Homework 2: Exact Inference and Supervised Learning 10-708

HOMEWORK 2
EXACT INFERENCE AND SUPERVISED LEARNING!

10-708 PROBABILISTIC GRAPHICAL MODELS (SPRING 2021)
http://708.mlcourse.org

OUT: Feb 24
DUE: March 10 at 11:59 PM
TAs: Alex, Helen, Xiang

START HERE: Instructions

Summary In this assignment, you will implement LSTM-CRF for labeling a constituency parse. Section
A will help you develop a better understanding of inference and learning algorithms for graphical models.
Then, in Section B, you will build on these intuitions to implement an LSTM-CRF model and compare its
performance with a vanilla LSTM.

* Collaboration policy: The purpose of student collaboration is to facilitate learning, not to circum-
vent it. Studying the material in groups is strongly encouraged. It is also allowed to seek help from
other students in understanding the material needed to solve a particular homework problem, pro-
vided no written notes (including code) are shared, or are taken at that time, and provided learning
is facilitated, not circumvented. The actual solution must be done by each student alone. The pres-
ence or absence of any form of help or collaboration, whether given or received, must be explicitly
stated and disclosed in full by all involved. See the Academic Integrity Section on the course site
for more information: http://www.cs.cmu.edu/~mgormley/courses/10708/about.
html#7-academic-integrity-policies

* Late Submission Policy: See the late submission policy here: http://www.cs.cmu.edu/
~mgormley/courses/10708/about.html#6-general-policies

* Submitting your work to Gradescope: We use Gradescope to collect PDF submissions of open-
ended questions on the homework (e.g. mathematical derivations, plots, short answers). The course
staff will manually grade your submission, and you’ll receive feedback explaining your final marks.
You will also submit your code for programming questions on the homework to Gradescope (https:
//www.gradescope.com/courses/228238). We will manually grade your code for com-
pleteness.

* For multiple choice or select all that apply questions, shade in the box or circle in the template
document corresponding to the correct answer(s) for each of the questions. For IZTEX users, replace
\choice with \CorrectChoice to obtain a shaded box/circle, and don’t change anything else.

'Compiled on Saturday 6™ March, 2021 at 00:10

1 of 18

http://708.mlcourse.org
http://www.cs.cmu.edu/~mgormley/courses/10708/about.html#7-academic-integrity-policies
http://www.cs.cmu.edu/~mgormley/courses/10708/about.html#7-academic-integrity-policies
http://www.cs.cmu.edu/~mgormley/courses/10708/about.html#6-general-policies
http://www.cs.cmu.edu/~mgormley/courses/10708/about.html#6-general-policies
https://www.gradescope.com/courses/228238
https://www.gradescope.com/courses/228238

Homework 2: Exact Inference and Supervised Learning 10-708

A Written Questions [75 pts]

Answer the following questions in the template provided. Then upload your solutions to Gradescope. You
may use I&TEX or print the template and hand-write your answers then scan it in. Failure to use the template
may result in a penalty. There are 37 points and 7 questions.

A.1 Markov Properties (Revisited)

1. (5 points) For a distribution P and an undirected graph G, show that (P satisfies the global Markov
property with respect to G) = (P satisfies the local Markov property with respect to G) = (P
satisfies the pairwise Markov property with respect to (G). (hint: consider weak union property,
Y 1LX,WZ=Y LX|WZ)

20of 18

Homework 2: Exact Inference and Supervised Learning 10-708

A.2 Variable Elimination

2. (4 points) In class, we looked at an example of variable elimination on an arbitrary graph. Let us
now apply variable elimination to a familiar directed graphical model: a Hidden Markov Model. A
Hidden Markov Model consists of two sets of variables: X; (observations) and Y; (states). States are
unobserved latent variables which satisfy the Markov property that each state only depends on the state
which immediately precedes it. Each state generates an observation. The complete structure of the
model (for a sequence of length 5) looks as follows:

() I I I (%)
é_. () é
Figure A.1: Hidden Markov Model

Suppose we wish to compute the probability P(Y5 | X;...X5), which requires us to marginalize over
Y1...Y,. Assume that we are eliminating variables in the order Y; — Y5 — Y3 — Y. Write down equations
for the new factors that will be computed at each step of the elimination process.

