

10-708 Probabilistic Graphical Models

MACHINE LEARNING DEPARTMENT

Machine Learning Department School of Computer Science Carnegie Mellon University

Bayesian Nonparametrics:

Dirichlet Process

Dirichlet Process Mixture Model

Matt Gormley Lecture 22 Apr. 21, 2021

Reminders

- Project Midway Milestones:
 - Midway Poster Session:Tue, Apr. 27 at 6:30pm 8:30pm
 - Midway Executive Summary
 Due: Tue, Apr. 27 at 11:59pm
 - New requirement: must have baseline results
- Quiz 3
 - Mon, May 3 during lecture slot
 - Topics: Lectures 16 23

DEEP BOLTZMAN MACHINES (DBMS)

Outline

- Motivation
- Deep Neural Networks (DNNs)
 - Background: Decision functions
 - Background: Neural Networks
 - Three ideas for training a DNN
 - Experiments: MNIST digit classification
- Deep Belief Networks (DBNs)
 - Sigmoid Belief Network
 - Contrastive Divergence learning
 - Restricted Boltzman Machines (RBMs)
 - RBMs as infinitely deep Sigmoid Belief Nets
 - Learning DBNs
- Deep Boltzman Machines (DBMs)
 - Boltzman Machines
 - Learning Boltzman Machines
 - Learning DBMs

Deep Boltzman Machines

- DBNs are a hybrid directed/undi rected graphical model
- DBMs are a purely undirected graphical model

Deep Boltzman Machines

Can we use the same techniques to train a DBM?

LEARNING STANDARD BOLTZMAN MACHINES

Boltzman Machine

- Undirected graphical model of binary variables with pairwise potentials
- Parameterization of the potentials:

$$\psi_{ij}(x_i, x_j) = \exp(x_i W_{ij} x_j)$$

(In English: higher value of parameter W_{ij} leads to higher correlation between X_i and X_j on value 1)

Learning Standard Boltzman Machines

Visible units: $\mathbf{v} \in \{0,1\}^D$

Hidden units: $\mathbf{h} \in \{0,1\}^P$

Likelihood:

$$E(\mathbf{v}, \mathbf{h}; \theta) = -\frac{1}{2} \mathbf{v}^{\top} \mathbf{L} \mathbf{v} - \frac{1}{2} \mathbf{h}^{\top} \mathbf{J} \mathbf{h} - \mathbf{v}^{\top} \mathbf{W} \mathbf{h},$$

$$p(\mathbf{v}; \theta) = \frac{p^*(\mathbf{v}; \theta)}{Z(\theta)} = \frac{1}{Z(\theta)} \sum_{h} \exp(-E(\mathbf{v}, \mathbf{h}; \theta)),$$
$$Z(\theta) = \sum_{\mathbf{v}} \sum_{h} \exp(-E(\mathbf{v}, \mathbf{h}; \theta)),$$

Learning Standard Boltzman Machines

(Old) idea from Hinton & Sejnowski (1983): For each iteration of optimization, run a separate MCMC chain for each of the data and model expectations to approximate the parameter updates.

Delta updates to each of model parameters:

$$\Delta \mathbf{W} = \alpha \left(\mathbf{E}_{P_{\text{data}}} [\mathbf{v} \mathbf{h}^{\top}] - \mathbf{E}_{P_{\text{model}}} [\mathbf{v} \mathbf{h}^{\top}] \right),$$

$$\Delta \mathbf{L} = \alpha \left(\mathbf{E}_{P_{\text{data}}} [\mathbf{v} \mathbf{v}^{\top}] - \mathbf{E}_{P_{\text{model}}} [\mathbf{v} \mathbf{v}^{\top}] \right),$$

$$\Delta \mathbf{J} = \alpha \left(\mathbf{E}_{P_{\text{data}}} [\mathbf{h} \mathbf{h}^{\top}] - \mathbf{E}_{P_{\text{model}}} [\mathbf{h} \mathbf{h}^{\top}] \right),$$

