10-708 Probabilistic Graphical Models
Machine Learning Department
School of Computer Science
Carnegie Mellon University

Bayesian Nonparametrics: Dirichlet Process

$+$

Dirichlet Process Mixture Model

Matt Gormley
Lecture 22
Apr. 21, 2021

Reminders

- Project Midway Milestones:
- Midway Poster Session:

Tue, Apr. 27 at 6:30pm - 8:30pm

- Midway Executive Summary

Due: Tue, Apr. 27 at 11:59pm

- New requirement: must have baseline results
- Quiz 3
- Mon, May 3 during lecture slot
- Topics: Lectures 16-23

DEEP BOLTZMAN MACHINES (DBMS)

Outline

- Motivation
- Deep Neural Networks (DNNs)
- Background: Decision functions
- Background: Neural Networks
- Three ideas for training a DNN
- Experiments: MNIST digit classification
- Deep Belief Networks (DBNs)
- Sigmoid Belief Network
- Contrastive Divergence learning
- Restricted Boltzman Machines (RBMs)
- RBMs as infinitely deep Sigmoid Belief Nets
- Learning DBNs
- Deep Boltzman Machines (DBMs)
- Boltzman Machines
- Learning Boltzman Machines
- Learning DBMs

DBMs

Deep Boltzman Machines

- DBNs are a hybrid directed/undi rected graphical model
- DBMs are a purely undirected graphical model

DBMs

Deep Boltzman Machines

Can we use the same techniques to train a DBM?

Deep Boltzmann Machine

LEARNING STANDARD BOLTZMAN MACHINES

DBMs

Boltzman Machine

- Undirected graphical model of binary variables with pairwise potentials
- Parameterization of the potentials:
$\psi_{i j}\left(x_{i}, x_{j}\right)=$

$$
\exp \left(x_{i} W_{i j} x_{j}\right)
$$

(In English: higher value of parameter W_{ij} leads to higher correlation between X_{i} and X_{j} on value 1)

DBMs

Learning Standard Boltzman Machines

Visible units:

$$
\mathbf{v} \in\{0,1\}^{D}
$$

Hidden units: $\quad \mathbf{h} \in\{0,1\}^{P}$

Likelihood:

$$
\begin{array}{r}
E(\mathbf{v}, \mathbf{h} ; \theta)=-\frac{1}{2} \mathbf{v}^{\top} \mathbf{L} \mathbf{v}-\frac{1}{2} \mathbf{h}^{\top} \mathbf{J h}-\mathbf{v}^{\top} \mathbf{W h} \\
p(\mathbf{v} ; \theta)=\frac{p^{*}(\mathbf{v} ; \theta)}{Z(\theta)}=\frac{1}{Z(\theta)} \sum_{h} \exp (-E(\mathbf{v}, \mathbf{h} ; \theta)) \\
Z(\theta)=\sum_{\mathbf{v}} \sum_{\mathbf{h}} \exp (-E(\mathbf{v}, \mathbf{h} ; \theta))
\end{array}
$$

DBMs

Learning Standard Boltzman Machines

(Old) idea from Hinton \& Sejnowski (1983): For each iteration of optimization, run a separate MCMC chain for each of the data and model expectations to approximate the parameter updates.

Delta updates to each of model parameters:

$$
\begin{aligned}
\Delta \mathbf{W} & =\alpha\left(\mathrm{E}_{P_{\text {data }}}\left[\mathbf{v h}^{\top}\right]-\mathrm{E}_{P_{\text {model }}}\left[\mathbf{v h}^{\top}\right]\right), \\
\Delta \mathbf{L} & =\alpha\left(\mathrm{E}_{P_{\text {data }}}\left[\mathbf{v} \mathbf{v}^{\top}\right]-\mathrm{E}_{P_{\text {model }}}\left[\mathbf{v} \mathbf{v}^{\top}\right]\right), \\
\Delta \mathbf{J} & =\alpha\left(\mathrm{E}_{P_{\text {data }}}\left[\mathbf{h} \mathbf{h}^{\top}\right]-\mathrm{E}_{P_{\text {model }}}\left[\mathbf{h} \mathbf{h}^{\top}\right]\right),
\end{aligned}
$$

