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HOMEWORK 4
MONTE CARLO METHODS AND BAYESIAN MODELING1

10-708 PROBABILISTIC GRAPHICAL MODELS (SPRING 2021)
http://708.mlcourse.org

OUT: March 24, 2021
DUE: April 7, 2021 at 11:59 PM

TAs: Alex, Helen, Xiang

START HERE: Instructions

Summary In this assignment, you will implement a Metropolis Hastings algorithm on English Premier
League data. Section A will help you develop a better understanding of similar sampling methods through
some warm-up problems. Then, in Section B, you will build on this knowledge to build a topic model that
discovers topics underlying a set of documents.

• Collaboration policy: The purpose of student collaboration is to facilitate learning, not to circum-
vent it. Studying the material in groups is strongly encouraged. It is also allowed to seek help from
other students in understanding the material needed to solve a particular homework problem, pro-
vided no written notes (including code) are shared, or are taken at that time, and provided learning
is facilitated, not circumvented. The actual solution must be done by each student alone. The pres-
ence or absence of any form of help or collaboration, whether given or received, must be explicitly
stated and disclosed in full by all involved. See the Academic Integrity Section on the course site
for more information: http://www.cs.cmu.edu/˜mgormley/courses/10708/about.
html#7-academic-integrity-policies

• Late Submission Policy: See the late submission policy here: http://www.cs.cmu.edu/

˜mgormley/courses/10708/about.html#6-general-policies

• Submitting your work to Gradescope: We use Gradescope to collect PDF submissions of open-
ended questions on the homework (e.g. mathematical derivations, plots, short answers). The course
staff will manually grade your submission, and you’ll receive feedback explaining your final marks.
You will also submit your code for programming questions on the homework to Gradescope (https:
//www.gradescope.com/courses/228238). We will manually grade your code for com-
pleteness.

• For multiple choice or select all that apply questions, shade in the box or circle in the template
document corresponding to the correct answer(s) for each of the questions. For LATEX users, replace
\choice with \CorrectChoice to obtain a shaded box/circle, and don’t change anything else.

For multiple choice or select all that apply questions, shade in the box or circle in the template document
corresponding to the correct answer(s) for each of the questions. For LATEX users, replace \choice with
\CorrectChoice to obtain a shaded box/circle, and don’t change anything else.

1Compiled on Friday 26th March, 2021 at 05:14
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Homework 4: Monte Carlo Methods and Bayesian Modeling 10-708

A Written Questions [103 pts]
Answer the following questions in the template provided. Then upload your solutions to Gradescope. You
may use LATEX or print the template and hand-write your answers then scan it in. Failure to use the template
may result in a penalty. There are 103 points and 21 questions.

A.1 Computational Complexity of Marginal Inference

1. (5 points) Show that for marginal inference problems, computing the marginals of variables and cliques

p(xi) =
∑

x′:x′i=xi

p(x′|θ)

p(xC) =
∑

x′:x′C=xC

p(x′|θ)

is a #P-hard problem. (Hint: reduce #-SAT to the marginal inference problem)
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A.2 Markov Chain Monte Carlo Methods

2. In class, we studied two Monte Carlo estimation methods: rejection sampling and importance sampling.
Given a proposal distribution Q(x), answer the following questions:

(a) (1 point) If sampling from Q(x) is computationally expensive, which of the following methods is
likely to be more efficient?

© Rejection Sampling

© Importance Sampling

© Both are equally inefficient

(b) (1 point) If Q(x) is high-dimensional, which of the following methods is more efficient?

© Rejection Sampling

© Importance Sampling

© Both are equally inefficient

(c) (1 point) For high-dimensional distributions, MCMC methods such as Metropolis Hastings are
more efficient than rejection sampling and importance sampling.

© True

© False

(d) (1 point) For low-dimensional distributions, MCMC methods such as Metropolis Hastings pro-
duce better samples than rejection sampling and importance sampling.

© True

© False

3. (2 points) Suppose you are using MCMC methods to sample from a distribution with multiple modes.
Briefly explain what complications may arise while using MCMC.
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A.3 Monte Carlo

Let p(x) be a distribution on x = [x1, ..., xD]
T ∈ RD. Suppose we want to perform inference

Ep(x)[f(x)] using importance sampling, with q(x) as the proposal distribution. We drawL i.i.d. samples
x(1), ..., x(L) from q(x), and can estimate using importance sampling:

Ep(x)[f(x)] ≈
1∑L

i=1 ui

L∑
i=1

f(x(i))ui

where ui =
p(x(i))

q(x(i))
are the (unnormalized) importance weights.

4. For the following questions, your solution should be in its simplest form. Show your work.

(a) (2 points) Find the mean of the unnormalized importance weights Eq(x) [ui].

(b) (3 points) Find the variance of the unnormalized importance weights Varq(x) [ui].
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5. (5 points) Prove the following lemma: Ep(x)

[
p(x)
q(x)

]
≥ 1, and the equality holds only when p = q.

