

10-708 Probabilistic Graphical Models

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Topic Modeling + Variational Inference

Matt Gormley
Lecture 16
Mar. 19, 2021

Reminders

- **Project Proposal**
 - Due: Wed, Mar. 31 at 11:59pm
- **Homework 4: MCMC**
 - Out: Wed, Mar. 24
 - Due: Wed, Apr. 7 at 11:59pm

Outline

- **Applications of Topic Modeling**
- **Review: Latent Dirichlet Allocation (LDA)**
 1. Beta-Bernoulli
 2. Dirichlet-Multinomial
 3. Dirichlet-Multinomial Mixture Model
 4. LDA
- **Bayesian Inference for Parameter Estimation**
 - Exact inference
 - EM
 - Monte Carlo EM
 - Gibbs sampler
 - Collapsed Gibbs sampler
- **Extensions of LDA**
 - Correlated topic models
 - Dynamic topic models
 - Polylingual topic models
 - Supervised LDA

EXTENSIONS OF LDA

Extensions to the LDA Model

- Correlated topic models
 - Logistic normal prior over topic assignments
- Dynamic topic models
 - Learns topic changes over time
- Polylingual topic models
 - Learns topics aligned across multiple languages

...

Correlated Topic Models

- The Dirichlet is a distribution on the simplex, positive vectors that sum to 1.
- It assumes that components are nearly independent.
- In real data, an article about *fossil fuels* is more likely to also be about *geology* than about *genetics*.

Correlated Topic Models

- The Dirichlet is a distribution on the simplex, positive vectors that sum to 1.
- It assumes that components are nearly independent.
- In real data, an article about *fossil fuels* is more likely to also be about *geology* than about *genetics*.

Correlated Topic Models

- The **logistic normal** is a distribution on the simplex that can model dependence between components (Aitchison, 1980).
- The log of the parameters of the multinomial are drawn from a multivariate Gaussian distribution,

$$\begin{aligned} X &\sim \mathcal{N}_K(\mu, \Sigma) \\ \theta_i &\propto \exp\{x_i\}. \end{aligned}$$

Correlated Topic Models

- Draw topic proportions from a logistic normal
- This allows topic occurrences to exhibit correlation.
- Provides a “map” of topics and how they are related
- Provides a better fit to text data, but computation is more complex

Correlated Topic Models

Dynamic Topic Models

High-level idea:

- Divide the documents up by year
- Start with a separate topic model for each year
- Then add a dependence of each year on the previous one

Dynamic Topic Models

1789

My fellow citizens: I stand here today humbled by the task before us, grateful for the trust you have bestowed, mindful of the sacrifices borne by our ancestors...

2009

Inaugural addresses

AMONG the vicissitudes incident to life no event could have filled me with greater anxieties than that of which the notification was transmitted by your order...

- LDA assumes that the order of documents does not matter.
- Not appropriate for sequential corpora (e.g., that span hundreds of years)
- Further, we may want to track how language changes over time.
- Dynamic topic models let the topics *drift* in a sequence.

Dynamic Topic Models

Generative Story

1. Draw topics $\beta_t | \beta_{t-1} \sim \mathcal{N}(\beta_{t-1}, \sigma^2 I)$. ← Logistic-normal priors
2. Draw $\alpha_t | \alpha_{t-1} \sim \mathcal{N}(\alpha_{t-1}, \delta^2 I)$. ←
3. For each document:
 - (a) Draw $\eta \sim \mathcal{N}(\alpha_t, a^2 I)$ ←
 - (b) For each word:
 - i. Draw $Z \sim \text{Mult}(\pi(\eta))$. ←
 - ii. Draw $W_{t,d,n} \sim \text{Mult}(\pi(\beta_{t,z}))$. ←

The π function maps from the natural parameters to the mean parameters:

$$\pi(\beta_{k,t})_w = \frac{\exp(\beta_{k,t,w})}{\sum_w \exp(\beta_{k,t,w})}.$$

Dynamic Topic Models

Top ten most likely words in a “drifting” topic shown at 10-year increments

Dynamic Topic Models

Posterior estimate of **word frequency as a function of year** for three words each in two separate topics:

"Theoretical Physics"

"Neuroscience"

Polylingual Topic Models

- **Data Setting:** Comparable versions of each document exist in multiple languages (e.g. the Wikipedia article for “Barak Obama” in twelve languages)
- **Model:** Very similar to LDA, except that the topic assignments, z , and words, w , are sampled separately for each language.