Full conditionals for Gibbs sampler:

$$
\begin{aligned}
& p\left(h_{j}=1 \mid \mathbf{v}, \mathbf{h}_{-j}\right)=\sigma\left(\sum_{i=1}^{D} W_{i j} v_{i}+\sum_{m=1 \backslash j}^{P} J_{j m} h_{j}\right) \\
& p\left(v_{i}=1 \mid \mathbf{h}, \mathbf{v}_{-i}\right)=\sigma\left(\sum_{j=1}^{P} W_{i j} h_{j}+\sum_{k=1 \backslash i}^{D} L_{i k} v_{j}\right)
\end{aligned}
$$

DBMs

Learning Standard Boltzman Machines

(Old) idea from Hinton \& Sejnowski (1983): For each iteration of optimization, run a separate MCMC chain for each of the data and model expectations to approximate the parameter updates.

Delta updates to each of model parameters:

$$
\begin{aligned}
\Delta \mathbf{W} & =\alpha\left(\left\langle\mathbf{v h}^{T}\right\rangle_{\mathbf{v} \in \mathcal{D}, \mathbf{h} \sim p(\mathbf{h} \mid \mathbf{v})}-\left\langle\mathbf{v h}^{T}\right\rangle_{\mathbf{v}, \mathbf{h} \sim p(\mathbf{h}, \mathbf{v})}\right) \\
\Delta \mathbf{L} & =\alpha\left(\left\langle\mathbf{v} \mathbf{v}^{T}\right\rangle_{\mathbf{v} \in \mathcal{D}, \mathbf{h} \sim p(\mathbf{h} \mid \mathbf{v})}-\left\langle\mathbf{v} \mathbf{v}^{T}\right\rangle_{\mathbf{v}, \mathbf{h} \sim p(\mathbf{h}, \mathbf{v})}\right) \\
\Delta \mathbf{J} & =\alpha\left(\left\langle\mathbf{h} \mathbf{h}^{T}\right\rangle_{\mathbf{v} \in \mathcal{D}, \mathbf{h} \sim p(\mathbf{h} \mid \mathbf{v})}-\left\langle\mathbf{h} \mathbf{h}^{T}\right\rangle_{\mathbf{v}, \mathbf{h} \sim p(\mathbf{h}, \mathbf{v})}\right)
\end{aligned}
$$

But it doesn't work very well!

The MCMC chains take too long to mix - especially for the data distribution.

DBMs

Learning Standard Boltzman Machines

(New) idea from Salakhutinov \& Hinton (2009):

- Step 1) Approximate the data distribution by variational inference.
- Step 2) Approximate the model distribution with a "persistent" Markov chain (from iteration to iteration)
Delta updates to each of model parameters:

$$
\begin{aligned}
\Delta \mathbf{W} & =\alpha\left(\left\langle\mathbf{v} \mathbf{h}^{T}\right\rangle_{\mathbf{v} \in \mathcal{D}, \mathbf{h} \sim p(\mathbf{h} \mid \mathbf{v})}-\left\langle\mathbf{v h}^{T}\right\rangle_{\mathbf{v}, \mathbf{h} \sim p(\mathbf{h}, \mathbf{v})}\right) \\
\Delta \mathbf{L} & =\alpha\left(\left\langle\mathbf{v} \mathbf{v}^{T}\right\rangle_{\mathbf{v} \in \mathcal{D}, \mathbf{h} \sim p(\mathbf{h} \mid \mathbf{v})}-\left\langle\mathbf{v} \mathbf{v}^{T}\right\rangle_{\mathbf{v}, \mathbf{h} \sim p(\mathbf{h}, \mathbf{v})}\right) \\
\Delta \mathbf{J} & =\alpha\left(\left\langle\mathbf{h} \mathbf{h}^{T}\right\rangle_{\mathbf{v} \in \mathcal{D}, \mathbf{h} \sim p(\mathbf{h} \mid \mathbf{v})}-\left\langle\mathbf{h}^{T}\right\rangle_{\mathbf{v}, \mathbf{h} \sim p(\mathbf{h}, \mathbf{v})}\right)
\end{aligned}
$$

DBMs

Learning Standard Boltzman Machines

(New) idea from Salakhutinov \& Hinton (2009):