Variable Eliminated | Factor Computed

Yy

30f 18

Homework 2: Exact Inference and Supervised Learning 10-708

3. Variable elimination is more efficient than naively computing the joint probability by brute force. In
this problem, we will further study how the order in which variable elimination is carried out affects the
efficiency of this method. Consider the following undirected graphical model:

Figure A.2: Initial graph for variable elimination

(a) (2 points) Draw a factor graph for the model shown in Figure A.2, with each factor corresponding
to a maximal clique in the graph

(b) (3 points) Consider the variable elimination order A — G —B—-D —-FE—F —CandC — B —
E — A— D — F — G. Which of the above elimination orders is better and why?

(¢) (1 point) Based on your observations, design a way to estimate which elimination order is better
without going through the complete process. Describe your approach in a few sentences below.

4 of 18

Homework 2: Exact Inference and Supervised Learning 10-708

4. Consider the following Markov network:

D——)——

O——E—)

(O——O

We are going to see how tree-width, a property of the graph, is related to the intrinsic complexity of
variable elimination of a distribution.

(a) (2 points) Write down largest clique(s) for the elimination order £, D, H, F, B, A, G, I, C.

(b

~—~

(2 points) Write down largest clique(s) for the elimination order A, G,I,C, D, H, F, B, E.

(¢c) (1 point) Which of the above ordering is preferable? Explain briefly.

(d) (2 points) The elimination width of a given ordering is the size (i.e. number of variables) of the
largest factor produced by variable elimination with that ordering. The treewidth is the minimum
elimination width over all possible orderings, minus one. Give a reasonable (< n?) upper bound
on the tree-width of the n x n grid.

Sof 18

Homework 2: Exact Inference and Supervised Learning

A.3 Message Passing

10-708

a Ya(a) b ¥p(b) ¢ Yoo
0 1 0 2 0 1
1 2 1 1 1 1
d p(d) YE(e)
1 1
1 1 2
a e Ypa(a,e) d e Ygp(de)
0 0 1 0 0 1
0 1 1 0 1 1
1 0 1 1 0 2
1 1 1 1 1 1
Figure A.3
b d Ypp(bd) ¢ d Ype(ed)
0 0 1 0 0 1
0 1 2 0 1 1
1 0 1 1 0 1
1 1 1 1 1 3

5. Consider the factor graph in Figure A.3. On paper, carry out a run of belief propagation by sending messages
first from the leaves 14, ¥, ¢ to the root 15, and then from the root back to the leaves. Then answer the
questions below. Assume all messages are un-normalized.

(a) (2 points) Numerical answer: What is the message from A to ¢p?

(b

(c

)

~—

(2 points) Numerical answer: What is the message from ¥ pp to B?

(2 points) Numerical answer: What is the belief at variable A?

60f 18

Homework 2: Exact Inference and Supervised Learning 10-708

(d) (2 points) Numerical answer: What is the belief at variable B?

(e

~

(2 points) Numerical answer: What is the belief at factor ¢pp?

(f) (2 points) Numerical answer: What is the value of the partition function?

7 of 18

Homework 2: Exact Inference and Supervised Learning 10-708

A.4 Belief Propagation for a Pairwise MRF

Consider an acyclic undirected graphical model defined by G = (V, E), with vertices V' and edges FE. We
assume that each element ¢ € V' of the vertex set is an index with a corresponding variable Y; for that node.
Assume Y; € Y for all i. We denote the neighbors of a node i as N (). Assume that G is a tree. We can
define a pairwise MRF for G as:

p(y) = % H i(vi) H Gij(Yi,yj)

9% (i,5)EE

where ¢; is the potential function for node i and ¢;; the potential for edge (4, j). Here we will design a
belief propagation algorithm that is tailored to acyclic pairwise MRFs.

6. (4 points) Define a new belief propagation algorithm that only stores messages sent from one variable
y; to another variable y; denoted as m;_,;(y;). Define both how to compute each message and an
appropriate message passing order. Here, you should describe only the message passing portion of the
algorithm (i.e. do not define the beliefs yet).

