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Outline
• Applications of Topic Modeling
• Review: Latent Dirichlet Allocation (LDA)

1. Beta-Bernoulli
2. Dirichlet-Multinomial
3. Dirichlet-Multinomial Mixture Model
4. LDA

• Bayesian Inference for Parameter Estimation 
– Exact inference
– EM
– Monte Carlo EM
– Gibbs sampler
– Collapsed Gibbs sampler

• Extensions of LDA
– Correlated topic models
– Dynamic topic models
– Polylingual topic models
– Supervised LDA
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Extensions to the LDA Model

• Correlated topic models
– Logistic normal prior over 

topic assignments

• Dynamic topic models
– Learns topic changes over 

time

• Polylingual topic models
– Learns topics aligned 

across multiple languages

…
the contents of collections in unfamiliar languages
and identify trends in topic prevalence.

2 Related Work

Bilingual topic models for parallel texts with
word-to-word alignments have been studied pre-
viously using the HM-bitam model (Zhao and
Xing, 2007). Tam, Lane and Schultz (Tam et
al., 2007) also show improvements in machine
translation using bilingual topic models. Both
of these translation-focused topic models infer
word-to-word alignments as part of their inference
procedures, which would become exponentially
more complex if additional languages were added.
We take a simpler approach that is more suit-
able for topically similar document tuples (where
documents are not direct translations of one an-
other) in more than two languages. A recent ex-
tended abstract, developed concurrently by Ni et
al. (Ni et al., 2009), discusses a multilingual topic
model similar to the one presented here. How-
ever, they evaluate their model on only two lan-
guages (English and Chinese), and do not use the
model to detect differences between languages.
They also provide little analysis of the differ-
ences between polylingual and single-language
topic models. Outside of the field of topic mod-
eling, Kawaba et al. (Kawaba et al., 2008) use
a Wikipedia-based model to perform sentiment
analysis of blog posts. They find, for example,
that English blog posts about the Nintendo Wii of-
ten relate to a hack, which cannot be mentioned in
Japanese posts due to Japanese intellectual prop-
erty law. Similarly, posts about whaling often
use (positive) nationalist language in Japanese and
(negative) environmentalist language in English.

3 Polylingual Topic Model

The polylingual topic model (PLTM) is an exten-
sion of latent Dirichlet allocation (LDA) (Blei et
al., 2003) for modeling polylingual document tu-
ples. Each tuple is a set of documents that are
loosely equivalent to each other, but written in dif-
ferent languages, e.g., corresponding Wikipedia
articles in French, English and German. PLTM as-
sumes that the documents in a tuple share the same
tuple-specific distribution over topics. This is un-
like LDA, in which each document is assumed to
have its own document-specific distribution over
topics. Additionally, PLTM assumes that each
“topic” consists of a set of discrete distributions
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Figure 1: Graphical model for PLTM.

over words—one for each language l = 1, . . . , L.
In other words, rather than using a single set of
topics � = {⇥1, . . . ,⇥T }, as in LDA, there are L
sets of language-specific topics, �1, . . . ,�L, each
of which is drawn from a language-specific sym-
metric Dirichlet with concentration parameter ⇥l.

3.1 Generative Process
A new document tuple w = (w1, . . . ,wL) is gen-
erated by first drawing a tuple-specific topic dis-
tribution from an asymmetric Dirichlet prior with
concentration parameter � and base measure m:

� � Dir (�,�m). (1)

Then, for each language l, a latent topic assign-
ment is drawn for each token in that language:

zl � P (zl |�) =
�

n ⇤zl
n
. (2)

Finally, the observed tokens are themselves drawn
using the language-specific topic parameters:

wl � P (wl |zl,�l) =
�

n ⌅l
wl

n|zl
n
. (3)

The graphical model is shown in figure 1.

3.2 Inference
Given a corpus of training and test document
tuples—W and W �, respectively—two possible
inference tasks of interest are: computing the
probability of the test tuples given the training
tuples and inferring latent topic assignments for
test documents. These tasks can either be accom-
plished by averaging over samples of �1, . . . ,�L

and �m from P (�1, . . . ,�L,�m |W �,⇥) or by
evaluating a point estimate. We take the lat-
ter approach, and use the MAP estimate for �m
and the predictive distributions over words for
�1, . . . ,�L. The probability of held-out docu-
ment tuples W � given training tuples W is then
approximated by P (W � |�1, . . . ,�L,�m).

Topic assignments for a test document tuple
w = (w1, . . . ,wL) can be inferred using Gibbs
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Figure 1: Top: Graphical model representation of the correlated topic model. The logistic
normal distribution, used to model the latent topic proportions of a document, can represent
correlations between topics that are impossible to capture using a single Dirichlet. Bottom:
Example densities of the logistic normal on the 2-simplex. From left: diagonal covariance
and nonzero-mean, negative correlation between components 1 and 2, positive correlation
between components 1 and 2.

The logistic normal distribution assumes that ⇥ is normally distributed and then mapped
to the simplex with the inverse of the mapping given in equation (3); that is, f(⇥i) =
exp ⇥i/

�
j exp ⇥j . The logistic normal models correlations between components of the

simplicial random variable through the covariance matrix of the normal distribution. The
logistic normal was originally studied in the context of analyzing observed compositional
data such as the proportions of minerals in geological samples. In this work, we extend its
use to a hierarchical model where it describes the latent composition of topics associated
with each document.

Let {µ,�} be a K-dimensional mean and covariance matrix, and let topics �1:K be K
multinomials over a fixed word vocabulary. The correlated topic model assumes that an
N -word document arises from the following generative process:

1. Draw ⇥ | {µ,�} � N (µ,�).
2. For n ⇥ {1, . . . , N}:

(a) Draw topic assignment Zn | ⇥ from Mult(f(⇥)).
(b) Draw wordWn | {zn,�1:K} from Mult(�zn).

This process is identical to the generative process of LDA except that the topic proportions
are drawn from a logistic normal rather than a Dirichlet. The model is shown as a directed
graphical model in Figure 1.