- Step 1) Approximate the data distribution by variational inference.
- Step 2) Approximate the model distribution with a "persistent" Markov chain (from iteration to iteration)
Delta updates to each of model parameters:

$$
\Delta \mathbf{W}=\alpha\left(\left\langle\mathbf{v} \mathbf{h}^{T}\right\rangle_{\mathbf{v} \in \mathcal{D}, \mathbf{h} \sim p(\mathbf{h} \mid \mathbf{v})}-\left\langle\mathbf{v h}^{T}\right\rangle_{\mathbf{v}, \mathbf{h} \sim p(\mathbf{h}, \mathbf{v})}\right)
$$

Step 1) Approximate the data distribution...

Mean-field approximation:

$$
\begin{aligned}
& q(\mathbf{h} ; \mu)=\prod_{j=1}^{P} q\left(h_{i}\right) \\
& q\left(h_{i}=1\right)=\mu_{i}
\end{aligned}
$$

Variational lower-bound of log-likelihood:

$$
\ln p(\mathbf{v} ; \theta) \geq \sum_{\mathbf{h}} q(\mathbf{h} \mid \mathbf{v} ; \mu) \ln p(\mathbf{v}, \mathbf{h} ; \theta)+\mathcal{H}(q)
$$

Fixed-point equations for variational params:

$$
\mu_{j} \leftarrow \sigma\left(\sum_{i} W_{i j} v_{i}+\sum_{m \backslash j} J_{m j} \mu_{m}\right)
$$

DBMs

Learning Standard Boltzman Machines

(New) idea from Salakhutinov \& Hinton (2009):

- Step 1) Approximate the data distribution by variational inference.
- Step 2) Approximate the model distribution with a "persistent" Markov chain (from iteration to iteration)
Delta updates to each of model parameters:

$$
\Delta \mathbf{W}=\alpha\left(\left\langle\mathbf{v h}^{T}\right\rangle_{\mathbf{v} \in \mathcal{D}, \mathbf{h} \sim p(\mathbf{h} \mid \mathbf{v})}-\left\langle\mathbf{v h}^{T}\right\rangle_{\mathbf{v}, \mathbf{h} \sim p(\mathbf{h}, \mathbf{v})}\right)
$$

Step 2) Approximate the model distribution...

Why not use variational inference for the model expectation as well?
Difference of the two mean-field approximated expectations above would cause learning algorithm to maximize divergence between true and mean-field distributions.

Persistent CD adds correlations between successive iterations, but not an issue.

LEARNING DEEP BOLTZMAN MACHINES

DBMs

Deep Boltzman Machines

- DBNs are a hybrid directed/undi rected graphical model
- DBMs are a purely undirected graphical model

DBMs

Learning Deep Boltzman Machines

Can we use the same techniques to train a DBM?
I. Pre-train a stack of RBMs in greedy layerwise fashion (requires some caution to avoid double counting)
II. Use those parameters to initialize two step meanfield approach to learning full Boltzman machine (i.e. the full DBM)

Deep Boltzmann Machine

DBMs

Document Clustering and Retrieval

Clustering Results

- Goal: cluster related documents
- Figures show projection to 2 dimensions
- Color shows true categories

EXAMPLE: K-MEANS \& GMM

K-Means Algorithm

- Given unlabeled feature vectors
$D=\left\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(\mathrm{N})}\right\}$
- Initialize cluster centers $c=\left\{\mathbf{c}^{(1)}, \ldots, \mathbf{c}^{(\mathrm{K})}\right\}$ and cluster assignments $z=\left\{\mathbf{z}^{(1)}, \mathrm{z}^{(2)}, \ldots, \mathrm{z}^{(\mathrm{N})}\right\}$
- Repeat until convergence:
- for j in $\{1, \ldots, K\}$
$\mathbf{c}^{(\mathrm{j})}=$ mean of all points assigned to cluster j
- for i in $\{1, \ldots, N\}$
$z^{(i)}=$ index j of cluster center nearest to $\mathbf{x}^{(i)}$

K-Means Example:
 Real-World Dataset

Example: GMM

Clumtering with CAM $[k=3$ init=random $c o y=j p h e r i c a l$, $\operatorname{cor}=131$