Polylingual Topic Models

Topic 1 (twelve languages)

CY sadwrn blaned gallair at lloeren mytholeg

DE space nasa sojus flug mission

EL διαστημικό sts nasa αγγλ small

EN **space mission launch satellite nasa spacecraft**

FA فضایی ماموریت ناسا مدار فضانورد ماهواره

FI sojuz nasa apollo ensimmäinen space lento

FR spatiale mission orbite mars satellite spatial

HE החלל הארץ כדור א תוכנית

IT spaziale missione programma space sojuz stazione

PL misja kosmicznej stacji misji space nasa

RU космический союз космического спутник станции

TR uzay soyuz ay uzaya salyut sovyetler

Polylingual Topic Models

Topic 2 (twelve languages)

CY sbaen madrid el la josé sbaeneg

DE de spanischer spanischen spanien madrid la

EL ισπανίας ισπανία de ισπανός ντε μαδρίτη

EN **de spanish spain la madrid y**

FA ترین de اسپانیا اسپانیایی کوبا مادرید

FI espanja de espanjan madrid la real

FR espagnol espagne madrid espagnole juan y

HE ספרד ספרדית דה מדריד הספרדית קובה

IT de spagna spagnolo spagnola madrid el

PL de hiszpański hiszpanii la juan y

RU де мадрид испании испания испанский de

TR ispanya ispanyol madrid la küba real

Polylingual Topic Models

Topic 3 (twelve languages)

CY	bardd gerddi iaith beirdd fardd gymraeg
DE	dichter schriftsteller literatur gedichte gedicht werk
EL	ποιητής ποίηση ποιητή έργο ποιητές ποιήματα
EN	poet poetry literature literary poems poem
FA	شاعر شعر ادبیات فارسی ادبی آثار
FI	runoilija kirjailija kirjallisuuden kirjoitti runo julkaisi
FR	poète écrivain littérature poésie littéraire ses
HE	משורר ספרות שירה סופר שירים המשורר
IT	poeta letteratura poesia opere versi poema
PL	poeta literatury poezji pisarz in jego
RU	поэт его писатель литературы поэзии драматург
TR	şair edebiyat şair yazar edebiyatı adlı

Polylingual Topic Models

Size of each square represents proportion of tokens assigned to the specified topic.

Supervised LDA

- LDA is an unsupervised model. How can we build a topic model that is good at the task we care about?
- Many data are paired with **response variables**.
 - User reviews paired with a number of stars
 - Web pages paired with a number of “likes”
 - Documents paired with links to other documents
 - Images paired with a category
- **Supervised LDA** are topic models of documents and responses. They are fit to find topics predictive of the response.

Supervised LDA

- ① Draw topic proportions $\theta | \alpha \sim \text{Dir}(\alpha)$.
- ② For each word
 - Draw topic assignment $z_n | \theta \sim \text{Mult}(\theta)$.
 - Draw word $w_n | z_n, \beta_{1:K} \sim \text{Mult}(\beta_{z_n})$.
- ③ Draw response variable $y | z_{1:N}, \eta, \sigma^2 \sim N(\eta^\top \bar{z}, \sigma^2)$, where

$$\bar{z} = (1/N) \sum_{n=1}^N z_n.$$

Summary: Topic Modeling

- **The Task of Topic Modeling**
 - Topic modeling enables the **analysis of large** (possibly unannotated) **corpora**
 - Applicable to more than just bags of words
 - Extrinsic evaluations are often appropriate for these unsupervised methods
- **Constructing Models**
 - LDA is comprised of **simple building blocks** (Dirichlet, Multinomial)
 - LDA itself can act as a building block **for other models**
- **Approximate Inference**
 - Many different approaches to inference (and learning) can be applied to the same model

What if we don't know the number of topics, K , ahead of time?

