Ensemble methods
Boosting from Weak Learners

Eric Xing

Lecture 8, October 3, 2016

Reading: Chap. 14.3 C.B book

© Eric Xing @ CMU, 2006-2016
Weak Learners: Fighting the bias-variance tradeoff

- **Simple (a.k.a. weak) learners** e.g., naïve Bayes, logistic regression, decision stumps (or shallow decision trees)

- **Are good 😊** - Low variance, don’t usually overfit
- **Are bad 😞** - High bias, can’t solve hard learning problems

- **Can we make weak learners always good??**
 - No!! But often yes…
Why boost weak learners?

Goal: Automatically categorize type of call requested
(Collect, Calling card, Person-to-person, etc.)

- Easy to find “rules of thumb” that are “often” correct.
 E.g. If ‘card’ occurs in utterance, then predict ‘calling card’

- Hard to find single highly accurate prediction rule.
Voting (Ensemble Methods)

- Instead of learning a single (weak) classifier, learn many weak classifiers that are good at different parts of the input space.

- **Output class**: (Weighted) vote of each classifier
 - Classifiers that are most “sure” will vote with more conviction.
 - Classifiers will be most “sure” about a particular part of the space.
 - On average, do better than single classifier!

H: \(X \rightarrow Y \ (-1,1) \)

\(H(X) = h_1(X) + h_2(X) \)

\(H(X) = \text{sign} \left(\sum_{t} \alpha_t h_t(X) \right) \)

© Eric Xing @ CMU, 2006-2016
Voting (Ensemble Methods)

- Instead of learning a single (weak) classifier, learn many weak classifiers that are good at different parts of the input space.

- **Output class:** (Weighted) vote of each classifier
 - Classifiers that are most “sure” will vote with more conviction.
 - Classifiers will be most “sure” about a particular part of the space.
 - On average, do better than single classifier!

- **But how do you ???**
 - Force classifiers h_t to learn about different parts of the input space?
 - Weigh the votes of different classifiers? α_t
Bagging

- Recall decision trees
 - Pros: interpretable, can handle discrete and continuous features, robust to outliers, low bias, etc.
 - Cons: high variance

- Trees are perfect candidates for ensembles
 - Consider averaging many (nearly) unbiased tree estimators
 - Bias remains similar, but variance is reduced

- This is called **bagging** (bootstrap aggregating) (Breiman, 1996)
 - Train many trees on bootstrapped data, then take average

 \[
 f(x) = \frac{1}{B} \sum_{b=1}^{B} f_b(x)
 \]

 - Bootstrap: statistical term for “roll n-face dice n times”
Random Forest

- Reduce correlation between trees, by introducing randomness

1. For $b = 1, \ldots, B$,
 1. Draw a bootstrap dataset Z^*
 2. Learn a tree $f_b(\cdot)$ on Z^*, in particular select m features randomly out of p features as candidates before splitting

2. Output:
 - Regression: $f(x) = \frac{1}{B} \sum_{b=1}^{B} f_b(x)$
 - Classification: majority vote

- Typically take $m \leq \sqrt{p}$
Rationale: Combination of methods

- There is no algorithm that is always the most accurate
- We can select simple “weak” classification or regression methods and combine them into a single “strong” method
- Different learners use different
 - Algorithms
 - Parameters
 - Representations (Modalities)
 - Training sets
 - Subproblems
- The problem: how to combine them
Boosting [Schapire’89]

- **Idea:** given a weak learner, run it multiple times on (rewighted) training data, then let learned classifiers vote

- On each iteration t:
 - weight each training example by how incorrectly it was classified
 - Learn a weak hypothesis – h_t
 - A strength for this hypothesis – α_t

- Final classifier: $H(X) = \text{sign}(\sum \alpha_t h_t(X))$

- Practically useful, and theoretically interesting

- Important issues:
 - what is the criterion that we are optimizing? (measure of loss)
 - we would like to estimate each new component classifier in the same manner (modularity)
Combination of classifiers

- Suppose we have a family of component classifiers (generating ±1 labels) such as decision stumps:

\[h(x; \theta) = \text{sign}(wx_k + b) \]

where \(\theta = \{k,w,b\} \)

- Each decision stump pays attention to only a single component of the input vector
Combination of classifiers con’d

- We’d like to combine the simple classifiers additively so that the final classifier is the sign of

\[\hat{h}(x) = \alpha_1 h(x; \theta_1) + \ldots + \alpha_m h(x; \theta_m) \]

where the “votes” \(\{\alpha_i\} \) emphasize component classifiers that make more reliable predictions than others.

