. Together
with the condition on the learning rate, this ensures almost
sure convergence.

The intuition behind why this procedure works is the fol-
lowing: as the learning rate becomes sufficiently small
compared with the mixing rate of the Markov chain, this
“persistent” chain will always stay very close to the sta-
tionary distribution even if it is only run for a few MCMC
updates per parameter update. Samples from the persistent
chain will be highly correlated for successive parameter up-
dates, but again, if the learning rate is sufficiently small the

Delta updates to each of model parameters:

(Old) idea from Hinton & Sejnowski (1983): For each
iteration of optimization, run a separate MCMC chain
for each of the data and model expectations to
approximate the parameter updates.

Learning Standard
Boltzman Machines

11

DBMs

X1 X1

X1 X1

Deep Boltzmann Machines

h

v

J

W

L

h

v

W

General Boltzmann
Machine

Restricted Boltzmann
Machine

Figure 1: Left: A general Boltzmann machine. The top layer
represents a vector of stochastic binary “hidden” features and
the bottom layer represents a vector of stochastic binary “visi-
ble” variables. Right: A restricted Boltzmann machine with no
hidden-to-hidden and no visible-to-visible connections.

hidden and visible units are given by:

p(hj = 1|v,h−j) = σ
(

D
∑

i=1

Wijvi +
P

∑

m=1\j

Jjmhj

)

, (4)

p(vi = 1|h,v−i) = σ
(

P
∑

j=1

Wijhj +
D

∑

k=1\i

Likvj

)

, (5)

where σ(x) = 1/(1 + exp(−x)) is the logistic function.
The parameter updates, originally derived by Hinton and
Sejnowski (1983), that are needed to perform gradient as-
cent in the log-likelihood can be obtained from Eq. 2:

∆W = α
(

EPdata
[vh

"]− EPmodel
[vh

"]
)

, (6)
∆L = α

(

EPdata
[vv

"]− EPmodel
[vv

"]
)

,

∆J = α
(

EPdata
[hh

"]− EPmodel
[hh

"]
)

,

where α is a learning rate, EPdata
[·] denotes an expec-

tation with respect to the completed data distribution
Pdata(h,v; θ) = p(h|v; θ)Pdata(v), with Pdata(v) =
1
N

∑

n δ(v − vn) representing the empirical distribution,
and EPmodel

[·] is an expectation with respect to the distri-
bution defined by the model (see Eq. 2). We will some-
times refer to EPdata

[·] as the data-dependent expectation,
and EPmodel

[·] as the model’s expectation.

Exact maximum likelihood learning in this model is in-
tractable because exact computation of both the data-
dependent expectations and the model’s expectations takes
a time that is exponential in the number of hidden units.
Hinton and Sejnowski (1983) proposed an algorithm that
uses Gibbs sampling to approximate both expectations. For
each iteration of learning, a separate Markov chain is run
for every training data vector to approximate EPdata

[·], and
an additional chain is run to approximate EPmodel

[·]. The
main problem with this learning algorithm is the time re-
quired to approach the stationary distribution, especially
when estimating the model’s expectations, since the Gibbs
chain may need to explore a highly multimodal energy

landscape. This is typical when modeling real-world dis-
tributions such as datasets of images in which almost all
of the possible images have extremely low probability, but
there are many very different images that occur with quite
similar probabilities.

Setting both J=0 and L=0 recovers the well-known re-
stricted Boltzmann machine (RBM) model (Smolensky,
1986) (see Fig. 1, right panel). In contrast to general BM’s,
inference in RBM’s is exact. Although exact maximum
likelihood learning in RBM’s is still intractable, learning
can be carried out efficiently using Contrastive Divergence
(CD) (Hinton, 2002). It was further observed (Welling
and Hinton, 2002; Hinton, 2002) that for Contrastive Di-
vergence to perform well, it is important to obtain exact
samples from the conditional distribution p(h|v; θ), which
is intractable when learning full Boltzmann machines.

2.1 Using Persistent Markov Chains to Estimate the
Model’s Expectations

Instead of using CD learning, it is possible to make use of a
stochastic approximation procedure (SAP) to approximate
the model’s expectations (Tieleman, 2008; Neal, 1992).
SAP belongs to the class of well-studied stochastic approx-
imation algorithms of the Robbins–Monro type (Robbins
and Monro, 1951; Younes, 1989, 2000). The idea behind
these methods is straightforward. Let θt andXt be the cur-
rent parameters and the state. Then Xt and θt are updated
sequentially as follows:

• GivenXt, a new state Xt+1 is sampled from a transi-
tion operator Tθt

(Xt+1; Xt) that leaves pθt
invariant.

• A new parameter θt+1 is then obtained by replacing
the intractable model’s expectation by the expectation
with respect to Xt+1.

Precise sufficient conditions that guarantee almost sure
convergence to an asymptotically stable point are given in
(Younes, 1989, 2000; Yuille, 2004). One necessary con-
dition requires the learning rate to decrease with time, i.e.
∑∞

t=0 αt = ∞ and
∑∞

t=0 α2
t < ∞. This condition can be

trivially satisfied by setting αt = 1/t. Typically, in prac-
tice, the sequence |θt| is bounded, and the Markov chain,
governed by the transition kernel Tθ, is ergodic. Together
with the condition on the learning rate, this ensures almost
sure convergence.

The intuition behind why this procedure works is the fol-
lowing: as the learning rate becomes sufficiently small
compared with the mixing rate of the Markov chain, this
“persistent” chain will always stay very close to the sta-
tionary distribution even if it is only run for a few MCMC
updates per parameter update. Samples from the persistent
chain will be highly correlated for successive parameter up-
dates, but again, if the learning rate is sufficiently small the

Full conditionals for Gibbs sampler:

Delta updates to each of model parameters:

(Old) idea from Hinton & Sejnowski (1983): For each
iteration of optimization, run a separate MCMC chain
for each of the data and model expectations to
approximate the parameter updates.

But it doesn’t work
very well!

The MCMC chains
take too long to mix

– especially for the
data distribution.

�W = �
��

vhT
�
v�D,h�p(h|v)

�
�
vhT

�
v,h�p(h,v)

�

�L = �
��

vvT
�
v�D,h�p(h|v)

�
�
vvT

�
v,h�p(h,v)

�

�J = �
��

hhT
�
v�D,h�p(h|v)

�
�
hhT

�
v,h�p(h,v)

�

Learning Standard
Boltzman Machines

12

DBMs

X1 X1

X1 X1

Delta updates to each of model parameters:

�W = �
��

vhT
�
v�D,h�p(h|v)

�
�
vhT

�
v,h�p(h,v)

�

�L = �
��

vvT
�
v�D,h�p(h|v)

�
�
vvT

�
v,h�p(h,v)

�

�J = �
��

hhT
�
v�D,h�p(h|v)

�
�
hhT

�
v,h�p(h,v)

�

(New) idea from Salakhutinov & Hinton (2009):
• Step 1) Approximate the data distribution by

variational inference.
• Step 2) Approximate the model distribution

with a “persistent” Markov chain (from
iteration to iteration)

13

X1 X1

X1 X1

�W = �
��

vhT
�
v�D,h�p(h|v)

�
�
vhT

�
v,h�p(h,v)

�

�L = �
��

vvT
�
v�D,h�p(h|v)

�
�
vvT

�
v,h�p(h,v)

�

�J = �
��

hhT
�
v�D,h�p(h|v)

�
�
hhT

�
v,h�p(h,v)

�Step 1) Approximate the data distribution…

R. Salakhutdinov and G. Hinton

chain will mix before the parameters have changed enough
to significantly alter the value of the estimator. Many per-
sistent chains can be run in parallel and we will refer to the
current state in each of these chains as a “fantasy” particle.