Full conditionals for Gibbs sampler:

$$p(h_j = 1 | \mathbf{v}, \mathbf{h}_{-j}) = \sigma \left(\sum_{i=1}^{D} W_{ij} v_i + \sum_{m=1 \setminus j}^{P} J_{jm} h_j \right),$$
$$p(v_i = 1 | \mathbf{h}, \mathbf{v}_{-i}) = \sigma \left(\sum_{j=1}^{P} W_{ij} h_j + \sum_{k=1 \setminus i}^{D} L_{ik} v_j \right),$$

Learning Standard Boltzman Machines

(Old) idea from Hinton & Sejnowski (1983): For each iteration of optimization, run a separate MCMC chain for each of the data and model expectations to approximate the parameter updates.

Delta updates to each of model parameters:

$$\Delta \mathbf{W} = \alpha \left(\left\langle \mathbf{v} \mathbf{h}^T \right\rangle_{\mathbf{v} \in \mathcal{D}, \mathbf{h} \sim p(\mathbf{h} | \mathbf{v})} - \left\langle \mathbf{v} \mathbf{h}^T \right\rangle_{\mathbf{v}, \mathbf{h} \sim p(\mathbf{h}, \mathbf{v})} \right) - \text{especially for the data distribution.}$$

$$\Delta \mathbf{L} = \alpha \left(\left\langle \mathbf{v} \mathbf{v}^T \right\rangle_{\mathbf{v} \in \mathcal{D}, \mathbf{h} \sim p(\mathbf{h} | \mathbf{v})} - \left\langle \mathbf{v} \mathbf{v}^T \right\rangle_{\mathbf{v}, \mathbf{h} \sim p(\mathbf{h}, \mathbf{v})} \right)$$

$$\Delta \mathbf{J} = \alpha \left(\left\langle \mathbf{h} \mathbf{h}^T \right\rangle_{\mathbf{v} \in \mathcal{D}, \mathbf{h} \sim p(\mathbf{h} | \mathbf{v})} - \left\langle \mathbf{h} \mathbf{h}^T \right\rangle_{\mathbf{v}, \mathbf{h} \sim p(\mathbf{h}, \mathbf{v})} \right)$$

But it doesn't work very well!

The MCMC chains take too long to mix – especially for the data distribution.

$$p(h_j = 1 | \mathbf{v}, \mathbf{h}_{-j}) = \sigma \left(\sum_{i=1}^{D} W_{ij} v_i + \sum_{m=1 \setminus j}^{P} J_{jm} h_j \right),$$

$$p(v_i = 1 | \mathbf{h}, \mathbf{v}_{-i}) = \sigma \left(\sum_{j=1}^{P} W_{ij} h_j + \sum_{k=1 \setminus i}^{D} L_{ik} v_j \right),$$

Learning Standard Boltzman Machines

(New) idea from Salakhutinov & Hinton (2009):

- Step 1) Approximate the data distribution by variational inference.
- Step 2) Approximate the model distribution with a "persistent" Markov chain (from iteration to iteration)

Delta updates to each of model parameters:

$$\Delta \mathbf{W} = \alpha \left(\left\langle \mathbf{v} \mathbf{h}^T \right\rangle_{\mathbf{v} \in \mathcal{D}, \mathbf{h} \sim p(\mathbf{h}|\mathbf{v})} - \left\langle \mathbf{v} \mathbf{h}^T \right\rangle_{\mathbf{v}, \mathbf{h} \sim p(\mathbf{h}, \mathbf{v})} \right)$$

$$\Delta \mathbf{L} = \alpha \left(\left\langle \mathbf{v} \mathbf{v}^T \right\rangle_{\mathbf{v} \in \mathcal{D}, \mathbf{h} \sim p(\mathbf{h}|\mathbf{v})} - \left\langle \mathbf{v} \mathbf{v}^T \right\rangle_{\mathbf{v}, \mathbf{h} \sim p(\mathbf{h}, \mathbf{v})} \right)$$

$$\Delta \mathbf{J} = \alpha \left(\left\langle \mathbf{h} \mathbf{h}^T \right\rangle_{\mathbf{v} \in \mathcal{D}, \mathbf{h} \sim p(\mathbf{h}|\mathbf{v})} - \left\langle \mathbf{h} \mathbf{h}^T \right\rangle_{\mathbf{v}, \mathbf{h} \sim p(\mathbf{h}, \mathbf{v})} \right)$$