The CTM is more expressive than LDA. The strong independence assumption imposed
by the Dirichlet in LDA is not realistic when analyzing document collections, where one
may find strong correlations between topics. The covariance matrix of the logistic normal
in the CTM is introduced to model such correlations. In Section 3, we illustrate how the
higher order structure given by the covariance can be used as an exploratory tool for better
understanding and navigating a large corpus of documents. Moreover, modeling correlation
can lead to better predictive distributions. In some settings, such as collaborative filtering,
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Correlated Topic Models
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Slide from David Blei, MLSS 2012

Correlated topic models

• The Dirichlet is a distribution on the simplex, positive vectors that sum to 1.

• It assumes that components are nearly independent.

• In real data, an article about fossil fuels is more likely to also be about
geology than about genetics.
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(Blei & Lafferty, 2004)

Slide from David Blei, MLSS 2012

Correlated topic models

• The logistic normal is a distribution on the simplex that can model
dependence between components (Aitchison, 1980).

• The log of the parameters of the multinomial are drawn from a multivariate
Gaussian distribution,

X ⇠ N K (µ,⌃)

✓i / exp{xi}.
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Correlated topic models
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Logistic normal prior

• Draw topic proportions from a logistic normal

• This allows topic occurrences to exhibit correlation.

• Provides a “map” of topics and how they are related

• Provides a better fit to text data, but computation is more complex
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Dynamic Topic Models

High-level idea:

• Divide the 
documents 

up by year

• Start with a 
separate 

topic model 
for each 
year

• Then add a 
dependence 
of each year 
on the 
previous 
one
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Dynamic topic models

AMONG the vicissitudes incident to life no event could 
have filled me with greater anxieties than that of which 
the notification was transmitted by your order...

1789

My fellow citizens: I stand here today humbled by the task 
before us, grateful for the trust you have bestowed, mindful 
of the sacrifices borne by our ancestors...

2009

Inaugural addresses

• LDA assumes that the order of documents does not matter.

• Not appropriate for sequential corpora (e.g., that span hundreds of years)

• Further, we may want to track how language changes over time.

• Dynamic topic models let the topics drift in a sequence.

Slide from David Blei, MLSS 2012
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Dynamic Topic Models

ways, and quantitative results that demonstrate greater pre-
dictive accuracy when compared with static topic models.

2. Dynamic Topic Models
While traditional time series modeling has focused on con-
tinuous data, topic models are designed for categorical
data. Our approach is to use state space models on the nat-
ural parameter space of the underlying topic multinomials,
as well as on the natural parameters for the logistic nor-
mal distributions used for modeling the document-specific
topic proportions.

First, we review the underlying statistical assumptions of
a static topic model, such as latent Dirichlet allocation
(LDA) (Blei et al., 2003). Let β1:K be K topics, each of
which is a distribution over a fixed vocabulary. In a static
topic model, each document is assumed drawn from the
following generative process:

1. Choose topic proportions θ from a distribution over
the (K − 1)-simplex, such as a Dirichlet.

2. For each word:
(a) Choose a topic assignment Z ∼ Mult(θ).
(b) Choose a wordW ∼ Mult(βz).

This process implicitly assumes that the documents are
drawn exchangeably from the same set of topics. For many
collections, however, the order of the documents reflects
an evolving set of topics. In a dynamic topic model, we
suppose that the data is divided by time slice, for example
by year. We model the documents of each slice with a K-
component topic model, where the topics associated with
slice t evolve from the topics associated with slice t − 1.

For a K-component model with V terms, let βt,k denote
the V -vector of natural parameters for topic k in slice t.
The usual representation of a multinomial distribution is by
its mean parameterization. If we denote the mean param-
eter of a V -dimensional multinomial by π, the ith com-
ponent of the natural parameter is given by the mapping
βi = log(πi/πV ). In typical language modeling applica-
tions, Dirichlet distributions are used to model uncertainty
about the distributions over words. However, the Dirichlet
is not amenable to sequential modeling. Instead, we chain
the natural parameters of each topic βt,k in a state space
model that evolves with Gaussian noise; the simplest ver-
sion of such a model is

βt,k |βt−1,k ∼ N (βt−1,k,σ2I) . (1)

Our approach is thus to model sequences of compositional
random variables by chaining Gaussian distributions in a
dynamic model and mapping the emitted values to the sim-
plex. This is an extension of the logistic normal distribu-
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Figure 1. Graphical representation of a dynamic topic model (for
three time slices). Each topic’s natural parameters βt,k evolve
over time, together with the mean parameters αt of the logistic
normal distribution for the topic proportions.

tion (Aitchison, 1982) to time-series simplex data (West
and Harrison, 1997).

In LDA, the document-specific topic proportions θ are
drawn from a Dirichlet distribution. In the dynamic topic
model, we use a logistic normal with mean α to express
uncertainty over proportions. The sequential structure be-
tween models is again captured with a simple dynamic
model

αt |αt−1 ∼ N (αt−1, δ
2I) . (2)

For simplicity, we do not model the dynamics of topic cor-
relation, as was done for static models by Blei and Lafferty
(2006).

By chaining together topics and topic proportion distribu-
tions, we have sequentially tied a collection of topic mod-
els. The generative process for slice t of a sequential corpus
is thus as follows:

1. Draw topics βt |βt−1 ∼ N (βt−1,σ2I).
2. Draw αt |αt−1 ∼ N (αt−1, δ2I).
3. For each document:

(a) Draw η ∼ N (αt, a2I)

(b) For each word:
i. Draw Z ∼ Mult(π(η)).
ii. DrawWt,d,n ∼ Mult(π(βt,z)).

Note that π maps the multinomial natural parameters to the
mean parameters, π(βk,t)w = exp(βk,t,w)

P

w exp(βk,t,w) .

The graphical model for this generative process is shown in
Figure 1. When the horizontal arrows are removed, break-
ing the time dynamics, the graphical model reduces to a set
of independent topic models. With time dynamics, the kth

Generative Story

Logistic-normal priors

Dynamic Topic Models
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In LDA, the document-specific topic proportions θ are
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model, we use a logistic normal with mean α to express
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tween models is again captured with a simple dynamic
model

αt |αt−1 ∼ N (αt−1, δ
2I) . (2)

For simplicity, we do not model the dynamics of topic cor-
relation, as was done for static models by Blei and Lafferty
(2006).