Solution: Bayesian Nonparametrics

- New modeling constructs:
 - Chinese Restaurant Process (Dirichlet Process)
 - Indian Buffet Process
- e.g. an **infinite number of topics** in a finite amount of space

Summary: Approximate Inference

- Markov Chain Monte Carlo (MCMC)
 - Metropolis-Hastings, Gibbs sampling, Hamiltonian MCMC, slice sampling, etc.
- Variational inference
 - Minimizes $KL(q||p)$ where q is a simpler graphical model than the original p
- Loopy Belief Propagation
 - Belief propagation applied to general (loopy) graphs
- Expectation propagation
 - Approximates belief states with moments of simpler distributions
- Spectral methods
 - Uses tensor decompositions (e.g. SVD)

Slice Sampling, Hamiltonian Monte Carlo

MCMC (AUXILIARY VARIABLE METHODS)

Auxiliary variables

The point of MCMC is to marginalize out variables, but one can introduce more variables:

$$\int f(x)P(x) \, dx = \int f(x)P(x, v) \, dx \, dv$$
$$\approx \frac{1}{S} \sum_{s=1}^S f(x^{(s)}), \quad x, v \sim P(x, v)$$

We might want to do this if

- $P(x|v)$ and $P(v|x)$ are simple
- $P(x, v)$ is otherwise easier to navigate

Slice Sampling

- Motivation:
 - Want **samples** from $p(x)$ and don't know the normalizer Z
 - Choosing a proposal at the correct **scale** is difficult
- Properties:
 - Similar to **Gibbs Sampling**: **one-dimensional** transitions in the state space
 - Similar to **Rejection Sampling**: (asymptotically) draws samples from the **region under the curve**

- An MCMC method with an **adaptive proposal**

Slice sampling idea

Sample point uniformly under curve $\tilde{P}(x) \propto P(x)$

$$p(u|x) = \text{Uniform}[0, \tilde{P}(x)]$$

$$p(x|u) \propto \begin{cases} 1 & \tilde{P}(x) \geq u \\ 0 & \text{otherwise} \end{cases} = \text{“Uniform on the slice”}$$

Slice Sampling

Slice Sampling

Slice Sampling

Algorithm:

Slice Sampling

Goal: sample (x, u) given $(u^{(t)}, x^{(t)})$.

Part 1: Stepping Out

Sample interval (x_l, x_r) enclosing $x^{(t)}$.

Expand until endpoints are "outside" region under curve.

Part 2: Sample x (Shrinking)

Draw x from within the interval (x_l, x_r) , then accept or shrink.

Algorithm:

Slice Sampling

Goal: sample (x, u) given $(u^{(t)}, x^{(t)})$.

$$u \sim \text{Uniform}(0, p(x^{(t)}))$$

Part 1: Stepping Out

Sample interval (x_l, x_r) enclosing $x^{(t)}$.

$$r \sim \text{Uniform}(u, w)$$

$$(x_l, x_r) = (x^{(t)} - r, x^{(t)} + w - r)$$

Expand until endpoints are "outside" region under curve.

$$\text{while}(\tilde{p}(x_l) > u) \{x_l = x_l - w\}$$

$$\text{while}(\tilde{p}(x_r) > u) \{x_r = x_r + w\}$$

Part 2: Sample x (Shrinking)

Draw x from within the interval (x_l, x_r) , then accept or shrink.

Algorithm:

Slice Sampling

Goal: sample (x, u) given $(u^{(t)}, x^{(t)})$.

$u \sim \text{Uniform}(0, p(x^{(t)})$

Part 1: Stepping Out

Sample interval (x_l, x_r) enclosing $x^{(t)}$.

$r \sim \text{Uniform}(u, w)$

$(x_l, x_r) = (x^{(t)} - r, x^{(t)} + w - r)$

Expand until endpoints are "outside" region under curve.

while($\tilde{p}(x_l) > u$) $\{x_l = x_l - w\}$

while($\tilde{p}(x_r) > u$) $\{x_r = x_r + w\}$

Part 2: Sample x (Shrinking)

while(true) {

Draw x from within the interval (x_l, x_r) , then accept or shrink.