Learning Standard Boltzman Machines

(New) idea from Salakhutinov & Hinton (2009):

- Step 1) Approximate the data distribution by variational inference.
- Step 2) Approximate the model distribution with a "persistent" Markov chain (from iteration to iteration)

Delta updates to each of model parameters:

$$\Delta \mathbf{W} = \alpha \left(\left\langle \mathbf{v} \mathbf{h}^T \right\rangle_{\mathbf{v} \in \mathcal{D}, \mathbf{h} \sim p(\mathbf{h}|\mathbf{v})} - \left\langle \mathbf{v} \mathbf{h}^T \right\rangle_{\mathbf{v}, \mathbf{h} \sim p(\mathbf{h}, \mathbf{v})} \right)$$

Step 1) Approximate the data distribution...

Mean-field approximation:

$$q(\mathbf{h}; \mu) = \prod_{j=1}^{P} q(h_i)$$

$$q(h_i = 1) = \mu_i$$

Variational lower-bound of log-likelihood:

$$\ln p(\mathbf{v}; \theta) \geq \sum_{\mathbf{h}} q(\mathbf{h}|\mathbf{v}; \mu) \ln p(\mathbf{v}, \mathbf{h}; \theta) + \mathcal{H}(q)$$

Fixed-point equations for variational params:

$$\mu_j \leftarrow \sigma \Big(\sum_i W_{ij} v_i + \sum_{m \setminus j} J_{mj} \mu_m \Big)$$

Learning Standard Boltzman Machines

(New) idea from Salakhutinov & Hinton (2009):

- Step 1) Approximate the data distribution by variational inference.
- Step 2) Approximate the model distribution with a "persistent" Markov chain (from iteration to iteration)

Delta updates to each of model parameters:

$$\Delta \mathbf{W} = \alpha \left(\left\langle \mathbf{v} \mathbf{h}^T \right\rangle_{\mathbf{v} \in \mathcal{D}, \mathbf{h} \sim p(\mathbf{h}|\mathbf{v})} - \left\langle \mathbf{v} \mathbf{h}^T \right\rangle_{\mathbf{v}, \mathbf{h} \sim p(\mathbf{h}, \mathbf{v})} \right)$$

Why not use variational inference for the model expectation as well?

Difference of the two mean-field approximated expectations above would cause learning algorithm to **maximize** divergence between true and mean-field distributions.

Persistent CD adds correlations between successive iterations, but not an issue.

LEARNING DEEP BOLTZMAN MACHINES

Deep Boltzman Machines

- DBNs are a hybrid directed/undi rected graphical model
- DBMs are a purely undirected graphical model

Deep Belief Deep Boltzmann Network Machine \mathbf{h}^3 \mathbf{W}^3 \mathbf{h}^2 \mathbf{W}^2 \mathbf{h}^1 \mathbf{W}^1

Learning Deep Boltzman Machines

Can we use the same techniques to train a DBM?

- Pre-train a stack of RBMs in greedy layerwise fashion (requires some caution to avoid double counting)
- II. Use those parameters to initialize two step meanfield approach to learning full Boltzman machine (i.e. the full DBM)

Deep Boltzmann Machine \mathbf{W}^3 \mathbf{h}^2 \mathbf{W}^2 \mathbf{W}^1

Document Clustering and Retrieval

Clustering Results

- Goal: cluster related documents
- Figures show projection to 2 dimensions
- Color shows true categories

DBM

EXAMPLE: K-MEANS & GMM

K-Means Algorithm

Given unlabeled feature vectors

$$D = \{x^{(1)}, x^{(2)}, \dots, x^{(N)}\}$$

- Initialize cluster centers $c = \{c^{(1)}, ..., c^{(K)}\}$ and cluster assignments $z = \{z^{(1)}, z^{(2)}, ..., z^{(N)}\}$
- Repeat until convergence:
 - for j in $\{1,...,K\}$ $\mathbf{c}^{(j)} = \mathbf{mean}$ of all points assigned to cluster j - for i in $\{1,...,N\}$ $\mathbf{z}^{(i)} = \mathbf{index}$ j of cluster center **nearest** to $\mathbf{x}^{(i)}$