By chaining together topics and topic proportion distribu-
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Dynamic topic models
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Probabilistic topic models
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the contents of collections in unfamiliar languages
and identify trends in topic prevalence.

2 Related Work

Bilingual topic models for parallel texts with
word-to-word alignments have been studied pre-
viously using the HM-bitam model (Zhao and
Xing, 2007). Tam, Lane and Schultz (Tam et
al., 2007) also show improvements in machine
translation using bilingual topic models. Both
of these translation-focused topic models infer
word-to-word alignments as part of their inference
procedures, which would become exponentially
more complex if additional languages were added.
We take a simpler approach that is more suit-
able for topically similar document tuples (where
documents are not direct translations of one an-
other) in more than two languages. A recent ex-
tended abstract, developed concurrently by Ni et
al. (Ni et al., 2009), discusses a multilingual topic
model similar to the one presented here. How-
ever, they evaluate their model on only two lan-
guages (English and Chinese), and do not use the
model to detect differences between languages.
They also provide little analysis of the differ-
ences between polylingual and single-language
topic models. Outside of the field of topic mod-
eling, Kawaba et al. (Kawaba et al., 2008) use
a Wikipedia-based model to perform sentiment
analysis of blog posts. They find, for example,
that English blog posts about the Nintendo Wii of-
ten relate to a hack, which cannot be mentioned in
Japanese posts due to Japanese intellectual prop-
erty law. Similarly, posts about whaling often
use (positive) nationalist language in Japanese and
(negative) environmentalist language in English.

3 Polylingual Topic Model

The polylingual topic model (PLTM) is an exten-
sion of latent Dirichlet allocation (LDA) (Blei et
al., 2003) for modeling polylingual document tu-
ples. Each tuple is a set of documents that are
loosely equivalent to each other, but written in dif-
ferent languages, e.g., corresponding Wikipedia
articles in French, English and German. PLTM as-
sumes that the documents in a tuple share the same
tuple-specific distribution over topics. This is un-
like LDA, in which each document is assumed to
have its own document-specific distribution over
topics. Additionally, PLTM assumes that each
“topic” consists of a set of discrete distributions
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Figure 1: Graphical model for PLTM.

over words—one for each language l = 1, . . . , L.
In other words, rather than using a single set of
topics � = {⇥1, . . . ,⇥T }, as in LDA, there are L
sets of language-specific topics, �1, . . . ,�L, each
of which is drawn from a language-specific sym-
metric Dirichlet with concentration parameter ⇥l.

3.1 Generative Process
A new document tuple w = (w1, . . . ,wL) is gen-
erated by first drawing a tuple-specific topic dis-
tribution from an asymmetric Dirichlet prior with
concentration parameter � and base measure m:

� � Dir (�,�m). (1)

Then, for each language l, a latent topic assign-
ment is drawn for each token in that language:

zl � P (zl |�) =
�

n ⇤zl
n
. (2)

Finally, the observed tokens are themselves drawn
using the language-specific topic parameters:

wl � P (wl |zl,�l) =
�

n ⌅l
wl

n|zl
n
. (3)

The graphical model is shown in figure 1.

3.2 Inference
Given a corpus of training and test document
tuples—W and W �, respectively—two possible
inference tasks of interest are: computing the
probability of the test tuples given the training
tuples and inferring latent topic assignments for
test documents. These tasks can either be accom-
plished by averaging over samples of �1, . . . ,�L

and �m from P (�1, . . . ,�L,�m |W �,⇥) or by
evaluating a point estimate. We take the lat-
ter approach, and use the MAP estimate for �m
and the predictive distributions over words for
�1, . . . ,�L. The probability of held-out docu-
ment tuples W � given training tuples W is then
approximated by P (W � |�1, . . . ,�L,�m).

Topic assignments for a test document tuple
w = (w1, . . . ,wL) can be inferred using Gibbs

Polylingual Topic Models
• Data Setting: Comparable versions of each 

document exist in multiple languages 
(e.g. the Wikipedia article for “Barak Obama” in 
twelve languages)

• Model: Very similar to LDA, except that the topic 
assignments, z, and words, w, are sampled separately 
for each language.
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espanja de espanjan madrid la real 
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הבוק תידרפסה דירדמ הד תידרפס דרפס  

de spagna spagnolo spagnola madrid el 

de hiszpański hiszpanii la juan y 

де мадрид испании испания испанский de 

ispanya ispanyol madrid la küba real 

bardd gerddi iaith beirdd fardd gymraeg 

dichter schriftsteller literatur gedichte gedicht werk 

ποιητής ποίηση ποιητή έργο ποιητές ποιήματα 

poet poetry literature literary poems poem 

راثآ یبدا یسراف تایبدا رعش رعاش  

runoilija kirjailija kirjallisuuden kirjoitti runo julkaisi 

poète écrivain littérature poésie littéraire ses 

ררושמה םיריש רפוס הריש תורפס ררושמ

poeta letteratura poesia opere versi poema 

poeta literatury poezji pisarz in jego 

поэт его писатель литературы поэзии драматург 
şair edebiyat şiir yazar edebiyatı adlı 
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Figure 9: Wikipedia topics (T=400).

Overall, these scores indicate that although indi-
vidual pages may show disagreement, Wikipedia
is on average consistent between languages.

5.3 Are Topics Emphasized Differently

Between Languages?

Although we find that if Wikipedia contains an ar-
ticle on a particular subject in some language, the
article will tend to be topically similar to the arti-
cles about that subject in other languages, we also
find that across the whole collection different lan-
guages emphasize topics to different extents. To
demonstrate the wide variation in topics, we cal-
culated the proportion of tokens in each language
assigned to each topic. Figure 8 represents the es-
timated probabilities of topics given a specific lan-
guage. Competitive cross-country skiing (left) ac-
counts for a significant proportion of the text in
Finnish, but barely exists in Welsh and the lan-
guages in the Southeastern region. Meanwhile,

interest in actors and actresses (center) is consis-
tent across all languages. Finally, historical topics,
such as the Byzantine and Ottoman empires (right)
are strong in all languages, but show geographical
variation: interest centers around the empires.