2.2 A Variational Approach to Estimating the
Data-Dependent Expectations

In variational learning (Hinton and Zemel, 1994; Neal and
Hinton, 1998), the true posterior distribution over latent
variables p(h|v; θ) for each training vector v, is replaced
by an approximate posterior q(h|v; µ) and the parameters
are updated to follow the gradient of a lower bound on the
log-likelihood:

ln p(v; θ) ≥
∑

h

q(h|v; µ) ln p(v,h; θ) + H(q) (7)

= ln p(v; θ)−KL[q(h|v; µ)||p(h|v; θ)],

where H(·) is the entropy functional. Variational learning
has the nice property that in addition to trying to max-
imize the log-likelihood of the training data, it tries to
find parameters that minimize the Kullback–Leibler diver-
gences between the approximating and true posteriors. Us-
ing a naive mean-field approach, we choose a fully factor-
ized distribution in order to approximate the true posterior:
q(h; µ) =

∏P
j=1 q(hi), with q(hi = 1) = µi where P is

the number of hidden units. The lower bound on the log-
probability of the data takes the form:

ln p(v; θ) ≥
1

2

∑

i,k

Likvivk +
1

2

∑

j,m

Jjmµjµm

+
∑

i,j

Wijviµj − lnZ(θ)

+
∑

j

[µj lnµj + (1− µj) ln (1− µj)] .

The learning proceeds by maximizing this lower bound
with respect to the variational parameters µ for fixed θ,
which results in mean-field fixed-point equations:

µj ← σ
(

∑

i

Wijvi +
∑

m\j

Jmjµm

)

. (8)

This is followed by applying SAP to update the model pa-
rameters θ (Salakhutdinov, 2008). We emphasize that vari-
ational approximations cannot be used for approximating
the expectations with respect to the model distribution in
the Boltzmann machine learning rule because the minus
sign (see Eq. 6) would cause variational learning to change
the parameters so as to maximize the divergence between
the approximating and true distributions. If, however, a
persistent chain is used to estimate the model’s expecta-
tions, variational learning can be applied for estimating the
data-dependent expectations.

The choice of naive mean-field was deliberate. First, the
convergence is usually very fast, which greatly facilitates

learning. Second, for applications such as the interpretation
of images or speech, we expect the posterior over hidden
states given the data to have a single mode, so simple and
fast variational approximations such as mean-field should
be adequate. Indeed, sacrificing some log-likelihood in or-
der to make the true posterior unimodal could be advan-
tageous for a system that must use the posterior to con-
trol its actions. Having many quite different and equally
good representations of the same sensory input increases
log-likelihood but makes it far more difficult to associate
an appropriate action with that sensory input.

Boltzmann Machine Learning Procedure:

Given: a training set of N data vectors {v}N
n=1.

1. Randomly initialize parameters θ0 and M fantasy parti-
cles. {ṽ0,1, h̃0,1}, ..., {ṽ0,M , h̃0,M}

2. For t=0 to T (# of iterations)
(a) For each training example v

n, n=1 to N
• Randomly initialize µ and run mean-field up-
dates Eq. 8 until convergence.

• Set µn = µ.
(b) For each fantasy particle m=1 to M

• Obtain a new state (ṽt+1,m, h̃t+1,m) by run-
ning a k-step Gibbs sampler using Eqs. 4, 5, ini-
tialized at the previous sample (ṽt,m, h̃t,m).

(c) Update

W t+1 = W t + αt

„

1
N

N
X

n=1

v
n(µn)! −

1
M

M
X

m=1

ṽ
t+1,m(h̃t+1,m)!

«

.

Similarly update parameters L and J .

(d) Decrease αt.

3 Deep Boltzmann Machines (DBM’s)
In general, we will rarely be interested in learning a com-
plex, fully connected Boltzmann machine. Instead, con-
sider learning a deep multilayer Boltzmann machine as
shown in Fig. 2, left panel, in which each layer captures
complicated, higher-order correlations between the activi-
ties of hidden features in the layer below. Deep Boltzmann
machines are interesting for several reasons. First, like
deep belief networks, DBM’s have the potential of learning
internal representations that become increasingly complex,
which is considered to be a promisingway of solving object
and speech recognition problems. Second, high-level rep-
resentations can be built from a large supply of unlabeled
sensory inputs and very limited labeled data can then be
used to only slightly fine-tune the model for a specific task
at hand. Finally, unlike deep belief networks, the approxi-
mate inference procedure, in addition to an initial bottom-
up pass, can incorporate top-down feedback, allowing deep
Boltzmann machines to better propagate uncertainty about,
and hence deal more robustly with, ambiguous inputs.

R. Salakhutdinov and G. Hinton

chain will mix before the parameters have changed enough
to significantly alter the value of the estimator. Many per-
sistent chains can be run in parallel and we will refer to the
current state in each of these chains as a “fantasy” particle.

2.2 A Variational Approach to Estimating the
Data-Dependent Expectations

In variational learning (Hinton and Zemel, 1994; Neal and
Hinton, 1998), the true posterior distribution over latent
variables p(h|v; θ) for each training vector v, is replaced
by an approximate posterior q(h|v; µ) and the parameters
are updated to follow the gradient of a lower bound on the
log-likelihood:

ln p(v; θ) ≥
∑

h

q(h|v; µ) ln p(v,h; θ) + H(q) (7)

= ln p(v; θ)−KL[q(h|v; µ)||p(h|v; θ)],

where H(·) is the entropy functional. Variational learning
has the nice property that in addition to trying to max-
imize the log-likelihood of the training data, it tries to
find parameters that minimize the Kullback–Leibler diver-
gences between the approximating and true posteriors. Us-
ing a naive mean-field approach, we choose a fully factor-
ized distribution in order to approximate the true posterior:
q(h; µ) =

∏P
j=1 q(hi), with q(hi = 1) = µi where P is

the number of hidden units. The lower bound on the log-
probability of the data takes the form:

ln p(v; θ) ≥
1

2

∑

i,k

Likvivk +
1

2

∑

j,m

Jjmµjµm

+
∑

i,j

Wijviµj − lnZ(θ)

+
∑

j

[µj lnµj + (1− µj) ln (1− µj)] .

The learning proceeds by maximizing this lower bound
with respect to the variational parameters µ for fixed θ,
which results in mean-field fixed-point equations:

µj ← σ
(

∑

i

Wijvi +
∑

m\j

Jmjµm

)

. (8)

This is followed by applying SAP to update the model pa-
rameters θ (Salakhutdinov, 2008). We emphasize that vari-
ational approximations cannot be used for approximating
the expectations with respect to the model distribution in
the Boltzmann machine learning rule because the minus
sign (see Eq. 6) would cause variational learning to change
the parameters so as to maximize the divergence between
the approximating and true distributions. If, however, a
persistent chain is used to estimate the model’s expecta-
tions, variational learning can be applied for estimating the
data-dependent expectations.

The choice of naive mean-field was deliberate. First, the
convergence is usually very fast, which greatly facilitates

learning. Second, for applications such as the interpretation
of images or speech, we expect the posterior over hidden
states given the data to have a single mode, so simple and
fast variational approximations such as mean-field should
be adequate. Indeed, sacrificing some log-likelihood in or-
der to make the true posterior unimodal could be advan-
tageous for a system that must use the posterior to con-
trol its actions. Having many quite different and equally
good representations of the same sensory input increases
log-likelihood but makes it far more difficult to associate
an appropriate action with that sensory input.

Boltzmann Machine Learning Procedure:

Given: a training set of N data vectors {v}N
n=1.

1. Randomly initialize parameters θ0 and M fantasy parti-
cles. {ṽ0,1, h̃0,1}, ..., {ṽ0,M , h̃0,M}

2. For t=0 to T (# of iterations)
(a) For each training example v

n, n=1 to N
• Randomly initialize µ and run mean-field up-
dates Eq. 8 until convergence.