(Hint: you may use without proof the inequality y ≥ log(y) + 1 for all y > 0. You may also use the
fact that when the KL divergence between two distributions is 0, the two distributions are identical.)
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6. (6 points) A measure of the variability of two components in vector u = [u1, ..., uL]
T is given by

Eq(x)

[
(ui − uj)2

]
. Assume that both p and q can be factorized, i.e. p(x) =

∏D
i=1 pi(xi), and q(x) =∏D

i=1 qi(xi). Explaining each step with words, show that Eq(x)

[
(ui − uj)2

]
has exponential growth

with respect to D.

Specifically, show that Eq(x)

[
(ui − uj)2

]
= 2

∏D
d=1 Epd(x)

[
pd(x)
qd(x)

]
− 2.
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7. (1 point) Use the conclusion in (c) to explain why the standard importance sampling does not scale
well with dimensionality and would blow up in high-dimensional cases.
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A.4 Gibbs Sampling

Suppose you wish to build a Gibbs sampler for a Bayesian hidden Markov model (HMM). For a sequence
of length L, we have observations x1, . . . , xL with xi ∈ {1, . . . ,W} and latent states y1, . . . , yL with
yi ∈ {1, . . . , T}. The model has the usual emission parameters A ∈ RT×T and transition parameters
B ∈ RT×W ; we make it a touch more Bayesian by placing Dirichlet priors over the rows of each with
respective hyperpameters α ∈ RT and β ∈ RW . The data consists of a single sequence2 with a fixed start
symbol y0 = START so that the data likelihood can be written as,

p(x,y | A,B) =

L∏
i=1

p(yi|yi−1,A)p(xi|yi,B)

The generative story for our Bayesian HMM is as follows.

for t ∈ {1, . . . , T}
At,· ∼ Dirichlet(α)

Bt,· ∼ Dirichlet(β)

for i ∈ {1, . . . , L}
yi ∼ Categorical(Ayi−1,·)

xi ∼ Categorical(Byi,·)

You wish to implement an explicit blocked Gibbs sampler that performs unsupervised inference of the latent
states y and the parameters A and B. The hyperameters α and β are fixed. You sketch out the high level
function below.

1: procedure BAYESHMMGIBBS(x,α,β)
2: y,A,B← initialize(x,α,β) . Initialize the random variables
3: for t ∈ shuffle({1, . . . , T}) do . For each tag type
4: At,· ← sample transition(t,x,y,A,B,α,β) . Resample the tth row of the transition matrix
5: Bt,· ← sample emission(t,x,y,A,B,α,β) . Resample the tth row of the emission matrix

6: for i ∈ shuffle({1, . . . , L}) do . For each token
7: yi ← sample state(i,x,y,A,B,α,β) . Resample the ith token

You now proceed to implement the remaining methods. Some notes: Your solutions below may assume
access to the function sample dir(a) which draws a sample from a Dirichlet parameterized by a and the
function sample cat(p) which draws a sample from a Categorical parameterized by the probabilities p (and
it elegantly handles proportions p as well). For full credit, your solutions should use the minimal amount of
computation necessary.
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8. (3 points) Write pseudocode for the function sample transition(t,x,y,A,B,α,β).

9. (3 points) Write pseudocode for the function sample emission(t,x,y,A,B,α,β).

10. (4 points) Write pseudocode for the function sample state(i,x,y,A,B,α,β).
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A.5 Metropolis Hastings

11. (4 points) Recall that conjugate priors lead to the posterior belonging to the same probability distribu-
tion family as the prior. Show that the beta distribution is the conjugate prior for the binomial distribu-
tion.

12. (5 points) Show that the Metropolis Hastings algorithm satisfies detailed balance.
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13. (5 points) Show that a variant of the Metropolis Hastings algorithm with the acceptance probability
defined without the minimum, ie acceptance probability a = A(x ←− xi) = p(x)q(xi|x)

p(xi)q(x|xi)
, wouldn’t

satisfy the detailed balance.
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B Programming [50 pts]
B.1 Task Background
Nowadays, statistical modelling of sport data has become an important part of sports analytics and is
often a critical reference for the managers in their decision-making process. In this part, we will work
on a real world example in professional sports. Specifically, we are going to use the data from the
2013-2014 Premier League, the top-flight English professional league for men’s football (soccer, not
American football) clubs, and build a predictive model on the number of goals scored in a single game
by the two opponents. Bayesian hierarchical model is a good candidate for this kind of modeling task.
We model each team’s strength (both attacking and defending) as latent variables. Then in each game,
the goals scored by the home team is a random variable conditioned on the attacking strength of the
home team and the defending strength of the away team. Similarly, the goals scored by the away team
is a random variable conditioned on the attack strength of the away team and the defense strength of the
home team. Therefore, the distribution of the scoreline of a specific game is dependent on the relative
strength between the home team A and the away team B, which also depends on the relative strength
between those teams with their other opponents.