6 Conclusions

We introduced a polylingual topic model (PLTM)
that discovers topics aligned across multiple lan-
guages. We analyzed the characteristics of PLTM
in comparison to monolingual LDA, and demon-
strated that it is possible to discover aligned top-
ics. We also demonstrated that relatively small
numbers of topically comparable document tu-
ples are sufficient to align topics between lan-
guages in non-comparable corpora. Additionally,
PLTM can support the creation of bilingual lexica
for low resource language pairs, providing candi-
date translations for more computationally intense
alignment processes without the sentence-aligned
translations typically used in such tasks. When
applied to comparable document collections such
as Wikipedia, PLTM supports data-driven analysis
of differences and similarities across all languages
for readers who understand any one language.
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Figure 9: Wikipedia topics (T=400).

Overall, these scores indicate that although indi-
vidual pages may show disagreement, Wikipedia
is on average consistent between languages.

5.3 Are Topics Emphasized Differently

Between Languages?

Although we find that if Wikipedia contains an ar-
ticle on a particular subject in some language, the
article will tend to be topically similar to the arti-
cles about that subject in other languages, we also
find that across the whole collection different lan-
guages emphasize topics to different extents. To
demonstrate the wide variation in topics, we cal-
culated the proportion of tokens in each language
assigned to each topic. Figure 8 represents the es-
timated probabilities of topics given a specific lan-
guage. Competitive cross-country skiing (left) ac-
counts for a significant proportion of the text in
Finnish, but barely exists in Welsh and the lan-
guages in the Southeastern region. Meanwhile,

interest in actors and actresses (center) is consis-
tent across all languages. Finally, historical topics,
such as the Byzantine and Ottoman empires (right)
are strong in all languages, but show geographical
variation: interest centers around the empires.

6 Conclusions

We introduced a polylingual topic model (PLTM)
that discovers topics aligned across multiple lan-
guages. We analyzed the characteristics of PLTM
in comparison to monolingual LDA, and demon-
strated that it is possible to discover aligned top-
ics. We also demonstrated that relatively small
numbers of topically comparable document tu-
ples are sufficient to align topics between lan-
guages in non-comparable corpora. Additionally,
PLTM can support the creation of bilingual lexica
for low resource language pairs, providing candi-
date translations for more computationally intense
alignment processes without the sentence-aligned
translations typically used in such tasks. When
applied to comparable document collections such
as Wikipedia, PLTM supports data-driven analysis
of differences and similarities across all languages
for readers who understand any one language.
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Figure 9: Wikipedia topics (T=400).

Overall, these scores indicate that although indi-
vidual pages may show disagreement, Wikipedia
is on average consistent between languages.

5.3 Are Topics Emphasized Differently

Between Languages?

Although we find that if Wikipedia contains an ar-
ticle on a particular subject in some language, the
article will tend to be topically similar to the arti-
cles about that subject in other languages, we also
find that across the whole collection different lan-
guages emphasize topics to different extents. To
demonstrate the wide variation in topics, we cal-
culated the proportion of tokens in each language
assigned to each topic. Figure 8 represents the es-
timated probabilities of topics given a specific lan-
guage. Competitive cross-country skiing (left) ac-
counts for a significant proportion of the text in
Finnish, but barely exists in Welsh and the lan-
guages in the Southeastern region. Meanwhile,

interest in actors and actresses (center) is consis-
tent across all languages. Finally, historical topics,
such as the Byzantine and Ottoman empires (right)
are strong in all languages, but show geographical
variation: interest centers around the empires.

6 Conclusions

We introduced a polylingual topic model (PLTM)
that discovers topics aligned across multiple lan-
guages. We analyzed the characteristics of PLTM
in comparison to monolingual LDA, and demon-
strated that it is possible to discover aligned top-
ics. We also demonstrated that relatively small
numbers of topically comparable document tu-
ples are sufficient to align topics between lan-
guages in non-comparable corpora. Additionally,
PLTM can support the creation of bilingual lexica
for low resource language pairs, providing candi-
date translations for more computationally intense
alignment processes without the sentence-aligned
translations typically used in such tasks. When
applied to comparable document collections such
as Wikipedia, PLTM supports data-driven analysis
of differences and similarities across all languages
for readers who understand any one language.
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Figure 8: Squares represent the proportion of tokens in each language assigned to a topic. The left topic, world ski km won,
centers around Nordic counties. The center topic, actor role television actress, is relatively uniform. The right topic, ottoman
empire khan byzantine, is popular in all languages but especially in regions near Istanbul.

Table 5: Percent of English query documents for which the
translation was in the top n 2 {1, 5, 10, 20} documents by JS
divergence between topic distributions. To reduce the effect
of short documents we consider only document pairs where
the query and target documents are longer than 100 words.

Lang 1 5 10 20
DA 78.0 90.7 93.8 95.8
DE 76.6 90.0 93.4 95.5
EL 77.1 90.4 93.3 95.2
ES 81.2 92.3 94.8 96.7
FI 76.7 91.0 94.0 96.3
FR 80.1 91.7 94.3 96.2
IT 79.1 91.2 94.1 96.2
NL 76.6 90.1 93.4 95.5
PT 80.8 92.0 94.7 96.5
SV 80.4 92.1 94.9 96.5

pora – documents that are topically similar but are
not direct translations of one another – consider-
ably more abundant than true parallel corpora.

In this section, we explore two questions re-
lating to comparable text corpora and polylingual
topic modeling. First, we explore whether com-
parable document tuples support the alignment of
fine-grained topics, as demonstrated earlier using
parallel documents. This property is useful for
building machine translation systems as well as
for human readers who are either learning new
languages or analyzing texts in languages they do
not know. Second, because comparable texts may
not use exactly the same topics, it becomes cru-
cially important to be able to characterize differ-
ences in topic prevalence at the document level (do
different languages have different perspectives on
the same article?) and at the language-wide level
(which topics do particular languages focus on?).