K-Means Example: Real-World Dataset

Example: GMM

Clustering with GMM (k=3, init=random, cov=spherical, iter=13)

LATENT DIRICHLET ALLOCATION (LDA)

- The generative story begins with only a Dirichlet prior over the topics.
- Each **topic** is defined as a **Multinomial distribution** over the vocabulary, parameterized by $m{\phi}_{
 m k}$

- The generative story begins with only a Dirichlet prior over the topics.
- Each **topic** is defined as a **Multinomial distribution** over the vocabulary, parameterized by $m{\phi}_{k}$

 A topic is visualized as its high probability words.

- A topic is visualized as its high probability words.
- A pedagogical label is used to identify the topic.

- A topic is visualized as its high probability words.
- A pedagogical label is used to identify the topic.

LDA for Topic Modeling

Inference and learning start with only the data

Dirichlet()

φ₁ =

 $\phi_2 =$

 $\phi_3 =$

 $\phi_4 =$

 $\phi_5 =$

 $\phi_6 =$

Dirichlet()

The 54/40' boundary dispute is still unresolved, and Canadian and US Coast Guard vessels regularly if infrequently detain each other's fish boats in the disputed waters off Dixon...

• **0**₂=

In the year before Lemieux came, Pittsburgh finished with 38 points. Following his arrival, the Pens finished... **> θ**₃=

The Orioles' itching staff again is having a fine exhibition season. Four shutouts, low team ERA, (Well, I haven't gotten any baseball...

Latent Dirichlet Allocation

Plate Diagram

Familiar models for unsupervised learning:

- 1. K-Means
- Gaussian Mixture Model (GMM)
- Latent Dirichlet Allocation (LDA)

But without labeled data, how do we know the right number of clusters / topics?

Outline

Motivation / Applications

- Background
 - de Finetti Theorem
 - Exchangeability
 - Aglommerative and decimative properties of Dirichlet distribution

CRP and CRP Mixture Model

- Chinese Restaurant Process (CRP) definition
- Gibbs sampling for CRP-MM
- Expected number of clusters

DP and DP Mixture Model

- Ferguson definition of Dirichlet process (DP)
- Stick breaking construction of DP
- Uncollapsed blocked Gibbs sampler for DP-MM
- Truncated variational inference for DP-MM

DP Properties

Related Models

- Hierarchical Dirichlet process Mixture Models (HDP-MM)
- Infinite HMM
- Infinite PCFG

BAYESIAN NONPARAMETRICS

Parametric models:

- Finite and fixed number of parameters
- Number of parameters is independent of the dataset

Nonparametric models:

- Have parameters ("infinite dimensional" would be a better name)
- Can be understood as having an **infinite** number of parameters
- Can be understood as having a random number of parameters
- Number of parameters can grow with the dataset

Semiparametric models:

Have a parametric component and a nonparametric component

	Frequentist	Bayesian
Parametric	Logistic regression, ANOVA, Fisher discriminant analysis, ARMA, etc.	Conjugate analysis, hierarchical models, conditional random fields
Semiparametric	Independent component analysis, Cox model, nonmetric MDS, etc.	[Hybrids of the above and below cells]
Nonparametric	Nearest neighbor, kernel methods, boostrap, decision trees, etc.	Gaussian processes, Dirichlet processes, Pitman-Yor processes, etc.