$x \sim \text{Uniform}(x_l, x_r)$

if($\tilde{p}(x) > u$) $\{\text{break}\}$

else if($x > x^{(t)}$) $\{x_r = x\}$

else $\{x_l = x\}$

}

$x^{(t+1)} = x, u^{(t+1)} = u$

Slice Sampling

Multivariate Distributions

- Resample each variable x_i **one-at-a-time** (just like Gibbs Sampling)
- Does not require sampling from $p(x_i | \{x_j\}_{j \neq i})$
- Only need to evaluate a quantity **proportional** to the conditional

$$p(x_i | \{x_j\}_{j \neq i}) \propto \tilde{p}(x_i | \{x_j\}_{j \neq i})$$

Hamiltonian Monte Carlo

- Suppose we have a distribution of the form:

$$p(\mathbf{x}) = \exp\{-E(\mathbf{x})\}/Z$$

where $\mathbf{x} \in \mathcal{R}^N$

- We could use **random-walk M-H** to draw samples, but it seems a shame to **discard gradient information** $\nabla_{\mathbf{x}} E(\mathbf{x})$
- If we can evaluate it, the gradient tells us where to look for **high-probability regions!**

Background: Hamiltonian Dynamics

Applications:

- Following the motion of atoms in a fluid through time
- Integrating the motion of a solar system over time
- Considering the evolution of a galaxy (i.e. the motion of its stars)
- “molecular dynamics”
- “N-body simulations”

Properties:

- Total energy of the system $H(x,p)$ stays constant
- Dynamics are reversible

Important for
detailed balance

Background: Hamiltonian Dynamics

Let $\mathbf{x} \in \mathcal{R}^N$ be a position

$\mathbf{p} \in \mathcal{R}^N$ be a momentum

Potential energy: $E(\mathbf{x})$

Kinetic energy: $K(\mathbf{p}) = \mathbf{p}^T \mathbf{p} / 2$

Total energy: $H(\mathbf{x}, \mathbf{p}) = E(\mathbf{x}) + K(\mathbf{p})$

Hamiltonian function

Given a starting position $x^{(1)}$ and a starting momentum $p^{(1)}$ we can simulate the Hamiltonian dynamics of the system via:

1. Euler's method
2. Leapfrog method
3. etc.

Background: Hamiltonian Dynamics

Parameters to tune:

1. Step size, ϵ
2. Number of iterations, L

Leapfrog Algorithm:

for τ in $1 \dots L$:

$$\mathbf{p} = \mathbf{p} - \frac{\epsilon}{2} \nabla_{\mathbf{x}} E(\mathbf{x})$$

$$\mathbf{x} = \mathbf{x} + \epsilon \mathbf{p}$$

$$\mathbf{p} = \mathbf{p} - \frac{\epsilon}{2} \nabla_{\mathbf{x}} E(\mathbf{x})$$

Background: Hamiltonian Dynamics

Hamiltonian Monte Carlo

Preliminaries

Goal:

$$p(\mathbf{x}) = \exp\{-E(\mathbf{x})\}/Z \quad \text{where } \mathbf{x} \in \mathcal{R}^N$$

Define:

$$K(\mathbf{p}) = \mathbf{p}^T \mathbf{p}/2$$

$$H(\mathbf{x}, \mathbf{p}) = E(\mathbf{x}) + K(\mathbf{p})$$

$$p(\mathbf{x}, \mathbf{p}) = \exp\{-H(\mathbf{x}, \mathbf{p})\}/Z_H$$

$$= \exp\{-E(\mathbf{x})\} \exp\{-K(\mathbf{p})\}/Z_H$$

Note:

Since $p(\mathbf{x}, \mathbf{p})$ is separable...

$$\Rightarrow \sum_{\mathbf{p}} p(\mathbf{x}, \mathbf{p}) = \exp\{-E(\mathbf{x})\}/Z \quad \text{Target dist.}$$

$$\Rightarrow \sum_{\mathbf{x}} p(\mathbf{x}, \mathbf{p}) = \exp\{-K(\mathbf{x})\}/Z_K \quad \text{Gaussian}$$

Whiteboard

- Hamiltonian Monte Carlo algorithm
(aka. Hybrid Monte Carlo)