5.1 Data Set

We downloaded XML copies of all Wikipedia ar-
ticles in twelve different languages: Welsh, Ger-
man, Greek, English, Farsi, Finnish, French, He-
brew, Italian, Polish, Russian and Turkish. These
versions of Wikipedia were selected to provide a
diverse range of language families, geographic ar-
eas, and quantities of text. We preprocessed the
data by removing tables, references, images and
info-boxes. We dropped all articles in non-English
languages that did not link to an English article. In
the English version of Wikipedia we dropped all
articles that were not linked to by any other lan-
guage in our set. For efficiency, we truncated each
article to the nearest word after 1000 characters
and dropped the 50 most common word types in
each language. Even with these restrictions, the
size of the corpus is 148.5 million words.

We present results for a PLTM with 400 topics.
1000 Gibbs sampling iterations took roughly four
days on one CPU with current hardware.

5.2 Which Languages Have High Topic

Divergence?

As with EuroParl, we can calculate the Jensen-
Shannon divergence between pairs of documents
within a comparable document tuple. We can then
average over all such document-document diver-
gences for each pair of languages to get an over-
all “disagreement” score between languages. In-
terestingly, we find that almost all languages in
our corpus, including several pairs that have his-
torically been in conflict, show average JS diver-
gences of between approximately 0.08 and 0.12
for T = 400, consistent with our findings for
EuroParl translations. Subtle differences of sen-
timent may be below the granularity of the model.

world 
ski 
km 

won

actor 
role 

television

actress

ottoman
empire
khan 

byzantine

Analysis: mostly Nordic 
countries

Analysis: uniform 
across countries

Analysis: mostly 
countries near Istanbul
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Supervised LDA

• LDA is an unsupervised model. How can we build a topic model that is
good at the task we care about?

• Many data are paired with response variables.
• User reviews paired with a number of stars
• Web pages paired with a number of “likes”
• Documents paired with links to other documents
• Images paired with a category

• Supervised LDA are topic models of documents and responses.
They are fit to find topics predictive of the response.
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Supervised LDA

�d Zd,n Wd,n
N

D

K
�k

�

Yd �, �

Regression 
parameters

Document 
response

1 Draw topic proportions ✓ |↵⇠Dir(↵).
2 For each word

• Draw topic assignment zn |✓ ⇠Mult(✓ ).
• Draw word wn |zn,�1:K ⇠Mult(�zn

).

3 Draw response variable y |z1:N ,⌘,�2 ⇠N
Ä
⌘>z̄,�2
ä

, where

z̄ =(1/N)
P

N

n=1 zn.



Summary: Topic Modeling
• The Task of Topic Modeling
– Topic modeling enables the analysis of large (possibly 

unannotated) corpora
– Applicable to more than just bags of words
– Extrinsic evaluations are often appropriate for these 

unsupervised methods
• Constructing Models
– LDA is comprised of simple building blocks (Dirichlet, 

Multinomial)
– LDA itself can act as a building block for other models

• Approximate Inference
– Many different approaches to inference (and learning) 

can be applied to the same model

25



What if we don’t know the number of topics, K, 
ahead of time?

26

Solution: Bayesian Nonparametrics
– New modeling constructs:
• Chinese Restaurant Process (Dirichlet Process)
• Indian Buffet Process

– e.g. an infinite number of topics in a finite 
amount of space



Summary: Approximate Inference
• Markov Chain Monte Carlo (MCMC)
– Metropolis-Hastings, Gibbs sampling, Hamiltonion

MCMC, slice sampling, etc.
• Variational inference
– Minimizes KL(q||p) where q is a simpler graphical model 

than the original p
• Loopy Belief Propagation
– Belief propagation applied to general (loopy) graphs

• Expectation propagation
– Approximates belief states with moments of simpler 

distributions
• Spectral methods
– Uses tensor decompositions (e.g. SVD)



MCMC (AUXILIARY VARIABLE 
METHODS)

Slice Sampling, Hamiltonian Monte Carlo

28
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Auxiliary variables

The point of MCMC is to marginalize out variables,
but one can introduce more variables:
∫

f(x)P (x) dx =

∫
f(x)P (x, v) dxdv

≈ 1

S

S∑

s=1

f(x(s)), x, v ∼ P (x, v)

We might want to do this if

• P (x|v) and P (v|x) are simple

• P (x, v) is otherwise easier to navigate

Slide from Ian Murray



Slice Sampling
• Motivation:
– Want samples from p(x) and don’t know the 

normalizer Z
– Choosing a proposal at the correct scale is difficult

• Properties:
– Similar to Gibbs Sampling: one-dimensional 

transitions in the state space
– Similar to Rejection Sampling: (asymptotically) draws 

samples from the region under the curve

– An MCMC method with an adaptive proposal

30

p̃(x)
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Slice sampling idea

Sample point uniformly under curve P̃ (x) ∝ P (x)

x

u

(x, u)

P̃ (x)

p(u|x) = Uniform[0, P̃ (x)]

p(x|u) ∝
{

1 P̃ (x) ≥ u

0 otherwise
= “Uniform on the slice”

Slide from Ian Murray

This is just an 
auxiliary-variable 
Gibbs Sampler!

Problem: Sampling 
from the conditional 

p(x | u) might be 
infeasible.
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Figure 29.16. Slice sampling. Each
panel is labelled by the steps of
the algorithm that are executed in
it. At step 1, P ∗(x) is evaluated
at the current point x. At step 2,
a vertical coordinate is selected
giving the point (x, u′) shown by
the box; At steps 3a-c, an
interval of size w containing
(x, u′) is created at random. At
step 3d, P ∗ is evaluated at the left
end of the interval and is found to
be larger than u′, so a step to the
left of size w is made. At step 3e,
P ∗ is evaluated at the right end of
the interval and is found to be
smaller than u′, so no stepping
out to the right is needed. When
step 3d is repeated, P ∗ is found to
be smaller than u′, so the
stepping out halts. At step 5 a
point is drawn from the interval,
shown by a ◦. Step 6 establishes
that this point is above P ∗ and
step 8 shrinks the interval to the
rejected point in such a way that
the original point x is still in the
interval. When step 5 is repeated,
the new coordinate x′ (which is to
the right-hand side of the
interval) gives a value of P ∗

greater than u′, so this point x′ is
the outcome at step 7.