Application	Parametric	Nonparametric
function approximation	polynomial regression	Gaussian processes
classification	logistic regression	Gaussian process classifiers
clustering	mixture model, k- means	Dirichlet process mixture model
time series	hidden Markov model	infinite HMM
feature discovery	factor analysis, pPCA, PMF	infinite latent factor models

Def: a model is a collection of distributions

$$\{p_{\boldsymbol{\theta}}: \boldsymbol{\theta} \in \Theta\}$$

 parametric model: the parameter vector is finite dimensional

$$\Theta \subset \mathcal{R}^k$$

• nonparametric model: the parameters are from a possibly infinite dimensional space, \mathcal{F}

$$\Theta \subset \mathcal{F}$$

Model Selection

- For clustering: How many clusters in a mixture model?
- For topic modeling: How many topics in LDA?
- For grammar induction: How many nonterminals in a PCFG?
- For visual scene analysis: How many objects, parts, features?

Model Selection

- For clustering: How many clusters in a mixture model?
- For topic modeling: How many topics in LDA?
- For grammar induction: How many nonterminals in a PCFG?
- For visual scene analysis: How many objects, parts, features?

Model Selection

- For clustering: How many clusters in a mixture model?
- For topic modeling: How many topics in LDA?
- For grammar induction: How many nonterminals in a PCFG?
- For visual scene analysis: How many objects, parts, features?

- 1. Parametric
 approaches:
 cross-validation,
 bootstrap, AIC,
 BIC, DIC, MDL,
 Laplace, bridge
 sampling, etc.
- 2. Nonparametric approach: average of an infinite set of models

Density Estimation

- Given data, estimate a probability density function that best explains it
- A nonparametric prior can be placed over an infinite set of distributions

Prior:

Red: mean density. Blue: median density. Grey: 5-95 quantile.

Others: draws.

Density Estimation

- Given data, estimate a probability density function that best explains it
- A nonparametric prior can be placed over an infinite set of distributions

Posterior:

Red: mean density. Blue: median density. Grey: 5-95 quantile.

Black: data. Others: draws.

EXCHANGEABILITY AND DE FINETTI'S THEOREM

Background

Suppose we have a random variable X drawn from some distribution $P_{\theta}(X)$ and X ranges over a set \mathcal{S} .

• Discrete distribution: S is a countable set.

• Continuous distribution:

$$P_{\theta}(X=x)=0 \text{ for all } x \in \mathcal{S}$$

• Mixed distribution:

 \mathcal{S} can be partitioned into two disjoint sets \mathcal{D} and \mathcal{C} s.t.

- 1. \mathcal{D} is countable and $0 < P_{\theta}(X \in D) < 1$
- 2. $P_{\theta}(X=x)=0$ for all $x \in \mathcal{C}$

Background

Whiteboard

Mixed distribution

Exchangability and de Finetti's Theorem

Exchangeability:

- Def #1: a joint probability distribution is exchangeable if it is invariant to permutation
- **Def #2:** The possibly infinite sequence of random variables $(X_1, X_2, X_3, ...)$ is **exchangeable** if for any finite permutation s of the indices (1, 2, ...n):

$$P(X_1, X_2, ..., X_n) = P(X_{s(1)}, X_{s(2)}, ..., X_{s(n)})$$

Notes:

- i.i.d. and exchangeable are not the same!
- the latter says that if our data are reordered it doesn't matter

Exchangability and de Finetti's Theorem

Theorem (De Finetti, 1935). If $(x_1, x_2, ...)$ are infinitely exchangeable, then the joint probability $p(x_1, x_2, ..., x_N)$ has a representation as a mixture:

$$p(x_1, x_2, \dots, x_N) = \int \left(\prod_{i=1}^{N} p(x_i \mid \theta) \right) dP(\theta)$$

for some random variable θ .

- The theorem wouldn't be true if we limited ourselves to parameters θ ranging over Euclidean vector spaces
- In particular, we need to allow θ to range over measures, in which case P(θ)
 is a measure on measures
 - the Dirichlet process is an example of a measure on measures...