• Set µn = µ.
(b) For each fantasy particle m=1 to M

• Obtain a new state (ṽt+1,m, h̃t+1,m) by run-
ning a k-step Gibbs sampler using Eqs. 4, 5, ini-
tialized at the previous sample (ṽt,m, h̃t,m).

(c) Update

W t+1 = W t + αt

„

1
N

N
X

n=1

v
n(µn)! −

1
M

M
X

m=1

ṽ
t+1,m(h̃t+1,m)!

«

.

Similarly update parameters L and J .

(d) Decrease αt.

3 Deep Boltzmann Machines (DBM’s)
In general, we will rarely be interested in learning a com-
plex, fully connected Boltzmann machine. Instead, con-
sider learning a deep multilayer Boltzmann machine as
shown in Fig. 2, left panel, in which each layer captures
complicated, higher-order correlations between the activi-
ties of hidden features in the layer below. Deep Boltzmann
machines are interesting for several reasons. First, like
deep belief networks, DBM’s have the potential of learning
internal representations that become increasingly complex,
which is considered to be a promisingway of solving object
and speech recognition problems. Second, high-level rep-
resentations can be built from a large supply of unlabeled
sensory inputs and very limited labeled data can then be
used to only slightly fine-tune the model for a specific task
at hand. Finally, unlike deep belief networks, the approxi-
mate inference procedure, in addition to an initial bottom-
up pass, can incorporate top-down feedback, allowing deep
Boltzmann machines to better propagate uncertainty about,
and hence deal more robustly with, ambiguous inputs.

R. Salakhutdinov and G. Hinton

chain will mix before the parameters have changed enough
to significantly alter the value of the estimator. Many per-
sistent chains can be run in parallel and we will refer to the
current state in each of these chains as a “fantasy” particle.

2.2 A Variational Approach to Estimating the
Data-Dependent Expectations

In variational learning (Hinton and Zemel, 1994; Neal and
Hinton, 1998), the true posterior distribution over latent
variables p(h|v; θ) for each training vector v, is replaced
by an approximate posterior q(h|v; µ) and the parameters
are updated to follow the gradient of a lower bound on the
log-likelihood:

ln p(v; θ) ≥
∑

h

q(h|v; µ) ln p(v,h; θ) + H(q) (7)

= ln p(v; θ)−KL[q(h|v; µ)||p(h|v; θ)],

where H(·) is the entropy functional. Variational learning
has the nice property that in addition to trying to max-
imize the log-likelihood of the training data, it tries to
find parameters that minimize the Kullback–Leibler diver-
gences between the approximating and true posteriors. Us-
ing a naive mean-field approach, we choose a fully factor-
ized distribution in order to approximate the true posterior:
q(h; µ) =

∏P
j=1 q(hi), with q(hi = 1) = µi where P is

the number of hidden units. The lower bound on the log-
probability of the data takes the form:

ln p(v; θ) ≥
1

2

∑

i,k

Likvivk +
1

2

∑

j,m

Jjmµjµm

+
∑

i,j

Wijviµj − lnZ(θ)

+
∑

j

[µj lnµj + (1− µj) ln (1− µj)] .

The learning proceeds by maximizing this lower bound
with respect to the variational parameters µ for fixed θ,
which results in mean-field fixed-point equations:

µj ← σ
(

∑

i

Wijvi +
∑

m\j

Jmjµm

)

. (8)

This is followed by applying SAP to update the model pa-
rameters θ (Salakhutdinov, 2008). We emphasize that vari-
ational approximations cannot be used for approximating
the expectations with respect to the model distribution in
the Boltzmann machine learning rule because the minus
sign (see Eq. 6) would cause variational learning to change
the parameters so as to maximize the divergence between
the approximating and true distributions. If, however, a
persistent chain is used to estimate the model’s expecta-
tions, variational learning can be applied for estimating the
data-dependent expectations.

The choice of naive mean-field was deliberate. First, the
convergence is usually very fast, which greatly facilitates

learning. Second, for applications such as the interpretation
of images or speech, we expect the posterior over hidden
states given the data to have a single mode, so simple and
fast variational approximations such as mean-field should
be adequate. Indeed, sacrificing some log-likelihood in or-
der to make the true posterior unimodal could be advan-
tageous for a system that must use the posterior to con-
trol its actions. Having many quite different and equally
good representations of the same sensory input increases
log-likelihood but makes it far more difficult to associate
an appropriate action with that sensory input.

Boltzmann Machine Learning Procedure:

Given: a training set of N data vectors {v}N
n=1.

1. Randomly initialize parameters θ0 and M fantasy parti-
cles. {ṽ0,1, h̃0,1}, ..., {ṽ0,M , h̃0,M}

2. For t=0 to T (# of iterations)
(a) For each training example v

n, n=1 to N
• Randomly initialize µ and run mean-field up-
dates Eq. 8 until convergence.

• Set µn = µ.
(b) For each fantasy particle m=1 to M

• Obtain a new state (ṽt+1,m, h̃t+1,m) by run-
ning a k-step Gibbs sampler using Eqs. 4, 5, ini-
tialized at the previous sample (ṽt,m, h̃t,m).

(c) Update

W t+1 = W t + αt

„

1
N

N
X

n=1

v
n(µn)! −

1
M

M
X

m=1

ṽ
t+1,m(h̃t+1,m)!

«

.

Similarly update parameters L and J .

(d) Decrease αt.

3 Deep Boltzmann Machines (DBM’s)
In general, we will rarely be interested in learning a com-
plex, fully connected Boltzmann machine. Instead, con-
sider learning a deep multilayer Boltzmann machine as
shown in Fig. 2, left panel, in which each layer captures
complicated, higher-order correlations between the activi-
ties of hidden features in the layer below. Deep Boltzmann
machines are interesting for several reasons. First, like
deep belief networks, DBM’s have the potential of learning
internal representations that become increasingly complex,
which is considered to be a promisingway of solving object
and speech recognition problems. Second, high-level rep-
resentations can be built from a large supply of unlabeled
sensory inputs and very limited labeled data can then be
used to only slightly fine-tune the model for a specific task
at hand. Finally, unlike deep belief networks, the approxi-
mate inference procedure, in addition to an initial bottom-
up pass, can incorporate top-down feedback, allowing deep
Boltzmann machines to better propagate uncertainty about,
and hence deal more robustly with, ambiguous inputs.

R. Salakhutdinov and G. Hinton

chain will mix before the parameters have changed enough
to significantly alter the value of the estimator. Many per-
sistent chains can be run in parallel and we will refer to the
current state in each of these chains as a “fantasy” particle.

2.2 A Variational Approach to Estimating the
Data-Dependent Expectations

In variational learning (Hinton and Zemel, 1994; Neal and
Hinton, 1998), the true posterior distribution over latent
variables p(h|v; θ) for each training vector v, is replaced
by an approximate posterior q(h|v; µ) and the parameters
are updated to follow the gradient of a lower bound on the
log-likelihood:

ln p(v; θ) ≥
∑

h

q(h|v; µ) ln p(v,h; θ) + H(q) (7)

= ln p(v; θ)−KL[q(h|v; µ)||p(h|v; θ)],

where H(·) is the entropy functional. Variational learning
has the nice property that in addition to trying to max-
imize the log-likelihood of the training data, it tries to
find parameters that minimize the Kullback–Leibler diver-
gences between the approximating and true posteriors. Us-
ing a naive mean-field approach, we choose a fully factor-
ized distribution in order to approximate the true posterior:
q(h; µ) =

∏P
j=1 q(hi), with q(hi = 1) = µi where P is

the number of hidden units. The lower bound on the log-
probability of the data takes the form:

ln p(v; θ) ≥
1

2

∑

i,k

Likvivk +
1

2

∑

j,m

Jjmµjµm

+
∑

i,j

Wijviµj − lnZ(θ)

+
∑

j

[µj lnµj + (1− µj) ln (1− µj)] .