- Important issues:
 - what is the criterion that we are optimizing? (measure of loss)
 - we would like to estimate each new component classifier in the same manner (modularity)
AdaBoost

- **Input:**
 - N examples \(S_N = \{(x_1, y_1), \ldots, (x_N, y_N)\} \)
 - a weak base learner \(h = h(x, \theta) \)

- **Initialize:** equal example weights \(w_i = 1/N \) for all \(i = 1..N \)

- **Iterate for** \(t = 1 \ldots T \):
 1. train base learner according to weighted example set \((w_t, x) \) and obtain hypothesis \(h_t = h(x, \theta) \)
 2. compute hypothesis error \(\varepsilon_t \)
 3. compute hypothesis weight \(\alpha_t \)
 4. update example weights for next iteration \(w_{t+1} \)

- **Output:** final hypothesis as a linear combination of \(h_t \)
AdaBoost

- At the kth iteration we find (any) classifier $h(x; \theta_k^*)$ for which the weighted classification error:

$$
\varepsilon_k = \frac{\sum_{i=1}^{n} W_i^{k-1} I(y_i \neq h(x_i; \theta_k^*))}{\sum_{i=1}^{n} W_i^{k-1}}
$$

is better than chance.
- This is meant to be "easy" --- weak classifier
- Determine how many “votes” to assign to the new component classifier:

$$
\alpha_k = 0.5 \log\left(\frac{1 - \varepsilon_k}{\varepsilon_k} \right)
$$
- stronger classifier gets more votes
- Update the weights on the training examples:

$$
W_i^{k+1} = W_i^{k-1} \exp\left\{ - y_i \alpha_k h(x_i; \theta_k) \right\}
$$
Boosting Example (Decision Stumps)

\(D_1\)

\(D_2\)

\(D_3\)

\(h_1\)

\(h_2\)

\(h_3\)

\(\varepsilon_1 = 0.30\)

\(\alpha_1 = 0.42\)

\(\varepsilon_2 = 0.21\)

\(\alpha_2 = 0.65\)

\(\varepsilon_3 = 0.14\)

\(\alpha_3 = 0.92\)
Boosting Example (Decision Stumps)

\[
H_{\text{final}} = \text{sign}(0.42 + 0.65 + 0.92)
\]

© Eric Xing @ CMU, 2006-2016
What is the criterion that we are optimizing? (measure of loss)
Measurement of error

- **Loss function:**
 \[\lambda(y, h(x)) \]
 (e.g. \(I(y \neq h(x)) \))

- **Generalization error:**
 \[L(h) = \mathbb{E}[\lambda(y, h(x))] \]

- **Objective:** find \(h \) with minimum *generalization* error

- **Main boosting idea:** minimize the *empirical* error:
 \[\hat{L}(h) = \frac{1}{N} \sum_{i=1}^{N} \lambda(y_i, h(x_i)) \]
Exponential Loss

- Empirical loss:
 \[
 \hat{L}(h) = \frac{1}{N} \sum_{i=1}^{N} \lambda(y_i, \hat{h}_m(x_i))
 \]

- Another possible measure of empirical loss is
 \[
 \hat{L}(h) = \sum_{i=1}^{n} \exp\{-y_i \hat{h}_m(x_i)\}
 \]
One possible measure of empirical loss is:

\[\hat{L}(h) = \sum_{i=1}^{n} \exp \left\{ - y_i \hat{h}_m(x_i) \right\} \]

\[= \sum_{i=1}^{n} \exp \left\{ - y_i \hat{h}_{m-1}(x_i) - y_i a_m h(x_i; \theta_m) \right\} \exp \left\{ - y_i a_m h(x_i; \theta_m) \right\} \]

\[= \sum_{i=1}^{n} W^{m-1}_i \exp \left\{ - y_i a_m h(x_i; \theta_m) \right\} \]

Recall that:

\[\hat{h}_m(x) = \alpha_1 h(x; \theta_1) + \ldots + \alpha_m h(x; \theta_m) \]

The combined classifier based on \(m - 1 \) iterations defines a weighted loss criterion for the next simple classifier to add.

Each training sample is weighted by its "classifiability" (or difficulty) seen by the classifier we have built so far.
Linearization of loss function

- We can simplify a bit the estimation criterion for the new component classifiers (assuming α is small)

$$\exp\{−y_ia_mh(x_i;\theta_m)\} \approx 1 − y_ia_mh(x_i;\theta_m)$$

- Now our empirical loss criterion reduces to

$$\sum_{i=1}^{n} \exp\{−y_i\hat{h}_m(x_i)\}$$

$$\approx \sum_{i=1}^{n} W_i^{m-1} (1 − y_ia_mh(x_i;\theta_m))$$

$$= \sum_{i=1}^{n} W_i^{m-1} − a_m \sum_{i=1}^{n} W_i^{m-1} y_ih(x_i;\theta_m)$$

- We could choose a new component classifier to optimize this weighted agreement
A possible algorithm

- At stage m we find θ^* that maximize (or at least give a sufficiently high) weighted agreement:

 $$\sum_{i=1}^{n} W_{i}^{m-1} y_{i} h(x_{i}; \theta_{m}^*)$$

 - each sample is weighted by its "difficulty" under the previously combined $m - 1$ classifiers,
 - more "difficult" samples received heavier attention as they dominate the total loss.