Actually, this is the Hewitt-Savage generalization of the de Finetti theorem. The original version was given for the Bernoulli distribution

Exchangability and de Finetti's Theorem

• A plate is a "macro" that allows subgraphs to be replicated:

• Note that this is a graphical representation of the De Finetti theorem

$$p(x_1, x_2, \dots, x_N) = \int p(\theta) \left(\prod_{i=1}^N p(x_i \mid \theta) \right) d\theta$$

Type of Model	Parametric Example	Nonparametric Example	
		Construction #1	Construction #2
distribution over counts	Dirichlet- Multinomial Model	Dirichlet Process (DP)	
		Chinese Restaurant Process (CRP)	Stick-breaking construction
mixture	Gaussian Mixture Model (GMM)	Dirichlet Process Mixture Model (DPMM)	
		CRP Mixture Model	Stick-breaking construction
admixture	Latent Dirichlet Allocation (LDA)	Hierarchical Dirichlet Process Mixture Model (HDPMM)	
		Chinese Restaurant Franchise	Stick-breaking construction

Chinese Restaurant Process & Stick-breaking Constructions

DIRICHLET PROCESS

Dirichlet Process

Ferguson Definition

- Parameters of a DP:
 - 1. Base distribution, H, is a probability distribution over Θ
 - 2. Strength parameter, $lpha \in \mathcal{R}$
- We say $G \sim \mathrm{DP}(\alpha, H)$ if for any partition $A_1 \cup A_2 \cup \ldots \cup A_K = \Theta$ we have:

$$(G(A_1), \ldots, G(A_K)) \sim \text{Dirichlet}(\alpha H(A_1), \ldots, \alpha H(A_K))$$

In English: the DP is a distribution over probability measures s.t. marginals on finite partitions are Dirichlet distributed

A partition of the space Θ

Chinese Restaurant Process

- Imagine a Chinese restaurant with an infinite number of tables
- Each customer enters and sits down at a table
 - The first customer sits at the first unoccupied table
 - Each subsequent customer chooses a table according to the following probability distribution:

 $p(kth \ occupied \ table) \propto n_k$ $p(next \ unoccupied \ table) \propto \alpha$

where n_k is the number of people sitting at the table k

Chinese Restaurant Process

Properties:

- 1. CRP defines a **distribution over clusterings** (i.e. partitions) of the indices 1, ..., n
 - customer = index
 - table = cluster
- 2. We write $z_1, z_2, ..., z_n \sim CRP(\alpha)$ to denote a **sequence of cluster indices** drawn from a Chinese Restaurant Process
- 3. The CRP is an **exchangeable process**
- **4. Expected number of clusters** given n customers (i.e. observations) is $O(\alpha \log(n))$
 - rich-get-richer effect on clusters: popular tables tend to get more crowded
- 5. Behavior of CRP with α :
 - As α goes to θ , the number of clusters goes to 1
 - − As α goes to $+\infty$, the number of clusters goes to n

Dirichlet Process

Whiteboard

Stick-breaking construction of the DP

CRP vs. DP

Dirichlet Process: For both the CRP and stickbreaking constructions, if we marginalize out G, we have the following predictive distribution:

$$\theta_{n+1}|\theta_1,\ldots,\theta_n \sim \frac{1}{\alpha+n} \left(\alpha H + \sum_{i=1}^n \delta_{\theta_i}\right)$$

(Blackwell-MacQueen Urn Scheme)

The Chinese Restaurant Process is just a different construction of the Dirichlet Process where we have marginalized out *G*

Dirichlet Process

Whiteboard

– Dirichlet Process(Polya urn scheme version)

Properties of the DP

1. Base distribution is the "mean" of the DP:

$$\mathbb{E}[G(A)] = H(A)$$
 for any $A \subset \Theta$

2. Strength parameter is like "inverse variance"

$$V[G(A)] = H(A)(1 - H(A))/(\alpha + 1)$$

- 3. Samples from a DP are discrete distributions (stick-breaking construction of $G \sim \mathrm{DP}(\alpha, H)$ makes this clear)
- 4. Posterior distribution of $G \sim \mathrm{DP}(\alpha, H)$ given samples $\theta_1, ..., \theta_n$ from G is a DP

$$G|\theta_1,\ldots,\theta_n \sim \mathrm{DP}\left(\alpha+n,\frac{\alpha}{\alpha+n}H+\frac{n}{\alpha+n}\frac{\sum_{i=1}^n \delta_{\theta_i}}{n}\right)$$