The learning proceeds by maximizing this lower bound
with respect to the variational parameters µ for fixed θ,
which results in mean-field fixed-point equations:

µj ← σ
(

∑

i

Wijvi +
∑

m\j

Jmjµm

)

. (8)

This is followed by applying SAP to update the model pa-
rameters θ (Salakhutdinov, 2008). We emphasize that vari-
ational approximations cannot be used for approximating
the expectations with respect to the model distribution in
the Boltzmann machine learning rule because the minus
sign (see Eq. 6) would cause variational learning to change
the parameters so as to maximize the divergence between
the approximating and true distributions. If, however, a
persistent chain is used to estimate the model’s expecta-
tions, variational learning can be applied for estimating the
data-dependent expectations.

The choice of naive mean-field was deliberate. First, the
convergence is usually very fast, which greatly facilitates

learning. Second, for applications such as the interpretation
of images or speech, we expect the posterior over hidden
states given the data to have a single mode, so simple and
fast variational approximations such as mean-field should
be adequate. Indeed, sacrificing some log-likelihood in or-
der to make the true posterior unimodal could be advan-
tageous for a system that must use the posterior to con-
trol its actions. Having many quite different and equally
good representations of the same sensory input increases
log-likelihood but makes it far more difficult to associate
an appropriate action with that sensory input.

Boltzmann Machine Learning Procedure:

Given: a training set of N data vectors {v}N
n=1.

1. Randomly initialize parameters θ0 and M fantasy parti-
cles. {ṽ0,1, h̃0,1}, ..., {ṽ0,M , h̃0,M}

2. For t=0 to T (# of iterations)
(a) For each training example v

n, n=1 to N
• Randomly initialize µ and run mean-field up-
dates Eq. 8 until convergence.

• Set µn = µ.
(b) For each fantasy particle m=1 to M

• Obtain a new state (ṽt+1,m, h̃t+1,m) by run-
ning a k-step Gibbs sampler using Eqs. 4, 5, ini-
tialized at the previous sample (ṽt,m, h̃t,m).

(c) Update

W t+1 = W t + αt

„

1
N

N
X

n=1

v
n(µn)! −

1
M

M
X

m=1

ṽ
t+1,m(h̃t+1,m)!

«

.

Similarly update parameters L and J .

(d) Decrease αt.

3 Deep Boltzmann Machines (DBM’s)
In general, we will rarely be interested in learning a com-
plex, fully connected Boltzmann machine. Instead, con-
sider learning a deep multilayer Boltzmann machine as
shown in Fig. 2, left panel, in which each layer captures
complicated, higher-order correlations between the activi-
ties of hidden features in the layer below. Deep Boltzmann
machines are interesting for several reasons. First, like
deep belief networks, DBM’s have the potential of learning
internal representations that become increasingly complex,
which is considered to be a promisingway of solving object
and speech recognition problems. Second, high-level rep-
resentations can be built from a large supply of unlabeled
sensory inputs and very limited labeled data can then be
used to only slightly fine-tune the model for a specific task
at hand. Finally, unlike deep belief networks, the approxi-
mate inference procedure, in addition to an initial bottom-
up pass, can incorporate top-down feedback, allowing deep
Boltzmann machines to better propagate uncertainty about,
and hence deal more robustly with, ambiguous inputs.

Mean-field approximation: Variational lower-bound of log-likelihood:

Fixed-point equations for variational params:

Learning Standard
Boltzman Machines

DBMs

Delta updates to each of model parameters:

(New) idea from Salakhutinov & Hinton (2009):
• Step 1) Approximate the data distribution by

variational inference.
• Step 2) Approximate the model distribution

with a “persistent” Markov chain (from
iteration to iteration)

14

X1 X1

X1 X1

�W = �
��

vhT
�
v�D,h�p(h|v)

�
�
vhT

�
v,h�p(h,v)

�

�L = �
��

vvT
�
v�D,h�p(h|v)

�
�
vvT

�
v,h�p(h,v)

�

�J = �
��

hhT
�
v�D,h�p(h|v)

�
�
hhT

�
v,h�p(h,v)

�Step 2) Approximate the model distribution…

Why not use variational inference for the model expectation as well?

Learning Standard
Boltzman Machines

DBMs

Delta updates to each of model parameters:

(New) idea from Salakhutinov & Hinton (2009):
• Step 1) Approximate the data distribution by

variational inference.
• Step 2) Approximate the model distribution

with a “persistent” Markov chain (from
iteration to iteration)

Difference of the two mean-field approximated expectations above
would cause learning algorithm to maximize divergence between true
and mean-field distributions.

Persistent CD adds correlations between successive iterations, but not an issue.

LEARNING DEEP BOLTZMAN
MACHINES

15

Deep Boltzman
Machines

• DBNs are a
hybrid
directed/undi
rected
graphical
model

• DBMs are a
purely
undirected
graphical
model

16

DBMs
Deep Boltzmann Machines

h3

h2

h1

v

W3

W2

W1

Deep Belief
Network

Deep Boltzmann
Machine

Pretraining

W W

W

h

h

hh

W

h

h

vv

Compose
W

W

v

RBM

RBM

1 1

2

1

1

22

2

1

2

2

1

Figure 2: Left: A three-layer Deep Belief Network and a three-layer Deep Boltzmann Machine. Right: Pretraining consists of learning
a stack of modified RBM’s, that are then composed to create a deep Boltzmann machine.

Consider a two-layer Boltzmann machine (see Fig. 2, right
panel) with no within-layer connections. The energy of the
state {v,h1,h2} is defined as:

E(v,h1,h2; θ) = −v
!
W

1
h

1 − h
1!

W
2
h

2, (9)

where θ = {W1,W2} are the model parameters, repre-
senting visible-to-hidden and hidden-to-hidden symmetric
interaction terms. The probability that the model assigns to
a visible vector v is:

p(v; θ) =
1

Z(θ)

∑

h1,h2

exp (−E(v,h1,h2; θ)). (10)

The conditional distributions over the visible and the two
sets of hidden units are given by logistic functions:

p(h1
j = 1|v,h2) = σ

(

∑

i

W 1
ijvi +

∑

m

W 2
jmh2

j

)

, (11)

p(h2
m = 1|h1) = σ

(

∑

j

W 2
imh1

i

)

, (12)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (13)

For approximate maximum likelihood learning, we could
still apply the learning procedure for general Boltzmann
machines described above, but it would be rather slow, par-
ticularly when the hidden units form layers which become
increasingly remote from the visible units. There is, how-
ever, a fast way to initialize the model parameters to sensi-
ble values as we describe in the next section.

3.1 Greedy Layerwise Pretraining of DBM’s

Hinton et al. (2006) introduced a greedy, layer-by-layer un-
supervised learning algorithm that consists of learning a
stack of RBM’s one layer at a time. After the stack of
RBM’s has been learned, the whole stack can be viewed
as a single probabilistic model, called a “deep belief net-
work”. Surprisingly, this model is not a deep Boltzmann
machine. The top two layers form a restricted Boltzmann
machine which is an undirected graphical model, but the
lower layers form a directed generative model (see Fig. 2).

After learning the first RBM in the stack, the generative
model can be written as:

p(v; θ) =
∑

h1

p(h1;W1)p(v|h1;W1), (14)

where p(h1;W1) =
∑

v
p(h1,v;W1) is an implicit

prior over h1 defined by the parameters. The second
RBM in the stack replaces p(h1;W1) by p(h1;W2) =
∑

h2 p(h1,h2;W2). If the second RBM is initialized cor-
rectly (Hinton et al., 2006), p(h1;W2) will become a bet-
ter model of the aggregated posterior distribution over h1,
where the aggregated posterior is simply the non-factorial
mixture of the factorial posteriors for all the training cases,
i.e. 1/N

∑

n p(h1|vn;W1). Since the second RBM is re-
placing p(h1;W1) by a better model, it would be possible
to infer p(h1;W1,W2) by averaging the two models of h1

which can be done approximately by using 1/2W1 bottom-
up and 1/2W2 top-down. Using W1 bottom-up and W2

top-down would amount to double-counting the evidence
since h2 is dependent on v.