Table B.1: 2013-2014 Premier League teams

Index 0 1 2 3 4
Team Arsenal Aston Villa Cardiff City Chelsea Crystal Palace
Index 5 6 7 8 9
Team Everton Fulham Hull City Liverpool Manchester City
Index 10 11 12 13 14
Team Manchester United Newcastle United Norwich City Southampton Stoke City
Index 15 16 17 18 19
Team Sunderland Swansea City Tottenham Hotspur West Bromwich Albion West Ham United

Here we consider using the same model as described by Baio and Blangiardo (2010). The Premier
League has 20 teams, and we index them as in Table B.1. Each team would play 38 matches every
season (playing each of the other 19 teams home and away), which totals 380 games in the entire
season. For the g-th game, assume that the index of home team is h(g) and the index of the away team
is a(g). the observed number of goals is:

ygj | θgj = Poisson(θgj)

where the θ = (θg1, θg2) represent the scoring intensity in the g-th game for the team playing at home
(j = 1) and away (j = 2), respectively. We put a log-linear model for the θs:

log θg1 = home+ atth(g) − defa(g)
log θg2 = atta(g) − defh(g)

Note that team strength is broken into attacking and defending strength. And home represents home-
team advantage, and in this model is assumed to be constant across teams. The prior on the home is a
normal distribution

home ∼ N (0, τ−10 )

where the precision τ0 = 0.0001.
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The team-specific attacking and defending effects are modeled as exchangeable:

attt ∼ N (µatt, τ
−1
att )

deft ∼ N (µdef , τ
−1
def )

We use conjugate priors as the hyper-priors on the attack and defense means and precisions:

µatt ∼ N (0, τ−11 )

µdef ∼ N (0, τ−11 )

τatt ∼ Gamma(α, β)

τdef ∼ Gamma(α, β)

where the precision τ1 = 0.0001, and we set parameters α = β = 0.1.

This hierarchical Bayesian model can be represented using a directed acyclic graph as shown in Figure
B.1. Where the goals of each game y = {ygj |g = 0, ..., 379, j = 1, 2} are 760 observed variables, and
parameters θ = (home, att0, ..., att19, def0, ..., def19) and hyper-parameters η = (µatt, µdef , τatt, τdef )
are unobserved variables that we need to make inference. To ensure identifiability, we enforce a cor-
ner constraint on the parameters (pinning one team’s parameters to 0,0). Here we use the first team as
reference and assign its attacking and defending strength to be 0:

att0 = def0 = 0

Figure B.1: The DAG representation of the hierarchical Bayesian model. Figure adapted from Baio and
Blangiardo (2010).

In this question, we want to estimate the posterior mean of the attacking and defending strength for each
team, i.e. Ep(θ,η|y)[atti], Ep(θ,η|y)[defi], and Ep(θ,η|y)[home].
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14. (5 points) Find the joint likelihood p(y,θ,η).

15. (5 points) Write down the Metropolis-Hastings algorithm for sampling from posterior p(θ,η|y), and
derive the acceptance function for a proposal distribution of your choice (e.g. isotropic Gaussian).

16. (20 points) Implement the M-H algorithm to inference the posterior distribution. The data can be found
from premier league 2013 2014.dat, which contains a 380× 4 matrix. The first column is the
number of goals yg1 scored by the home team, the second column is the number of goals yg2 scored
by the away team, the third column is the index for the home team h(g), and the fourth column is the
index for the away team a(g). Use isotropic Gaussian as proposal distribution, N (0, σ2I), use 0 as
the starting point. Note: You are NOT allowed to use any existing implementations of M-H in this
problem. Please submit your implementation to Gradescope separately.
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17. (12 points) Run the MCMC chain for 5000 steps to burn in and then collect 5000 samples with t steps
in between (i.e., run M-H for 5000t steps and collect only each t-th sample). This is called thinning,
which reduces the autocorrelation of the MCMC samples introduced by the Markovian process. The
parameter sets are σ = 0.005, 0.05, 0.5, and t = 1, 5, 20, 50. Plot the trace plot of the burn-in phase
and the MCMC samples for the latent variable home using proposal distributions with different σ and
t. (There should be 12 plots in total. )

18. (2 points) Comment on the results. Which parameter setting worked the best for the algorithm?
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In the following questions, use the results from the optimal parameter setting.

19. (3 points) Plot the posterior histogram of home from the MCMC samples.

20. (3 points) Plot the estimated attacking strength Ep(θ,η|y)[atti] against the estimated defending strength
Ep(θ,η|y)[defi] for each the team in one scatter plot. Please make sure to identify the team index of each
point on your scatter plot.

B.2 Wrap-up Questions

21. (1 point) Multiple Choice: Did you correctly submit your code to Autolab?

© Yes

© No
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B.3 Collaboration Policy
After you have completed all other components of this assignment, report your answers to the collaboration
policy questions detailed in the Academic Integrity Policies for this course.

1. Did you receive any help whatsoever from anyone in solving this assignment? If so, include full
details including names of people who helped you and the exact nature of help you received.

2. Did you give any help whatsoever to anyone in solving this assignment? If so, include full details
including names of people you helped and the exact nature of help you offered.

3. Did you find or come across code that implements any part of this assignment? If so, include full
details including the source of the code and how you used it in the assignment.
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