Figure adapted from MacKay Ch. 29
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Figure 29.16. Slice sampling. Each
panel is labelled by the steps of
the algorithm that are executed in
it. At step 1, P ∗(x) is evaluated
at the current point x. At step 2,
a vertical coordinate is selected
giving the point (x, u′) shown by
the box; At steps 3a-c, an
interval of size w containing
(x, u′) is created at random. At
step 3d, P ∗ is evaluated at the left
end of the interval and is found to
be larger than u′, so a step to the
left of size w is made. At step 3e,
P ∗ is evaluated at the right end of
the interval and is found to be
smaller than u′, so no stepping
out to the right is needed. When
step 3d is repeated, P ∗ is found to
be smaller than u′, so the
stepping out halts. At step 5 a
point is drawn from the interval,
shown by a ◦. Step 6 establishes
that this point is above P ∗ and
step 8 shrinks the interval to the
rejected point in such a way that
the original point x is still in the
interval. When step 5 is repeated,
the new coordinate x′ (which is to
the right-hand side of the
interval) gives a value of P ∗

greater than u′, so this point x′ is
the outcome at step 7.

Figure adapted from MacKay Ch. 29
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Goal: sample (x, u) given (u(t), x(t)
).

u ⇠ Uniform(0, p(x(t)
)

Part 1: Stepping Out

Sample interval (xl, xr) enclosing x(t)
.

r ⇠ Uniform(u,w)

(xl, xr) = (x(t) � r, x(t)
+ w � r)

Expand until endpoints are ”outside” region under curve.

while(p̃(xl) > u){xl = xl � w}
while(p̃(xr) > u){xr = xr + w}

Part 2: Sample x (Shrinking)

while(true) {
Draw x from within the interval (xl, xr), then accept or shrink.

x ⇠ Uniform(xl, xr)

if(p̃(x) > u){break}
else if(x > x(t)

){xr = x}
else{xl = x}

}
x(t+1)

= x, u(t+1)
= u
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Slice Sampling

Multivariate Distributions
– Resample each variable xi one-at-a-time (just like 

Gibbs Sampling)
– Does not require sampling from 

– Only need to evaluate a quantity proportional to 
the conditional

38

p(xi|{xj}j 6=i)

p(xi|{xj}j 6=i) / p̃(xi|{xj}j 6=i)



Hamiltonian Monte Carlo

• Suppose we have a distribution of the form:

• We could use random-walk M-H to draw 
samples, but it seems a shame to discard 
gradient information

• If we can evaluate it, the gradient tells us 
where to look for high-probability regions!

39

p(x) = exp{�E(x)}/Z

rxE(x)

x 2 RN

p 2 RN

where



Background: Hamiltonian Dynamics

Applications:
– Following the motion of atoms in a fluid through 

time
– Integrating the motion of a solar system over time
– Considering the evolution of a galaxy (i.e. the 

motion of its stars)
– “molecular dynamics”
– “N-body simulations”

Properties:
– Total energy of the system H(x,p) stays constant
– Dynamics are reversible

40

Important for 
detailed balance



Background: Hamiltonian Dynamics
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Let x 2 RN

p 2 RN

E(x)

K(p) = pTp/2

H(x,p) = E(x) +K(p)

be a position

be a momentum

Potential energy:

Kinetic energy:

Total energy:

Hamiltonian function

Given a starting position x(1) and a starting momentum p(1) we 
can simulate the Hamiltonian dynamics of the system via:

1. Euler’s method
2. Leapfrog method
3. etc.



Background: Hamiltonian Dynamics
Parameters to tune:

1. Step size, ϵ
2. Number of iterations, L

Leapfrog Algorithm:

42

for ⌧ in 1 . . . L:

p = p� ✏

2
rxE(x)

x = x+ ✏p

p = p� ✏

2
rxE(x)
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at times ε, 2ε, 3ε, . . . , and hence find (approximate) values for q(τ) and p(τ) after τ/ε steps
(assuming τ/ε is an integer).

Figure 5.1a shows the result of using Euler’s method to approximate the dynamics defined
by the Hamiltonian of Equation 5.8, starting from q(0) = 0 and p(0) = 1, and using a stepsize
of ε = 0.3 for 20 steps (i.e. to τ = 0.3 × 20 = 6). The results are not good—Euler’s method
produces a trajectory that diverges to infinity, but the true trajectory is a circle. Using a
smaller value of ε, and correspondingly more steps, produces a more accurate result at
τ = 6, but although the divergence to infinity is slower, it is not eliminated.
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(b) Modified Euler’s method, stepsize 0.3
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(c) (d)Leapfrog method, stepsize 0.3

Position (q)
−2 −1 0 1 2

Position (q)
−2 −1 0 1 2

Position (q)
−2 −1 0 1 2

Position (q)
−2 −1 0 1 2

Leapfrog method, stepsize 1.2

FIGURE 5.1
Results using three methods for approximating Hamiltonian dynamics, when H(q, p) = q2/2 + p2/2. The initial
state was q = 0, p = 1. The stepsize was ε = 0.3 for (a), (b), and (c), and ε = 1.2 for (d). Twenty steps of the simulated
trajectory are shown for each method, along with the true trajectory (in gray).

Figure from Neal (2011) 



Since p(x,p) is 
separable…

Hamiltonian Monte Carlo
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Figure from Neal (2011) 

p(x) = exp{�E(x)}/Z x 2 RN

p 2 RN

where

E(x)

K(p) = pTp/2

H(x,p) = E(x) +K(p)

Goal:

Define:

Note:

p(x,p) = exp{�H(x,p)}/ZH

= exp{�E(x} exp{�K(p)}/ZH

)
X

p

p(x,p) = exp{�E(x}/Z

)
X

x

p(x,p) = exp{�K(x}/ZK

Target dist.