To initialize model parameters of a DBM, we propose
greedy, layer-by-layer pretraining by learning a stack of
RBM’s, but with a small change that is introduced to elim-
inate the double-counting problem when top-down and
bottom-up influences are subsequently combined. For the
lower-level RBM, we double the input and tie the visible-
to-hidden weights, as shown in Fig. 2, right panel. In this
modified RBM with tied parameters, the conditional distri-
butions over the hidden and visible states are defined as:

p(h1
j = 1|v) = σ

(

∑

i

W 1
ijvi +

∑

i

W 1
ijvi

)

, (15)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (16)

Contrastive divergence learning works well and the modi-
fied RBM is good at reconstructing its training data. Con-
versely, for the top-level RBM we double the number of
hidden units. The conditional distributions for this model

Learning Deep
Boltzman Machines

Can we use the same
techniques to train a DBM?
I. Pre-train a stack of RBMs in

greedy layerwise fashion
(requires some caution to
avoid double counting)

II. Use those parameters to
initialize two step mean-
field approach to learning
full Boltzman machine (i.e.
the full DBM)

17

DBMs
Deep Boltzmann Machines

h3

h2

h1

v

W3

W2

W1

Deep Belief
Network

Deep Boltzmann
Machine

Pretraining

W W

W

h

h

hh

W

h

h

vv

Compose
W

W

v

RBM

RBM

1 1

2

1

1

22

2

1

2

2

1

Figure 2: Left: A three-layer Deep Belief Network and a three-layer Deep Boltzmann Machine. Right: Pretraining consists of learning
a stack of modified RBM’s, that are then composed to create a deep Boltzmann machine.

Consider a two-layer Boltzmann machine (see Fig. 2, right
panel) with no within-layer connections. The energy of the
state {v,h1,h2} is defined as:

E(v,h1,h2; θ) = −v
!
W

1
h

1 − h
1!

W
2
h

2, (9)

where θ = {W1,W2} are the model parameters, repre-
senting visible-to-hidden and hidden-to-hidden symmetric
interaction terms. The probability that the model assigns to
a visible vector v is:

p(v; θ) =
1

Z(θ)

∑

h1,h2

exp (−E(v,h1,h2; θ)). (10)

The conditional distributions over the visible and the two
sets of hidden units are given by logistic functions:

p(h1
j = 1|v,h2) = σ

(

∑

i

W 1
ijvi +

∑

m

W 2
jmh2

j

)

, (11)

p(h2
m = 1|h1) = σ

(

∑

j

W 2
imh1

i

)

, (12)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (13)

For approximate maximum likelihood learning, we could
still apply the learning procedure for general Boltzmann
machines described above, but it would be rather slow, par-
ticularly when the hidden units form layers which become
increasingly remote from the visible units. There is, how-
ever, a fast way to initialize the model parameters to sensi-
ble values as we describe in the next section.

3.1 Greedy Layerwise Pretraining of DBM’s

Hinton et al. (2006) introduced a greedy, layer-by-layer un-
supervised learning algorithm that consists of learning a
stack of RBM’s one layer at a time. After the stack of
RBM’s has been learned, the whole stack can be viewed
as a single probabilistic model, called a “deep belief net-
work”. Surprisingly, this model is not a deep Boltzmann
machine. The top two layers form a restricted Boltzmann
machine which is an undirected graphical model, but the
lower layers form a directed generative model (see Fig. 2).

After learning the first RBM in the stack, the generative
model can be written as:

p(v; θ) =
∑

h1

p(h1;W1)p(v|h1;W1), (14)

where p(h1;W1) =
∑

v
p(h1,v;W1) is an implicit

prior over h1 defined by the parameters. The second
RBM in the stack replaces p(h1;W1) by p(h1;W2) =
∑

h2 p(h1,h2;W2). If the second RBM is initialized cor-
rectly (Hinton et al., 2006), p(h1;W2) will become a bet-
ter model of the aggregated posterior distribution over h1,
where the aggregated posterior is simply the non-factorial
mixture of the factorial posteriors for all the training cases,
i.e. 1/N

∑

n p(h1|vn;W1). Since the second RBM is re-
placing p(h1;W1) by a better model, it would be possible
to infer p(h1;W1,W2) by averaging the two models of h1

which can be done approximately by using 1/2W1 bottom-
up and 1/2W2 top-down. Using W1 bottom-up and W2

top-down would amount to double-counting the evidence
since h2 is dependent on v.

To initialize model parameters of a DBM, we propose
greedy, layer-by-layer pretraining by learning a stack of
RBM’s, but with a small change that is introduced to elim-
inate the double-counting problem when top-down and
bottom-up influences are subsequently combined. For the
lower-level RBM, we double the input and tie the visible-
to-hidden weights, as shown in Fig. 2, right panel. In this
modified RBM with tied parameters, the conditional distri-
butions over the hidden and visible states are defined as:

p(h1
j = 1|v) = σ

(

∑

i

W 1
ijvi +

∑

i

W 1
ijvi

)

, (15)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (16)

Contrastive divergence learning works well and the modi-
fied RBM is good at reconstructing its training data. Con-
versely, for the top-level RBM we double the number of
hidden units. The conditional distributions for this model

Document Clustering
and Retrieval

Clustering Results
• Goal: cluster related documents
• Figures show projection to 2 dimensions
• Color shows true categories

18

DBMs

Figure from (Salakhutdinov and Hinton, 2009)

First compress all documents to 2 numbers using a type of PCA

Then use different colors for different document categories

 First compress all documents to 2 numbers.

Then use different colors for different document categories

PCA DBM

EXAMPLE: K-MEANS & GMM

19

K-Means Algorithm

• Given unlabeled feature vectors
D = {x(1), x(2),…, x(N)}

• Initialize cluster centers c = {c(1),…, c(K)}
and cluster assignments z = {z(1), z(2),…, z(N)}

• Repeat until convergence:
– for j in {1,…,K}

c(j) = mean of all points assigned to cluster j
– for i in {1,…, N}

z(i) = index j of cluster center nearest to x(i)

20

K-Means Example:
Real-World Dataset

21

22

LATENT DIRICHLET ALLOCATION
(LDA)

53

LDA for Topic Modeling

• The generative story begins with only a Dirichlet
prior over the topics.

• Each topic is defined as a Multinomial distribution
over the vocabulary, parameterized by ϕk

54

(Blei, Ng, & Jordan, 2003)

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0
0.
00
6
0.
01
2

words
pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0
0.
00
6
0.
01
2

Dirichlet(β)

LDA for Topic Modeling

• The generative story begins with only a Dirichlet
prior over the topics.

• Each topic is defined as a Multinomial distribution
over the vocabulary, parameterized by ϕk

55

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0
0.
00
6
0.
01
2

words
pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0
0.
00
6
0.
01
2

(Blei, Ng, & Jordan, 2003)

Dirichlet(β)

LDA for Topic Modeling

• A topic is visualized as its high probability
words.

• A pedagogical label is used to identify the topic.

56

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

team, season,
hockey, player,
penguins, ice,
canadiens,
puck, montreal,
stanley, cup

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0
0.
00
6
0.
01
2

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0
0.
00
6
0.
01
2

(Blei, Ng, & Jordan, 2003)

Dirichlet(β)

LDA for Topic Modeling

• A topic is visualized as its high probability
words.

• A pedagogical label is used to identify the topic.