7. (2 points) After your algorithm from above terminates, how can you use the messages 1, _,;(y;) to
compute the variable marginals p(y;) (i.e. normalized beliefs)?

8. (3 points) After your algorithm from above terminates, how can you use the messages m;_,;(y;) to
compute the edge marginals p(y;, y;) for all (¢, j) € E?

8of 18

Homework 2: Exact Inference and Supervised Learning 10-708

A.5 Learning Undirected Graphical Models

The log-probability of an undirected graphical model is given by:

log p(y) = [Z logwa(ya)] —log > [¢alyh)

y'ey o
where y is the set of variables in the graphical model, 1) is a factor, and « is an index into a factor of interest.

9. (6 points) Let 3 be an index into a factor of interest. Explaining each step clearly with words, show
that the derivative of the log-likelihood of an undirected graphical model with respect to a log factor

log 1s(y}) is:

dlogp(y) _ AN /
Wﬁ(ylﬁ) = H(Yﬁ = YQ) P(YQ)

9of 18

Homework 2: Exact Inference and Supervised Learning 10-708

10. (2 points) Show that the derivative of the log-likelihood of an undirected graphical model with respect
to a factor ¢5(yj) is:

dlogp(y) L(ys=y3s) —p(yh)

Ms(yy) Vs(ys)

10 of 18

Homework 2: Exact Inference and Supervised Learning 10-708

A.6 Empirical Questions

The following questions should be completed after you work through the programming portion of this
assignment (Section B).

11. (1 point) Select one: If you feed the inputs shown in Figure A.3 into your belief propagation module
implemented in PyTorch do you get the same answers that you worked out on paper? (Hint: The correct
answer is “Yes”.)

O Yes
O No

12. (10 points) Record your model’s training, validation, and test set performance after one epoch in terms
of the loss (cross entropy for the baseline, negative log-likelihood for the LSTM-CRF), accuracy (AC)
and leaf accuracy (LAC). For the training metrics, report the average performance on the last 100
batches (where batch size is 1). Note: Round each numerical value to two significant figures.

Schedule Baseline CRF

Training Loss

Training AC

Training LAC

Validation Loss

Validation AC

Validation LAC

Test Loss

Test AC

Test LAC

11 of 18

Homework 2: Exact Inference and Supervised Learning 10-708

13. (6 points) Plot the training and validation accuracy curves for: Baseline Model, LSTM-CRF Model.
Since the CRF can be slow to train and the training set is large, please plot the average training accuracy
over the last 100 data points (i.e. the 100 most recent batches, since batch size should be 1). Plot
the validation accuracy on the entire validation set once every 1,000 batches. The x-axis should be
the number of batches, and the y-axis should be accuracy. Plot both the tree-level accuracy and the
leaf-level accuracy. Note: Your plots must be machine generated.

12 of 18

Homework 2: Exact Inference and Supervised Learning 10-708

14. (6 points) Plot the training and validation loss curves for: Baseline Model, LSTM-CRF Model. Since
the CRF can be slow to train and the training set is large, please plot the average training loss over the
last 100 data points (i.e. the 100 most recent batches, since batch size should be 1). Plot the validation
accuracy on the entire validation set once every 1,000 batches. The x-axis should be the number of
batches, and the y-axis should be loss. Note: Your plots must be machine generated.

A.7 Wrap-up Questions

15. (1 point) Multiple Choice: Did you correctly submit your code to Gradescope?

O Yes
O No

13 of 18

Homework 2: Exact Inference and Supervised Learning 10-708

A.8 Collaboration Policy

After you have completed all other components of this assignment, report your answers to the collaboration
policy questions detailed in the Academic Integrity Policies for this course.

1. Did you receive any help whatsoever from anyone in solving this assignment? If so, include full
details including names of people who helped you and the exact nature of help you received.

2. Did you give any help whatsoever to anyone in solving this assignment? If so, include full details
including names of people you helped and the exact nature of help you offered.

3. Did you find or come across code that implements any part of this assignment? If so, include full
details including the source of the code and how you used it in the assignment.