Hamiltonian Monte Carlo

M-H vs. HMC

Random-walk Metropolis

Hamiltonian Monte Carlo

HIGH-LEVEL INTRO TO VARIATIONAL INFERENCE

Variational Inference

Problem:

- For observed variables x and latent variables z , estimating the posterior $p(z | x)$ is intractable

Narrative adapted from Jason Eisner's High-Level Explanation of VI:

<https://www.cs.jhu.edu/~jason/tutorials/variational.html>

Variational Inference

Problem:

- For observed variables x and latent variables z , estimating the posterior $p(z | x)$ is intractable
- For training data x and parameters z , estimating the posterior $p(z | x)$ is intractable

Narrative adapted from Jason Eisner's High-Level Explanation of VI:

<https://www.cs.jhu.edu/~jason/tutorials/variational.html>

Variational Inference

Problem:

- For observed variables x and latent variables z , estimating the posterior $p(z | x)$ is intractable
- For training data x and parameters z , estimating the posterior $p(z | x)$ is intractable

Solution:

- Approximate $p(z | x)$ with a simpler $q(z)$
- Typically $q(z)$ has more independence assumptions than $p(z | x)$ – fine b/c $q(z)$ is tuned for a specific x
- **Key idea:** pick a single $q(z)$ from some family Q that best approximates $p(z | x)$

Variational Inference

Terminology:

- $q(z)$: the **variational approximation**
- Q : the **variational family**
- Usually $q_\theta(z)$ is parameterized by some θ called **variational parameters**
- Usually $p_\alpha(z | x)$ is parameterized by some fixed α – we'll call them the parameters

Example Algorithms:

- mean-field variational inference
- loopy belief propagation
- tree-reweighted belief propagation
- expectation propagation

Variational Inference

Is this trivial?

- Note: We are not defining a new distribution simple $q_\theta(z | x)$, there is one simple $q_\theta(z)$ for each $p_a(z | x)$
- Consider the MCMC equivalent of this:
 - you could draw samples $z^{(i)} \sim p(z | x)$
 - then train some simple $q_\theta(z)$ on $z^{(1)}, z^{(2)}, \dots, z^{(N)}$
 - hope that the sample adequately represents the posterior for the given x
- How is VI different from this?
 - VI doesn't require sampling
 - VI is fast and deterministic
 - Why? b/c we choose an objective function (KL divergence) that defines which q_θ best approximates p_a , and exploit the special structure of q_θ to optimize it

Variational Inference

V.I. offers a new design decision

- Choose the distribution $p_\alpha(z | x)$ that you really want, i.e. don't just simplify it to make it computationally convenient
- Then design a the structure of another distribution $q_\theta(z)$ such that V.I. is efficient

EXAMPLES OF VARIATIONAL APPROXIMATIONS

Mean Field for MRFs

- Mean field approximation for Markov random field (such as the Ising model):

$$q(x) = \prod_{s \in V} q(x_s)$$

Variational Inference for MRFs

- We can also apply more general forms of mean field approximations (involving clusters) to the Ising model:
- Instead of making all latent variables independent (i.e. naïve mean field, previous figure), clusters of (disjoint) latent variables are independent.

V.I. for Factorial HMM

- For a factorial HMM, we could decompose into chains

LDA Inference

- Explicit Variational Inference
(original distribution)

LDA Inference

- Explicit Variational Inference
(variational approximation)

LDA Inference

- Collapsed Variational Inference

MEAN FIELD VARIATIONAL INFERENCE

KL Divergence

- Definition: for two distributions $q(x)$ and $p(x)$ over $x \in \mathcal{X}$, the **KL Divergence** is:

$$\text{KL}(q \parallel p) = E_{q(x)}[\log q(x)/p(x)]$$

- Properties:
 - $\text{KL}(q \parallel p)$ measures the **proximity** of two distributions q and p
 - KL is **not** symmetric: $\text{KL}(q \parallel p) \neq \text{KL}(p \parallel q)$
 - KL is minimized when $q(x) = p(x)$ for all $x \in \mathcal{X}$

Variational Inference

Whiteboard

- Background: KL Divergence
- Mean Field Variational Inference (overview)
- Evidence Lower Bound (ELBO)
- ELBO's relation to $\log p(x)$