57

ϕ1 ϕ2 ϕ3
{hockey}

ϕ4 ϕ5 ϕ6

team, season,
hockey, player,
penguins, ice,
canadiens,
puck, montreal,
stanley, cup

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0
0.
00
6
0.
01
2

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0
0.
00
6
0.
01
2

(Blei, Ng, & Jordan, 2003)

Dirichlet(β)

LDA for Topic Modeling

• A topic is visualized as its high probability
words.

• A pedagogical label is used to identify the topic.

58

{Canadian gov.} {government} {hockey} {U.S. gov.} {baseball} {Japan}
ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0
0.
00
6
0.
01
2

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0
0.
00
6
0.
01
2

(Blei, Ng, & Jordan, 2003)

Dirichlet(β)

LDA for Topic Modeling

59

θ1=

Dirichlet(α)

{Canadian gov.} {government} {hockey} {U.S. gov.} {baseball} {Japan}
ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0
0.
00
6
0.
01
2

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0
0.
00
6
0.
01
2

(Blei, Ng, & Jordan, 2003)

Dirichlet(β)

LDA for Topic Modeling

60

The 54/40' boundary dispute is
still unresolved, and Canadian
and US

θ1=

Dirichlet(α)

{Canadian gov.} {government} {hockey} {U.S. gov.} {baseball} {Japan}
ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0
0.
00
6
0.
01
2

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0
0.
00
6
0.
01
2

(Blei, Ng, & Jordan, 2003)

Dirichlet(β)

LDA for Topic Modeling

61

The 54/40' boundary dispute is
still unresolved, and Canadian
and US

θ1=

Dirichlet(α)

{Canadian gov.} {government} {hockey} {U.S. gov.} {baseball} {Japan}
ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0
0.
00
6
0.
01
2

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0
0.
00
6
0.
01
2

(Blei, Ng, & Jordan, 2003)

Dirichlet(β)

LDA for Topic Modeling

62

The 54/40' boundary dispute is
still unresolved, and Canadian
and US Coast Guard

θ1=

Dirichlet(α)

{Canadian gov.} {government} {hockey} {U.S. gov.} {baseball} {Japan}
ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0
0.
00
6
0.
01
2

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0
0.
00
6
0.
01
2

(Blei, Ng, & Jordan, 2003)

Dirichlet(β)

LDA for Topic Modeling

63

The 54/40' boundary dispute is
still unresolved, and Canadian
and US Coast Guard vessels
regularly if infrequently detain
each other's fish boats in the
disputed waters off Dixon…

θ1=

Dirichlet(α)

{Canadian gov.} {government} {hockey} {U.S. gov.} {baseball} {Japan}
ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0
0.
00
6
0.
01
2

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0
0.
00
6
0.
01
2

(Blei, Ng, & Jordan, 2003)

Dirichlet(β)

LDA for Topic Modeling

64

The 54/40' boundary dispute is
still unresolved, and Canadian
and US Coast Guard vessels
regularly if infrequently detain
each other's fish boats in the
disputed waters off Dixon…

In the year before
Lemieux came, Pittsburgh
finished with 38 points.
Following his arrival, the
Pens finished…

The Orioles' pitching staff
again is having a fine
exhibition season. Four
shutouts, low team ERA,
(Well, I haven't gotten any
baseball…

θ1= θ2= θ3=

Dirichlet(α)

{Canadian gov.} {government} {hockey} {U.S. gov.} {baseball} {Japan}
ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0
0.
00
6
0.
01
2

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0
0.
00
6
0.
01
2

(Blei, Ng, & Jordan, 2003)

Dirichlet(β)

LDA for Topic Modeling

65

Dirichlet(β)

The 54/40' boundary dispute is
still unresolved, and Canadian
and US Coast Guard vessels
regularly if infrequently detain
each other's fish boats in the
disputed waters off Dixon…

In the year before
Lemieux came, Pittsburgh
finished with 38 points.
Following his arrival, the
Pens finished…

The Orioles' pitching staff
again is having a fine
exhibition season. Four
shutouts, low team ERA,
(Well, I haven't gotten any
baseball…

θ1= θ2= θ3=

Dirichlet(α) Distributions
over

topics (docs)

{Canadian gov.} {government} {hockey} {U.S. gov.} {baseball} {Japan}
ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0
0.
00
6
0.
01
2

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0
0.
00
6
0.
01
2

Distributions
over words

(topics)

(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

66

The 54/40' boundary dispute is
still unresolved, and Canadian
and US Coast Guard vessels
regularly if infrequently detain
each other's fish boats in the
disputed waters off Dixon…

In the year before
Lemieux came, Pittsburgh
finished with 38 points.
Following his arrival, the
Pens finished…

The Orioles' pitching staff
again is having a fine
exhibition season. Four
shutouts, low team ERA,
(Well, I haven't gotten any
baseball…

θ1= θ2= θ3=

Dirichlet(α)

{Canadian gov.} {government} {hockey} {U.S. gov.} {baseball} {Japan}
ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0
0.
00
6
0.
01
2

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0

0.
00
6

words

pr
ob
ab
ili
ty

0.
00
0
0.
00
6
0.
01
2

(Blei, Ng, & Jordan, 2003)

Dirichlet(β)

The 54/40' boundary dispute is
still unresolved, and Canadian
and US Coast Guard vessels
regularly if infrequently detain
each other's fish boats in the
disputed waters off Dixon…

In the year before
Lemieux came, Pittsburgh
finished with 38 points.
Following his arrival, the
Pens finished…

The Orioles' itching staff
again is having a fine
exhibition season. Four
shutouts, low team ERA,
(Well, I haven't gotten any
baseball…

LDA for Topic Modeling

67

Dirichlet()

θ1= θ2= θ3=

Dirichlet()

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

(Blei, Ng, & Jordan, 2003)

= = = = = =

Inference and learning
start with only the data

Latent Dirichlet Allocation

• Plate Diagram
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

M

Nm K

xmn

zmn

⇤m

�

⌅k ⇥

Figure 1: The graphical model for the SCTM.

2 SCTM

A Product of Experts (PoE) [1] model p(x|⌅1, . . . ,⌅C) =
QC

c=1 ⇥cxPV
v=1

QC
c=1 ⇥cv

, where there are C

components, and the summation in the denominator is over all possible feature types.

Latent Dirichlet allocation generative process

For each topic k ⇥ {1, . . . , K}:
�k � Dir(�) [draw distribution over words]

For each document m ⇥ {1, . . . , M}
✓m � Dir(↵) [draw distribution over topics]
For each word n ⇥ {1, . . . , Nm}

zmn � Mult(1, ✓m) [draw topic]
xmn � �zmi

[draw word]

The Finite IBP model generative process

For each component c ⇥ {1, . . . , C}: [columns]

�c � Beta(�
C , 1) [draw probability of component c]

For each topic k ⇥ {1, . . . , K}: [rows]
bkc � Bernoulli(�c)
[draw whether topic includes cth component in its PoE]

2.1 PoE

p(x|⌅1, . . . ,⌅C) =
⇥C

c=1 ⇤cx�V
v=1

⇥C
c=1 ⇤cv

(2)

2.2 IBP

Latent Dirichlet allocation generative process

For each topic k ⇥ {1, . . . , K}:
�k � Dir(�) [draw distribution over words]

For each document m ⇥ {1, . . . , M}
✓m � Dir(↵) [draw distribution over topics]
For each word n ⇥ {1, . . . , Nm}

zmn � Mult(1, ✓m) [draw topic]
xmn � �zmi

[draw word]

The Beta-Bernoulli model generative process

For each feature c ⇥ {1, . . . , C}: [columns]

�c � Beta(�
C , 1)

For each class k ⇥ {1, . . . , K}: [rows]
bkc � Bernoulli(�c)

2.3 Shared Components Topic Models

Generative process We can now present the formal generative process for the SCTM. For each
of the C shared components, we generate a distribution ⌅c over the V words from a Dirichlet
parametrized by ⇥. Next, we generate a K � C binary matrix using the finite IBP prior. We select
the probability ⇥c of each component c being on (bkc = 1) from a Beta distribution parametrized
by �/C. We then sample K topics (rows of the matrix), which combine component distributions,
where each position bkc is drawn from a Bernoulli parameterized by ⇥c. These components and the

2

Dirichlet

Document-specific
topic distribution

Topic assignment

Observed word

Topic Dirichlet

Familiar models for unsupervised learning:
1. K-Means
2. Gaussian Mixture Model (GMM)
3. Latent Dirichlet Allocation (LDA)

But without labeled data, how do we know
the right number of clusters / topics?