LATENT DIRICHLET ALLOCATION (LDA)

LDA for Topic Modeling

- The generative story begins with only a Dirichlet prior over the topics.
- Each topic is defined as a Multinomial distribution over the vocabulary, parameterized by $\boldsymbol{\phi}_{\mathrm{k}}$

LDA for Topic Modeling

- The generative story begins with only a Dirichlet prior over the topics.
- Each topic is defined as a Multinomial distribution over the vocabulary, parameterized by $\boldsymbol{\phi}_{\mathrm{k}}$
(Blei, Ng, \& Jordan, 2003)

LDA for Topic Modeling

- A topic is visualized as its high probability words.

LDA for Topic Modeling

- A topic is visualized as its high probability words.
- A pedagogical label is used to identify the topic.

LDA for Topic Modeling

- A topic is visualized as its high probability words.
- A pedagogical label is used to identify the topic.
(Blei, Ng, \& Jordan, 2003)

LDA for Topic Modeling

(Blei, Ng, \& Jordan, 2003)

LDA for Topic Modeling

(Blei, Ng, \& Jordan, 2003)

LDA for Topic Modeling

(Blei, Ng, \& Jordan, 2003)

LDA for Topic Modeling

(Blei, Ng, \& Jordan, 2003)

LDA for Topic Modeling

LDA for Topic Modeling

(Blei, Ng, \& Jordan, 2003)

LDA for Topic Modeling

LDA for Topic Modeling

(Blei, Ng, \& Jordan, 2003)

LDA for Topic Modeling

Inference and learning start with only the data

> Dirichlet()

Latent Dirichlet Allocation

- Plate Diagram

Familiar models for unsupervised learning:

1. K-Means
2. Gaussian Mixture Model (GMM)
3. Latent Dirichlet Allocation (LDA)

But without labeled data, how do we know the right number of clusters / topics?

Outline

- Motivation / Applications
- Background
- de Finetti Theorem
- Exchangeability
- Aglommerative and decimative properties of Dirichlet distribution
- CRP and CRP Mixture Model
- Chinese Restaurant Process (CRP) definition
- Gibbs sampling for CRP-MM
- Expected number of clusters
- DP and DP Mixture Model
- Ferguson definition of Dirichlet process (DP)
- Stick breaking construction of DP
- Uncollapsed blocked Gibbs sampler for DP-MM
- Truncated variational inference for DP-MM
- DP Properties
- Related Models
- Hierarchical Dirichlet process Mixture Models (HDP-MM)
- Infinite HMM
- Infinite PCFG

BAYESIAN NONPARAMETRICS

Parametric vs. Nonparametric

- Parametric models:
- Finite and fixed number of parameters
- Number of parameters is independent of the dataset
- Nonparametric models:
- Have parameters ("infinite dimensional" would be a better name)
- Can be understood as having an infinite number of parameters
- Can be understood as having a random number of parameters
- Number of parameters can grow with the dataset
- Semiparametric models:
- Have a parametric component and a nonparametric component

Parametric vs. Nonparametric

	Frequentist	Bayesian		
Parametric	Logistic regression, ANOVA, Fisher discriminant analysis,	Conjugate analysis, hierarchical models, conditional random fields		
Semiparametric	Independent component analysis, Cox model, nonmetric	[Hybrids of the above and below cells]		
Nonparametric	MDS, etc.	Nearest neighbor, kernel methods, boostrap, decision trees, etc.		Gaussian processes,
:---				
Dirichlet processes,				
Pitman-Yor processes,				
etc.				

Parametric vs. Nonparametric

$\left.$| Application | Parametric | Nonparametric |
| :--- | :--- | :--- |
| function
 approximation | logistic regression | Gaussian process
 classifiers |
| classification | mixture model, k-
 means | Dirichlet process
 mixture model |
| clustering | hidden Markov model | infinite HMM |
| time series | feature discovery | factor analysis, pPCA,
 PMF | | infinite latent factor |
| :--- |
| models | \right\rvert\,

Parametric vs. Nonparametric

- Def: a model is a collection of distributions

$$
\left\{p_{\boldsymbol{\theta}}: \boldsymbol{\theta} \in \Theta\right\}
$$

- parametric model: the parameter vector is finite dimensional

$$
\Theta \subset \mathcal{R}^{k}
$$

- nonparametric model: the parameters are from a possibly infinite dimensional space, \mathcal{F}

$$
\Theta \subset \mathcal{F}
$$

Motivation \#1

Model Selection

- For clustering:

How many clusters in a mixture model?