14 of 18

Homework 2: Exact Inference and Supervised Learning 10-708

B Programming [25 pts]

Your goal in this assignment is to implement a CRF belief propagation algorithm for constituency parsing.
Given the structure of the tree, you will implement a model to label the nodes with the appropriate tag. Your
solution must be implemented in PyTorch using the data files we have provided. We have also provided
template code for you to use.

B.1 Background: The Constituency Tree Labeling Task

Constituency parsing aims to extract a parse tree from a sentence that represents its syntactic structure
according to a phrase structure grammar. Terminals are the words in the sentence, non-terminals in the
tree are types of phrases, and the edges are unlabeled. The pre-terminals (i.e. nodes just above the leaves,
aka words) are called part-of-speech tags. The other non-terminals are clause or phrase level tags. For
more information on tags, look here. Throughout this assignment, we use nodes to refer to the set of all
non-terminals.

S
/\
NP VP
| /\
N \Y% NP
| | N
Fed raises N N

interest rates

Figure B.1: A parse tree with eight non-terminals: four part-of-speech tags (N, V, N, N) and four phrase-
level tags (NP, VP, NP, S).

In this assignment, we will assume that for each example, the branching structure of the tree is known, but
the tags are not. Given the structure, our goal is to successfully predict the appropriate tag for each node in
the tree. We define the accuracy of the model as the average accuracy over all examples where each example
consists of a tree structure with 7" nodes and L leaf nodes. Accuracy for a single tree is defined as:

number of correctly predicted nodes

A =
ccC T

Note that this accuracy is computed across all nodes in the graph. In practice, however, we may particularly
care about the POS tags corresponding to each word in the sentence. Thus, we define leaf accuracy as:

number of correctly predicted leaf nodes

Leaf Acc =
eaf Acc 7

15 of 18

http://www.surdeanu.info/mihai/teaching/ista555-fall13/readings/PennTreebankConstituents.html

Homework 2: Exact Inference and Supervised Learning 10-708

B.2 Background: The Data

We have provided a pre-processed version of Penn Tree Bank with 13,000 examples, divided into 10,000
training examples ptb-train-10000.txt, 1,000 development examples ptb-dev-1000.txt, and
2,000 test examples ptb-test-2000.txt. Each line consists of one tree. For example, the tree shown
above would be encoded as:

(S (NP (N Fed)) (VP (V raises) (NP (N interest) (N rates))))

The trees have already been binarized such that each node has at most two children. We have provided
starter code to read each line into an NLTK tree data structure, and a custom tree structure, which you can
modify.

The task has the following input/output:
* Given Input: An input sentence and the associated skeleton of its constituency parse tree

* Predicted Output: The labels of the non terminals in the parse tree

B.3 Baseline Model: LSTM with independent tag predictions (5 points)

S

A\,
v/ \NP
N

John hit the ball

Figure B.2: Baseline model using a unidirectional LSTM.

N

In this section, you will implement a working baseline LSTM model. Starter code for the model can be
found in baseline_template.py.

First, use a torch.nn.Embedding layer to convert your sentence to a tensor representation. Then, use an
LSTM layer (torch.nn.LSTM) to output a “hidden state” for each node. For the leaf nodes (i.e. nodes
corresponding to each token in the sentence), this hidden state is simply the corresponding output of the
LSTM. For intermediate nodes, use a linear layer on the concatenation of the hidden states of the left and
the right child. If there is only one child, concatenate its hidden state with itself. Use the direct child nodes,
not the leftmost descendent and rightmost descendent. The output should be a distributions over tags. Train
the model using cross entropy loss.

Your implementation must have a single-layer unidirectional LSTM which outputs a hidden state of dimen-
sion 128. The embedding size should be 256. Set your optimizer to be Adam with a learning rate of 0.0001.
Due to the complexity associated with building the tree and computing its potentials, you can use a batch
size of 1.

16 of 18

Homework 2: Exact Inference and Supervised Learning 10-708

B.4 Main Model: LSTM + CRF

In this section, you will implement a CRF layer on top of an LSTM representation (Figure B.2). This will
involve computing the unary potentials (a.k.a. factors) corresponding to each node and binary potentials
corresponding to each edge in the tree. For an example of unary and binary potentials, see problem A.3.
Starter code can be found in 1stm_crf_template.py.