69

Outline
• Motivation / Applications
• Background

– de Finetti Theorem
– Exchangeability
– Aglommerative and decimative properties of Dirichlet distribution

• CRP and CRP Mixture Model
– Chinese Restaurant Process (CRP) definition
– Gibbs sampling for CRP-MM
– Expected number of clusters

• DP and DP Mixture Model
– Ferguson definition of Dirichlet process (DP)
– Stick breaking construction of DP
– Uncollapsed blocked Gibbs sampler for DP-MM
– Truncated variational inference for DP-MM

• DP Properties
• Related Models

– Hierarchical Dirichlet process Mixture Models (HDP-MM)
– Infinite HMM
– Infinite PCFG

70

BAYESIAN NONPARAMETRICS

71

Parametric vs. Nonparametric
• Parametric models:
– Finite and fixed number of parameters
– Number of parameters is independent of the dataset

• Nonparametric models:
– Have parameters (“infinite dimensional” would be a

better name)
– Can be understood as having an infinite number of

parameters
– Can be understood as having a random number of

parameters
– Number of parameters can grow with the dataset

• Semiparametric models:
– Have a parametric component and a nonparametric

component

72

Parametric vs. Nonparametric

73

Frequentist Bayesian

Parametric Logistic regression,
ANOVA, Fisher
discriminant analysis,
ARMA, etc.

Conjugate analysis,
hierarchical models,
conditional random
fields

Semiparametric Independent
component analysis,
Cox model, nonmetric
MDS, etc.

[Hybrids of the above
and below cells]

Nonparametric Nearest neighbor,
kernel methods,
boostrap, decision
trees, etc.

Gaussian processes,
Dirichlet processes,
Pitman-Yor processes,
etc.

Table adapted from Jordan ICML 2005

Parametric vs. Nonparametric

74

Application Parametric Nonparametric

function
approximation

polynomial regression Gaussian processes

classification logistic regression Gaussian process
classifiers

clustering mixture model, k-
means

Dirichlet process
mixture model

time series hidden Markov model infinite HMM

feature discovery factor analysis, pPCA,
PMF

infinite latent factor
models

Table adapted from Ghahramani 2015

Parametric vs. Nonparametric

• Def: a model is a collection of distributions

• parametric model: the parameter vector is
finite dimensional

• nonparametric model: the parameters are
from a possibly infinite dimensional space, F

75

{p✓ : ✓ 2 ⇥}

⇥ ⇢ Rk

⇥ ⇢ F

Motivation #1

• For clustering:
How many clusters in a
mixture model?

• For topic modeling:
How many topics in
LDA?

• For grammar induction:
How many non-
terminals in a PCFG?

• For visual scene analysis:
How many objects,
parts, features?

76

Model Selection

Motivation #1

• For clustering:
How many clusters in a
mixture model?

• For topic modeling:
How many topics in
LDA?

• For grammar induction:
How many non-
terminals in a PCFG?

• For visual scene analysis:
How many objects,
parts, features?

77

Model Selection

Motivation #1

• For clustering:

How many clusters in a
mixture model?

• For topic modeling:
How many topics in
LDA?

• For grammar induction:

How many non-
terminals in a PCFG?

• For visual scene analysis:

How many objects,

parts, features?

78

Model Selection 1. Parametric
approaches:
cross-validation,

bootstrap, AIC,
BIC, DIC, MDL,

Laplace, bridge

sampling, etc.

2. Nonparametric
approach:
average of an

infinite set of

models

Motivation #2

• Given data, estimate a probability density function that best explains it
• A nonparametric prior can be placed over an infinite set of distributions

79

Density Estimation

university-logo

Density Estimation

Prior:

!15 !10 !5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Red: mean density. Blue: median density. Grey: 5-95 quantile.
Others: draws.

Yee Whye Teh (Gatsby) DP August 2007 / MLSS 10 / 80

Figure from Teh MLSS 2007

Motivation #2

• Given data, estimate a probability density function that best explains it
• A nonparametric prior can be placed over an infinite set of distributions

80

Density Estimation

Figure from Teh MLSS 2007

university-logo

Density Estimation

Posterior:

!15 !10 !5 0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Red: mean density. Blue: median density. Grey: 5-95 quantile.
Black: data. Others: draws.

Yee Whye Teh (Gatsby) DP August 2007 / MLSS 11 / 80

EXCHANGEABILITY AND DE
FINETTI’S THEOREM

81

Background

82

Work Notes

Matt

March 20, 2016

Contents
Suppose we have a random variable X drawn from some
distribution P✓(X) and X ranges over a set S.

• Discrete distribution:
S is a countable set.

• Continuous distribution:
P✓(X = x) = 0 for all x 2 S

• Mixed distribution:
S can be partitioned into two disjoint sets D and C s.t.

1. A is countable and 0 < P✓(X 2 D) < 1
2. P✓(X = x) = 0 for all x 2 C

1

Background

Whiteboard
– Mixed distribution

83

Exchangability and
de Finetti’s Theorem

Exchangeability:
• Def #1: a joint probability distribution is

exchangeable if it is invariant to permutation
• Def #2: The possibly infinite sequence of random

variables (X1, X2, X3, …) is exchangeable if for any
finite permutation s of the indices (1, 2,…n):

P(X1, X2, …, Xn) = P(Xs(1), Xs(2), …, Xs(n))

Notes:
• i.i.d. and exchangeable are not the same!
• the latter says that if our data are reordered it

doesn’t matter

84

Exchangability and
de Finetti’s Theorem

85
Actually, this is the Hewitt-Savage generalization of the de Finetti theorem.
The original version was given for the Bernoulli distribution

Slide from Jordan
ICML 2005

Exchangability and
de Finetti’s Theorem

86

Slide from Jordan
ICML 2005

xiθ

N

θ

xN

x1

x2

Parametric vs. Nonparametric

87

Type of Model
Parametric

Example
Nonparametric

Example

Construction #1 Construction #2

distribution over
counts

Dirichlet-
Multinomial Model

Dirichlet Process (DP)

Chinese Restaurant
Process (CRP)

Stick-breaking
construction

mixture Gaussian Mixture
Model (GMM)

Dirichlet Process Mixture Model (DPMM)

CRP Mixture Model Stick-breaking
construction

admixture Latent Dirichlet
Allocation (LDA)

Hierarchical Dirichlet Process Mixture
Model (HDPMM)

Chinese Restaurant
Franchise

Stick-breaking
construction

DIRICHLET PROCESS
Chinese Restaurant Process & Stick-breaking Constructions

88

Dirichlet Process
Ferguson Definition
• Parameters of a DP:

1. Base distribution, H, is a probability distribution over Θ
2. Strength parameter,

• We say G ~ DP(α, H)
if for any partition
we have:

89
university-logo

Dirichlet Processes
A Proper but Non-Constructive Definition

A probability measure is a function from subsets of a space X to [0, 1]
satisfying certain properties.

A Dirichlet Process (DP) is a distribution over probability measures.

Denote G ⇠ DP if G is a DP-distributed random probability measure.

For any finite set of partitions A1[̇ . . . [̇AK = X, we require
(G(A1), . . . , G(AK)) to be Dirichlet distributed.