- For topic modeling: How many topics in LDA?
- For grammar induction:

How many nonterminals in a PCFG?

- For visual scene analysis:

How many objects, parts, features?

Motivation \#1

Model Selection

- For clustering:

How many clusters in a mixture model?

- For topic modeling: How many topics in LDA?
- For grammar induction:

How many nonterminals in a PCFG?

- For visual scene analysis:

How many objects, parts, features?

Motivation \#1

Model Selection

- For clustering:

How many clusters in a mixture model?

- For topic modeling: How many topics in LDA?
- For grammar induction:

How many nonterminals in a PCFG?

- For visual scene analysis:

How many objects, parts, features?

1. Parametric approaches:
cross-validation, bootstrap, AIC, BIC, DIC, MDL, Laplace, bridge sampling, etc.
2. Nonparametric approach: average of an infinite set of models

Motivation \#2

Density Estimation

- Given data, estimate a probability density function that best explains it
- A nonparametric prior can be placed over an infinite set of distributions Prior:

Red: mean density. Blue: median density. Grey: 5-95 quantile. Others: draws.

Motivation \#2

Density Estimation

- Given data, estimate a probability density function that best explains it
- A nonparametric prior can be placed over an infinite set of distributions

Posterior:

Red: mean density. Blue: median density. Grey: 5-95 quantile.
Black: data. Others: draws.

EXCHANGEABILITY AND DE FINETTI'S THEOREM

Background

Suppose we have a random variable X drawn from some distribution $P_{\theta}(X)$ and X ranges over a set \mathcal{S}.

- Discrete distribution: \mathcal{S} is a countable set.

- Mixed distribution:
\mathcal{S} can be partitioned into two disjoint sets \mathcal{D} and \mathcal{C} s.t.

1. \mathcal{D} is countable and $0<P_{\theta}(X \in D)<1$
2. $P_{\theta}(X=x)=0$ for all $x \in \mathcal{C}$

Background

Whiteboard

- Mixed distribution

Exchangability and de Finetti's Theorem

Exchangeability:

- Def \#1: a joint probability distribution is exchangeable if it is invariant to permutation
- Def \#2: The possibly infinite sequence of random variables ($X_{1}, X_{2}, X_{3}, \ldots$) is exchangeable if for any finite permutation s of the indices ($1,2, \ldots n$):

$$
P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=P\left(X_{s(1)}, X_{s(2)}, \ldots, X_{s(n)}\right)
$$

Notes:

- i.i.d. and exchangeable are not the same!
- the latter says that if our data are reordered it doesn't matter

Exchangability and de Finetti's Theorem

Theorem (De Finetti, 1935). $W\left(x_{1}, x_{2} \ldots\right)$ are infinitely exchangeable, then the joint probability $p\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ has a representation as a moxture:

$$
p\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\int\left(\prod_{i=1}^{N} p\left(x_{i} \mid \theta\right)\right) d P(\theta)
$$

for some random variable e.

- The theorem wouldn't be trut if we limited ourselves to parameters θ ranging over Euclidean vector spaces
* In particular, we need to allow θ to range over measures, in which case $P(\theta)$ is a measure on measures
- the Dirichlet process is an example of a measure on measures...

Actually, this is the Hewitt-Savage generalization of the de Finetti theorem. The original version was given for the Bernoulli distribution

Exchangability and de Finetti's Theorem

- A plate is a "macro" that allows subgraphs to be replicated:

- Note that this is a graphical representation of the De Finetti theorem

$$
p\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\int p(\theta)\left(\prod_{i=1}^{N} p\left(x_{i} \mid \theta\right)\right) d \theta
$$