Gaussian

Preliminaries



Whiteboard

• Hamiltonian Monte Carlo algorithm
(aka. Hybrid Monte Carlo)

45



Hamiltonian Monte Carlo
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Position coordinates
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FIGURE 5.3
A trajectory for a two-dimensional Gaussian distribution, simulated using 25 leapfrog steps with a stepsize of
0.25. The ellipses plotted are one standard deviation from the means. The initial state had q = [−1.50, −1.55]T and
p = [−1, 1]T .

Figure 5.3 shows a trajectory based on this Hamiltonian, such as might be used to propose
a new state in the HMC method, computed using L = 25 leapfrog steps, with a stepsize of
ε = 0.25. Since the full state space is four-dimensional, Figure 5.3 shows the two position
coordinates and the two momentum coordinates in separate plots, while the third plot
shows the value of the Hamiltonian after each leapfrog step.

Notice that this trajectory does not resemble a random walk. Instead, starting from the
lower left-hand corner, the position variables systematically move upward and to the right,
until they reach the upper right-hand corner, at which point the direction of motion is
reversed. The consistency of this motion results from the role of the momentum variables.
The projection of p in the diagonal direction will change only slowly, since the gradient
in that direction is small, and hence the direction of diagonal motion stays the same for
many leapfrog steps. While this large-scale diagonal motion is happening, smaller-scale
oscillations occur, moving back and forth across the “valley” created by the high correlation
between the variables.

The need to keep these smaller oscillations under control limits the stepsize that can
be used. As can be seen in the rightmost plot in Figure 5.3, there are also oscillations in
the value of the Hamiltonian (which would be constant if the trajectory were simulated
exactly). If a larger stepsize were used, these oscillations would be larger. At a critical
stepsize (ε = 0.45 in this example), the trajectory becomes unstable, and the value of the
Hamiltonian grows without bound. As long as the stepsize is less than this, however, the
error in the Hamiltonian stays bounded regardless of the number of leapfrog steps done.
This lack of growth in the error is not guaranteed for all Hamiltonians, but it does hold for
many distributions more complex than Gaussians. As can be seen, however, the error in
the Hamiltonian along the trajectory does tend to be positive more often than negative. In
this example, the error is +0.41 at the end of the trajectory, so if this trajectory were used
for an HMC proposal, the probability of accepting the endpoint as the next state would be
exp(−0.41) = 0.66.

5.3.3.2 Sampling from a Two-Dimensional Distribution

Figures 5.4 and 5.5 show the results of using HMC and a simple random-walk Metropolis
method to sample from a bivariate Gaussian similar to the one just discussed, but with
stronger correlation of 0.98.

Figure from Neal (2011) 



M-H vs. HMC
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Random−walk Metropolis
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FIGURE 5.4
Twenty iterations of the random-walk Metropolis method (with 20 updates per iteration) and of the Hamiltonian
Monte Carlo method (with 20 leapfrog steps per trajectory) for a two-dimensional Gaussian distribution with
marginal standard deviations of one and correlation 0.98. Only the two position coordinates are plotted, with
ellipses drawn one standard deviation away from the mean.

In this example, as in the previous one, HMC used a kinetic energy (defining the momen-
tum distribution) of K(p) = pTp/2. The results of 20 HMC iterations, using trajectories of
L = 20 leapfrog steps with stepsize ε = 0.18, are shown in the right plot of Figure 5.4. These
values were chosen so that the trajectory length, εL, is sufficient to move to a distant point
in the distribution, without being so large that the trajectory will often waste computation
time by doubling back on itself. The rejection rate for these trajectories was 0.09.

Figure 5.4 also shows every 20th state from 400 iterations of random-walk Metropolis,
with a bivariate Gaussian proposal distribution with the current state as mean, zero correla-
tion, and the same standard deviation for the two coordinates. The standard deviation of the
proposals for this example was 0.18, which is the same as the stepsize used for HMC propos-
als, so that the change in state in these random-walk proposals was comparable to that for a
single leapfrog step for HMC. The rejection rate for these random-walk proposals was 0.37.
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Hamiltonian Monte Carlo
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FIGURE 5.5
Two hundred iterations, starting with the 20 iterations shown above, with only the first position coordinate plotted.

Figure from Neal (2011) 



HIGH-LEVEL INTRO TO 
VARIATIONAL INFERENCE
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Variational Inference

49

Problem:
– For observed variables x and latent variables z, 

estimating the posterior p(z | x) is intractable
– For training data x and parameters z, estimating the 

posterior p(z | x) is intractable

Narrative adapted from Jason Eisner’s High-Level Explanation of VI: 
https://www.cs.jhu.edu/~jason/tutorials/variational.html
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Figure 1: The graphical model for the SCTM.

2 SCTM

A Product of Experts (PoE) [1] model p(x|⌅1, . . . ,⌅C) =
QC

c=1 ⇥cxPV
v=1

QC
c=1 ⇥cv

, where there are C

components, and the summation in the denominator is over all possible feature types.

Latent Dirichlet allocation generative process

For each topic k ⇥ {1, . . . , K}:
�k � Dir(�) [draw distribution over words]

For each document m ⇥ {1, . . . , M}
✓m � Dir(↵) [draw distribution over topics]
For each word n ⇥ {1, . . . , Nm}

zmn � Mult(1, ✓m) [draw topic]
xmn � �zmi

[draw word]

The Finite IBP model generative process

For each component c ⇥ {1, . . . , C}: [columns]

�c � Beta( �
C , 1) [draw probability of component c]

For each topic k ⇥ {1, . . . , K}: [rows]
bkc � Bernoulli(�c)
[draw whether topic includes cth component in its PoE]

2.1 PoE

p(x|⌅1, . . . ,⌅C) =
⇥C

c=1 ⇤cx�V
v=1

⇥C
c=1 ⇤cv

(2)

2.2 IBP

Latent Dirichlet allocation generative process

For each topic k ⇥ {1, . . . , K}:
�k � Dir(�) [draw distribution over words]

For each document m ⇥ {1, . . . , M}
✓m � Dir(↵) [draw distribution over topics]
For each word n ⇥ {1, . . . , Nm}

zmn � Mult(1, ✓m) [draw topic]
xmn � �zmi

[draw word]

The Beta-Bernoulli model generative process

For each feature c ⇥ {1, . . . , C}: [columns]