6

A

A1

A A
A

A

2

3

4

5

Yee Whye Teh (Gatsby) DP August 2007 / MLSS 32 / 80

↵ 2 R

A1 [A2 [. . . [AK = ⇥

(G(A1), . . . , G(AK)) ⇠ Dirichlet(↵H(A1), . . . ,↵H(AK))

In English: the DP is a
distribution over
probability measures s.t.
marginals on finite
partitions are Dirichlet
distributed

A partition of the space Θ

Chinese Restaurant Process
• Imagine a Chinese restaurant with an infinite number of tables
• Each customer enters and sits down at a table

– The first customer sits at the first unoccupied table
– Each subsequent customer chooses a table according to the

following probability distribution:

p(kth occupied table) ∝ nk
p(next unoccupied table) ∝α
where nk is the number of people sitting at the table k

90

…

2
8 + α

1
8 + α

3
8 + α

2
8 + α

α
8 + α

Chinese Restaurant Process

91

Properties:
1. CRP defines a distribution over clusterings (i.e. partitions) of

the indices 1,…,n
– customer = index

– table = cluster

2. We write z1, z2, …, zn ~ CRP(α) to denote a sequence of cluster
indices drawn from a Chinese Restaurant Process

3. The CRP is an exchangeable process
4. Expected number of clusters given n customers

(i.e. observations) is O(α log(n))
– rich-get-richer effect on clusters: popular tables tend to get more

crowded

5. Behavior of CRP with α:

– As α goes to 0, the number of clusters goes to 1
– As α goes to +∞, the number of clusters goes to n

Dirichlet Process

Whiteboard
– Stick-breaking construction of the DP

92

CRP vs. DP
Dirichlet Process: For both the CRP and stick-
breaking constructions, if we marginalize out G,
we have the following predictive distribution:

The Chinese Restaurant Process is just a different
construction of the Dirichlet Process where we
have marginalized out G

93

have:

G|✓1, . . . , ✓n ⇠ DP
⇣
↵+ n, ↵

↵+n
H + n

↵+n

Pn
i=1 �✓i
n

⌘
(4)

Notice that the posterior base distribution is a weighted average between the

prior base distribution H and the empirical distribution
Pn

i=1 �✓i
n

. The weight
associated with the prior base distribution is proportional to ↵, while the em-
pirical distribution has weight proportional to the number of observations n.
Thus we can interpret ↵ as the strength or mass associated with the prior. In
the next section we will see that the posterior base distribution is also the pre-
dictive distribution of ✓n+1 given ✓1, . . . , ✓n. Taking ↵ ! 0, the prior becomes
non-informative in the sense that the predictive distribution is just given by the
empirical distribution. On the other hand, as the amount of observations grows
large, n � ↵, the posterior is simply dominated by the empirical distribution
which is in turn a close approximation of the true underlying distribution. This
gives a consistency property of the DP: the posterior DP approaches the true
underlying distribution.

Predictive Distribution and the Blackwell-MacQueen Urn Scheme

Consider again drawingG ⇠ DP(↵, H), and drawing an i.i.d. sequence ✓1, ✓2, . . . ⇠
G. Consider the predictive distribution for ✓n+1, conditioned on ✓1, . . . , ✓n and
with Gmarginalized out. Since ✓n+1|G, ✓1, . . . , ✓n ⇠ G, for a measurable A ⇢ ⇥,
we have

P (✓n+1 2 A|✓1, . . . , ✓n) = E[G(A)|✓1, . . . , ✓n]

=
1

↵+ n

↵H(A) +

nX

i=1

�✓i(A)

!
(5)

where the last step follows from the posterior base distribution of G given the
first n observations. Thus with G marginalized out:

✓n+1|✓1, . . . , ✓n ⇠ 1

↵+ n

↵H +

nX

i=1

�✓i

!
(6)

Therefore the posterior base distribution given ✓1, . . . , ✓n is also the predictive
distribution of ✓n+1.

The sequence of predictive distributions (6) for ✓1, ✓2, . . . is called the Blackwell-
MacQueen urn scheme [7]. The name stems from a metaphor useful in inter-
preting (6). Specifically, each value in ⇥ is a unique color, and draws ✓ ⇠ G
are balls with the drawn value being the color of the ball. In addition we have
an urn containing previously seen balls. In the beginning there are no balls in
the urn, and we pick a color drawn from H, i.e. draw ✓1 ⇠ H, paint a ball with
that color, and drop it into the urn. In subsequent steps, say the n + 1st, we
will either, with probability ↵

↵+n
, pick a new color (draw ✓n+1 ⇠ H), paint a

ball with that color and drop the ball into the urn, or, with probability n

↵+n
,

5

(Blackwell-MacQueen Urn Scheme)

Dirichlet Process

Whiteboard
– Dirichlet Process

(Polya urn scheme version)

94

Properties of the DP
1. Base distribution is the “mean” of the DP:

2. Strength parameter is like “inverse variance”

3. Samples from a DP are discrete distributions
(stick-breaking construction of G ~ DP(α, H)

makes this clear)
4. Posterior distribution of G ~ DP(α, H)

given samples θ1, …, θn from G is a DP

95

have:

G|✓1, . . . , ✓n ⇠ DP
⇣
↵+ n, ↵

↵+n
H + n

↵+n

Pn
i=1 �✓i
n

⌘
(4)

Notice that the posterior base distribution is a weighted average between the

prior base distribution H and the empirical distribution
Pn

i=1 �✓i
n

. The weight
associated with the prior base distribution is proportional to ↵, while the em-
pirical distribution has weight proportional to the number of observations n.
Thus we can interpret ↵ as the strength or mass associated with the prior. In
the next section we will see that the posterior base distribution is also the pre-
dictive distribution of ✓n+1 given ✓1, . . . , ✓n. Taking ↵ ! 0, the prior becomes
non-informative in the sense that the predictive distribution is just given by the
empirical distribution. On the other hand, as the amount of observations grows
large, n � ↵, the posterior is simply dominated by the empirical distribution
which is in turn a close approximation of the true underlying distribution. This
gives a consistency property of the DP: the posterior DP approaches the true
underlying distribution.

Predictive Distribution and the Blackwell-MacQueen Urn Scheme

Consider again drawingG ⇠ DP(↵, H), and drawing an i.i.d. sequence ✓1, ✓2, . . . ⇠
G. Consider the predictive distribution for ✓n+1, conditioned on ✓1, . . . , ✓n and
with Gmarginalized out. Since ✓n+1|G, ✓1, . . . , ✓n ⇠ G, for a measurable A ⇢ ⇥,
we have

P (✓n+1 2 A|✓1, . . . , ✓n) = E[G(A)|✓1, . . . , ✓n]

=
1

↵+ n

↵H(A) +

nX

i=1

�✓i(A)

!
(5)

where the last step follows from the posterior base distribution of G given the
first n observations. Thus with G marginalized out:

✓n+1|✓1, . . . , ✓n ⇠ 1

↵+ n

↵H +

nX

i=1

�✓i

!
(6)

Therefore the posterior base distribution given ✓1, . . . , ✓n is also the predictive
distribution of ✓n+1.

The sequence of predictive distributions (6) for ✓1, ✓2, . . . is called the Blackwell-
MacQueen urn scheme [7]. The name stems from a metaphor useful in inter-
preting (6). Specifically, each value in ⇥ is a unique color, and draws ✓ ⇠ G
are balls with the drawn value being the color of the ball. In addition we have
an urn containing previously seen balls. In the beginning there are no balls in
the urn, and we pick a color drawn from H, i.e. draw ✓1 ⇠ H, paint a ball with
that color, and drop it into the urn. In subsequent steps, say the n + 1st, we
will either, with probability ↵

↵+n
, pick a new color (draw ✓n+1 ⇠ H), paint a

ball with that color and drop the ball into the urn, or, with probability n

↵+n
,

5

E[G(A)] = H(A) for any A ⇢ ⇥

V [G(A)] = H(A)(1�H(A))/(↵+ 1)