Parametric vs. Nonparametric

Type of Model	Parametric Example	Nonparametric Example	
		Construction \#1	Construction \#2
distribution over counts	Dirichlet- Multinomial Model	Dirichlet Process (DP)	
		Chinese Restaurant Process (CRP)	Stick-breaking construction
mixture	Gaussian Mixture Model (GMM)	Dirichlet Process Mixture Model (DPMM)	
		CRP Mixture Model	Stick-breaking construction
admixture	Latent Dirichlet Allocation (LDA)	Hierarchical Dirichlet Process Mixture Model (HDPMM)	
		Chinese Restaurant Franchise	Stick-breaking construction

Chinese Restaurant Process \& Stick-breaking Constructions DIRICHLET PROCESS

Dirichlet Process

Ferguson Definition

- Parameters of a DP:

1. Base distribution, H, is a probability distribution over Θ
2. Strength parameter, $\alpha \in \mathcal{R}$

- We say $G \sim \mathrm{DP}(\alpha, H)$
if for any partition $A_{1} \cup A_{2} \cup \ldots \cup A_{K}=\Theta$
we have:

$$
\left(G\left(A_{1}\right), \ldots, G\left(A_{K}\right)\right) \sim \operatorname{Dirichlet}\left(\alpha H\left(A_{1}\right), \ldots, \alpha H\left(A_{K}\right)\right)
$$

In English: the DP is a distribution over probability measures s.t. marginals on finite partitions are Dirichlet distributed

Chinese Restaurant Process

- Imagine a Chinese restaurant with an infinite number of tables
- Each customer enters and sits down at a table
- The first customer sits at the first unoccupied table
- Each subsequent customer chooses a table according to the following probability distribution:
$p\left(k t h\right.$ occupied table) $\propto n_{k}$ p (next unoccupied table) $\alpha \alpha$
where n_{k} is the number of people sitting at the table k

$\frac{2}{8+\alpha}$
$\frac{1}{8+\alpha}$
$\frac{3}{8+\alpha}$

$\frac{2}{8+a}$
$\frac{\alpha}{8+\alpha}$

Chinese Restaurant Process

Properties:

1. CRP defines a distribution over clusterings (i.e. partitions) of the indices $1, \ldots, n$

- customer = index
- table = cluster

2. We write $z_{1}, z_{2}, \ldots, z_{n} \sim C R P(\alpha)$ to denote a sequence of cluster indices drawn from a Chinese Restaurant Process
3. The CRP is an exchangeable process
4. Expected number of clusters given n customers
(i.e. observations) is $O(\alpha \log (n))$

- rich-get-richer effect on clusters: popular tables tend to get more crowded

5. Behavior of CRP with α :

- As α goes to 0 , the number of clusters goes to 1
- As α goes to $+\infty$, the number of clusters goes to n

Dirichlet Process

Whiteboard

- Stick-breaking construction of the DP

CRP vs. DP

Dirichlet Process: For both the CRP and stickbreaking constructions, if we marginalize out G, we have the following predictive distribution:

$$
\begin{gathered}
\theta_{n+1} \mid \theta_{1}, \ldots, \theta_{n} \sim \frac{1}{\alpha+n}\left(\alpha H+\sum_{i=1}^{n} \delta_{\theta_{i}}\right) \\
\text { (Blackwell-MacQueen Urn Scheme) }
\end{gathered}
$$

The Chinese Restaurant Process is just a different construction of the Dirichlet Process where we have marginalized out G

Dirichlet Process

Whiteboard

- Dirichlet Process (Polya urn scheme version)

Properties of the DP

1. Base distribution is the "mean" of the DP:

$$
\mathbb{E}[G(A)]=H(A) \text { for any } A \subset \Theta
$$

2. Strength parameter is like "inverse variance"

$$
V[G(A)]=H(A)(1-H(A)) /(\alpha+1)
$$

3. Samples from a DP are discrete distributions (stick-breaking construction of $G \sim \mathrm{DP}(\alpha, H)$ makes this clear)
4. Posterior distribution of $G \sim \mathrm{DP}(\alpha, H)$ given samples $\theta_{1}, \ldots, \theta_{n}$ from G is a DP

$$
G \mid \theta_{1}, \ldots, \theta_{n} \sim \operatorname{DP}\left(\alpha+n, \frac{\alpha}{\alpha+n} H+\frac{n}{\alpha+n} \frac{\sum_{i=1}^{n} \delta_{\theta_{i}}}{n}\right)
$$