�c � Beta( �
C , 1)

For each class k ⇥ {1, . . . , K}: [rows]
bkc � Bernoulli(�c)

2.3 Shared Components Topic Models

Generative process We can now present the formal generative process for the SCTM. For each
of the C shared components, we generate a distribution ⌅c over the V words from a Dirichlet
parametrized by ⇥. Next, we generate a K � C binary matrix using the finite IBP prior. We select
the probability ⇥c of each component c being on (bkc = 1) from a Beta distribution parametrized
by �/C. We then sample K topics (rows of the matrix), which combine component distributions,
where each position bkc is drawn from a Bernoulli parameterized by ⇥c. These components and the

2

https://www.cs.jhu.edu/~jason/tutorials/variational.html


Solution:
– Approximate p(z | x) with a simpler q(z)

– Typically q(z) has more independence assumptions 

than p(z | x) – fine b/c q(z) is tuned for a specific x
– Key idea: pick a single q(z) from some family Q that 

best approximates p(z | x) 

Variational Inference
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Problem:
– For observed variables x and latent variables z, 

estimating the posterior p(z | x) is intractable

– For training data x and parameters z, estimating the 
posterior p(z | x) is intractable

Narrative adapted from Jason Eisner’s High-Level Explanation of VI: 

https://www.cs.jhu.edu/~jason/tutorials/variational.html

https://www.cs.jhu.edu/~jason/tutorials/variational.html
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Terminology:
– q(z): the variational approximation
– Q: the variational family
– Usually qθ(z) is parameterized by some θ called 

variational parameters
– Usually pα(z | x) is parameterized by some fixed α –

we’ll call them the parameters 

Narrative adapted from Jason Eisner’s High-Level Explanation of VI: 

https://www.cs.jhu.edu/~jason/tutorials/variational.html

Example Algorithms:
– mean-field variational inference

– loopy belief propagation

– tree-reweighted belief propagation

– expectation propagation

https://www.cs.jhu.edu/~jason/tutorials/variational.html
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Is this trivial?
– Note: We are not defining a new distribution simple 

qθ (z | x), there is one simple qθ(z) for each pα(z | x) 
– Consider the MCMC equivalent of this:

• you could draw samples z(i)～p(z | x) 
• then train some simple qθ(z) on z(1), z(2) ,…, z(N) 

• hope that the sample adequately represents the posterior 
for the given x

– How is VI different from this?
• VI doesn’t require sampling
• VI is fast and deterministic
• Why? b/c we choose an objective function (KL divergence) 

that defines which qθ best approximates pα, and exploit 
the special structure of qθ to optimize it

Narrative adapted from Jason Eisner’s High-Level Explanation of VI: 
https://www.cs.jhu.edu/~jason/tutorials/variational.html

https://www.cs.jhu.edu/~jason/tutorials/variational.html
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V.I. offers a new design decision
– Choose the distribution pα(z | x) that you really 

want, i.e. don’t just simpify it to make it 
computationally convenient

– Then design a the structure of another distribution 
qθ(z) such that V.I. is efficient

Narrative adapted from Jason Eisner’s High-Level Explanation of VI: 
https://www.cs.jhu.edu/~jason/tutorials/variational.html

https://www.cs.jhu.edu/~jason/tutorials/variational.html


EXAMPLES OF VARIATIONAL 
APPROXIMATIONS
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Mean Field for MRFs

• Mean field approximation for Markov 
random field (such as the Ising model):

© Eric Xing @ CMU, 2005-2015 56

q(x) =�
s∈V

q(xs)



Variational Inference for MRFs
• We can also apply more general forms of mean field 

approximations (involving clusters) to the Ising
model:

• Instead of making all latent variables independent 
(i.e. naïve mean field, previous figure), clusters of 
(disjoint) latent variables are independent.

© Eric Xing @ CMU, 2005-2015 57



V.I. for Factorial HMM

• For a factorial HMM, we could decompose 
into chains

© Eric Xing @ CMU, 2005-2015 58



LDA Inference
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Document-specific 
topic distribution

Topic assignment

Observed word

Topic Dirichlet

Approximate with q 

• Explicit Variational Inference
(original distribution)
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c=1 ⇥cxPV
v=1

QC
c=1 ⇥cv

, where there are C

components, and the summation in the denominator is over all possible feature types.

Latent Dirichlet allocation generative process

For each topic k ⇥ {1, . . . , K}:
�k � Dir(�) [draw distribution over words]

For each document m ⇥ {1, . . . , M}
✓m � Dir(↵) [draw distribution over topics]
For each word n ⇥ {1, . . . , Nm}

zmn � Mult(1, ✓m) [draw topic]
xmn � �zmi

[draw word]

The Finite IBP model generative process

For each component c ⇥ {1, . . . , C}: [columns]

�c � Beta( �
C , 1) [draw probability of component c]

For each topic k ⇥ {1, . . . , K}: [rows]
bkc � Bernoulli(�c)
[draw whether topic includes cth component in its PoE]
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bkc � Bernoulli(�c)

2.3 Shared Components Topic Models

Generative process We can now present the formal generative process for the SCTM. For each
of the C shared components, we generate a distribution ⌅c over the V words from a Dirichlet
parametrized by ⇥. Next, we generate a K � C binary matrix using the finite IBP prior. We select
the probability ⇥c of each component c being on (bkc = 1) from a Beta distribution parametrized
by �/C. We then sample K topics (rows of the matrix), which combine component distributions,
where each position bkc is drawn from a Bernoulli parameterized by ⇥c. These components and the
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KL Divergence

• Definition: for two distributions q(x) and p(x) 
over x ∈ ", the KL Divergence is: 

KL(q || p) = Eq(x)[log q(x)/p(x)]
• Properties:
– KL(q || p) measures the proximity of two 

distributions q and p
– KL is not symmetric: KL(q || p) ≠ KL(p || q) 
– KL is minimized when q(x) = p(x) for all x ∈ "
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Variational Inference

Whiteboard
– Background: KL Divergence
– Mean Field Variational Inference (overview)
– Evidence Lower Bound (ELBO)
– ELBO’s relation to log p(x)
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