- Then we go back and find the "votes" α_m^* associated with the new classifier by minimizing the original weighted (exponential) loss $\hat{L}(h) = \sum_{i=1}^{n} W_{i}^{m-1} \exp\{-y_{i}a_{m} h(x_{i}; \theta_{m})\}$

 $$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$
The AdaBoost algorithm

- At the kth iteration we find (any) classifier $h(x; \theta_k^*)$ for which the weighted classification error:

$$
\varepsilon_k = \frac{\sum_{i=1}^{n} W_i^{k-1} I(y_i \neq h(x_i; \theta_k^*))}{\sum_{i=1}^{n} W_i^{k-1}}
$$

is better than change.

- This is meant to be "easy" --- weak classifier

- Determine how many “votes” to assign to the new component classifier:

$$
\alpha_k = 0.5 \log ((1 - \varepsilon_k) / \varepsilon_k)
$$

- stronger classifier gets more votes

- Update the weights on the training examples:

$$
W_i^k = W_i^{k-1} \exp \left\{ - y_i \alpha_k h(x_i; \theta_k) \right\}
$$
The AdaBoost algorithm cont’d

- The final classifier after m boosting iterations is given by the sign of

$$\hat{h}(x) = \frac{\alpha_1 h(x; \theta_1) + \ldots + \alpha_m h(x; \theta_m)}{\alpha_1 + \ldots + \alpha_m}$$

- the votes here are normalized for convenience
We have basically derived a Boosting algorithm that sequentially adds **new component classifiers**, each trained on reweighted training examples

- each component classifier is presented with a slightly different problem

AdaBoost preliminaries:
- we work with *normalized weights* W_i on the training examples, initially uniform ($W_i = 1/n$)
- the weight reflect the "degree of difficulty" of each datum on the latest classifier
AdaBoost: summary

- **Input:**
 - N examples $S_N = \{(x_1, y_1), \ldots, (x_N, y_N)\}$
 - a weak base learner $h = h(x, \theta)$

- **Initialize:** equal example weights $w_i = 1/N$ for all $i = 1..N$

- **Iterate for $t = 1\ldots T$:**
 1. train base learner according to weighted example set (w_t, x) and obtain hypothesis $h_t = h(x, \theta)$
 2. compute hypothesis error ε_t
 3. compute hypothesis weight α_t
 4. update example weights for next iteration w_{t+1}

- **Output:** final hypothesis as a linear combination of h_t
Base Learners

- Weak learners used in practice:
 - Decision stumps (axis parallel splits)
 - Decision trees (e.g. C4.5 by Quinlan 1996)
 - Multi-layer neural networks
 - Radial basis function networks

- Can base learners operate on weighted examples?
 - In many cases they can be modified to accept weights along with the examples
 - In general, we can sample the examples (with replacement) according to the distribution defined by the weights
Boosting results – Digit recognition

- Boosting often, but not always
 - Robust to overfitting
 - Test set error decreases even after training error is zero

[Schapire, 1989]
Generalization Error Bounds

\[\text{error}_{true}(H) \leq \text{error}_{train}(H) + \mathcal{O}\left(\sqrt{\frac{Td}{m}}\right) \]

- **bias**
 - large
 - small

- **variance**
 - small
 - large

- **tradeoff**
 - T small
 - T large

- **T** – number of boosting rounds
- **d** – VC dimension of weak learner, measures complexity of classifier
- **m** – number of training examples

[Freund & Schapire’95]
Generalization Error Bounds

Boosting can overfit if \(T \) is large

Boosting often,
- Robust to overfitting
- Test set error decreases even after training error is zero

Contradicts experimental results

\[
error_{true}(H) \leq error_{train}(H) + \tilde{O}\left(\sqrt{\frac{Td}{m}}\right)
\]

Need better analysis tools – margin based bounds

[Freund & Schapire'95]
Why it is working?

- You will need some learning theory (to be covered in the next two lectures) to understand this fully, but for now let's just go over some high level ideas.

- Generalization Error:

With high probability, Generalization error is less than:

$$\hat{\Pr} [H(x) \neq y] + \tilde{O} \left(\sqrt{\frac{T d}{m}} \right)$$

As T goes up, our bound becomes worse, Boosting should overfit!
Experiments

The Boosting Approach to Machine Learning, by Robert E. Schapire
Training Margins

- When a vote is taken, the more predictors agreeing, the more confident you are in your prediction.