1. (3 points) Representation of potentials. Instead of keeping an explicit lookup table for the unary and
binary potentials, these potentials will be computed by applying a linear layer to the LSTM hidden
representation computed for each node (or in the case of binary potentials, concatenation of hidden
representations). You need to compute a unary potential for every node in the graph and an edge
potential for every edge. Note that the dotted lines in Figure B.2 do not count as edges.

To ensure that the potentials are positive and to provide better numerical stability, we assume that
the output of the linear layer is the logarithm of the potentials. From there, all further computation
should be carried out in logspace.

2. (10 points) Belief propagation. Now that you’ve set up the unary and binary potentials, it’s time to
implement belief propagation. The sum-product belief propagation algorithm proceeds as follows:

(a)

(b)

(©)

Send messages from the leaves to the root. Starting at the leaves, compute the factor and variable
messages to be sent upward. Recall from Lecture 5 that factor messages are computed as:

posi(@) = > tal@a)] Hisalzali)

Ta:Tali]=T; JEN(a)\i

where the message is being sent from factor « to node 4, and a matrix-vector product is being
computed between the binary factor ¥, (x,) and the product of incoming messages to a. A
variable message is computed as:

Hi—sa (xz) = H Ha—i (1’1)
aeN(3)\«
where the message is being sent from variable ¢ to factor a.

Send messages from the root to the leaves: After having computed all messages to send upwards
to the root, we can re-use some of these messages when sending messages downward from the
root. (See the slides from Lecture 5, starting at slide 67, for a visualization of this process.)

Compute beliefs: Given these messages, we are able to compute the beliefs and hence the
marginals at each node. A variable belief is computed as:

bi(ri) = [tai(z:)

aeN (i)

and a factor belief is computed as:

ba(xa):wa(xa) H ﬂi%&(xa[i])

iEN ()

(Note: you will not technically need to compute all beliefs, but comparing the resulting partition
functions with each other could be a good sanity check.)

17 of 18

Homework 2: Exact Inference and Supervised Learning 10-708

3. Useful trick: logsumexp When numbers are too small or too large, precision can be lost to floating
point errors and overflow errors can occur. To circumvent this numerical stability issue, we can
compute all messages and potentials in the log space. Multiplication operations on messages would
then become addition of log messages, since log(ab) = log(a) + log(b). Addition of messages can
be done using the logsumexp operation. Available in pytorch as torch.logsumexp, this function is
equivalent to exponentiating the elements of a tensor, summing them along a specified dimension,
and then taking the log to put everything back in logspace.

4. (5 points) Loss function: negative log-likelihood. The loss function should be the negative log-
likelihood (NLL), computed from the CRF potentials. This can be done for each sample by looking
up and adding up the potentials associated with each node’s true label, and subtracting out the partition
function. (Hint: How do you compute the partition function from your log belief? Can you think of
any sanity checks that can come from the computing the partition function?)

5. (2 points) Computing accuracy. To help evaluate your model, compute the accuracy for each tree as
well as the accuracy among the leaves. To do so, predict the tag with highest marginal probability for
each node, and compare against the true labels.

Additional details: Again, use a hidden dimension of 128 and embedding dimension of 256. Use the
Adam optimizer with learning rate 0.0001.

B.5 Code Submission [25 pts]

You must submit all of your code to the appropriate slot on Gradescope. If you have multiple . py files,
you must upload all of them. Your code will not be autograded on Gradescope. Instead, we will grade your
code by hand; that is, we will read through and attempt to run your code in order to grade it. As such, please
carefully identify major sections of the code via comments.

18 of 18

	Written Questions [75 pts]
	Markov Properties (Revisited)
	Variable Elimination
	Message Passing
	Belief Propagation for a Pairwise MRF
	Learning Undirected Graphical Models
	Empirical Questions
	Wrap-up Questions
	Collaboration Policy

	Programming [25 pts]
	Background: The Constituency Tree Labeling Task
	Background: The Data
	Baseline Model: LSTM with independent tag predictions (5 points)
	Main Model: LSTM + CRF
	Code Submission [25 pts]