- Margin for example:

\[
\text{margin}_h(x_i, y_i) = y_i \left[\frac{\alpha_1 h(x_i; \theta_1) + \ldots + \alpha_m h(x_i; \theta_m)}{\alpha_1 + \ldots + \alpha_m} \right]
\]

The margin lies in \([-1, 1]\) and is negative for all misclassified examples.

- Successive boosting iterations improve the majority vote or margin for the training examples.
A Margin Bound

- For any γ, the generalization error is less than:

$$\text{Pr}(\text{margin}_h(x,y) \leq \gamma) + O\left(\sqrt{\frac{d}{m\gamma^2}}\right)$$

- It does not depend on T!!!
Summary

- Boosting takes a weak learner and converts it to a strong one.
- Works by asymptotically minimizing the empirical error.
- Effectively maximizes the margin of the combined hypothesis.
Some additional points for fun
Boosting and Logistic Regression

Logistic regression assumes:

\[P(Y = 1|X) = \frac{1}{1 + \exp(f(x))} \]

And tries to maximize data likelihood:

\[P(D|f) = \prod_{i=1}^{m} \frac{1}{1 + \exp(-y_if(x_i))} \]

Equivalent to minimizing log loss

\[-\log P(D|f) = \sum_{i=1}^{m} \ln(1 + \exp(-y_if(x_i))) \]
Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss

\[\sum_{i=1}^{m} \ln(1 + \exp(-y_if(x_i))) \]

\[f(x) = w_0 + \sum_j w_j x_j \]

Boosting minimizes similar loss function!!

\[\frac{1}{m} \sum_{i=1}^{m} \exp(-y_if(x_i)) = \prod_t Z_t \]

\[f(x) = \sum_t \alpha_t h_t(x) \]

Weighted average of weak learners

Both smooth approximations of 0/1 loss!

\[y_i = 1 \]
Boosting and Logistic Regression

Logistic regression:
- Minimize log loss
 \[\sum_{i=1}^{m} \ln(1 + \exp(-y_if(x_i))) \]
- Define
 \[f(x) = \sum_j w_j x_j \]
 where \(x_j \) predefined features
 (linear classifier)
- Jointly optimize over all weights \(w_0, w_1, w_2 \ldots \)

Boosting:
- Minimize exp loss
 \[\sum_{i=1}^{m} \exp(-y_if(x_i)) \]
- Define
 \[f(x) = \sum_t \alpha_t h_t(x) \]
 where \(h_t(x) \) defined dynamically to fit data
 (not a linear classifier)
- Weights \(\alpha_t \) learned per iteration \(t \) incrementally
Hard & Soft Decision

Weighted average of weak learners

\[f(x) = \sum_t \alpha_t h_t(x) \]

Hard Decision/Predicted label:

\[H(x) = \text{sign}(f(x)) \]

Soft Decision: (based on analogy with logistic regression)

\[P(Y = 1|X) = \frac{1}{1 + \exp(f(x))} \]
Effect of Outliers

Good 😊: Can identify outliers since focuses on examples that are hard to categorize

Bad ☹: Too many outliers can degrade classification performance dramatically increase time to convergence
Gradient Boosting

- Goal: Find nonlinear predictor \(\hat{h}(x) \in \mathcal{H} \) such that

\[
\hat{h} = \arg \min_{h \in \mathcal{H}} \mathcal{L}(h(X), Y)
\]

- Gradient boosting generalizes Adaboost (exponential loss) to any smooth loss functions \(\mathcal{L}(\cdot, \cdot) \)

Square loss (regression)

\[
\mathcal{L}(h(X), Y) = \sum_{i=1}^{n} (h(x_i) - y_i)^2
\]

Logistic loss (classification)

\[
\mathcal{L}(h(X), Y) = \sum_{i=1}^{n} \ln(1 + e^{-h(x_i)y_i})
\]

Margin loss (ranking)

\[
\mathcal{L}(h(X), Y) = \max_{(i,i') : y_{(i,i')} = 1} \max(0, 1 - (h(x_i) - h(x_{i'})))^2
\]

(prefer item \(i \) over \(j \))

Others…
Gradient Boosting Decision Tree

- Let’s use decision tree to approximate $g_k - 1$
- A J-leaf node decision tree can be viewed as a partition of the input space

$$q : \mathbb{R}^d \rightarrow \{1, 2, \ldots, J\}$$

- and a prediction value (weight) associated with each partition

$$\omega \in \mathbb{R}^J$$

- Will learn q (tree structure) first, then ω