Machine Learning

10-701, Fall 2016

Advanced topics in Max-Margin Learning

Eric Xing

Lecture 7, September 28, 2016
Reading: class handouts

© Eric Xing @ CMU, 2006-2016
Recap: the SVM problem

- We solve the following constrained opt problem:

\[
\max_\alpha \quad J(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (x_i^T x_j)
\]

s.t. \(\alpha_i \geq 0, \quad i = 1, \ldots, m \)

\[
\sum_{i=1}^{m} \alpha_i y_i = 0.
\]

- This is a \textbf{quadratic programming} problem.

 - A global maximum of \(\alpha_i \) can always be found.

- The solution:

\[
w = \sum_{i=1}^{m} \alpha_i y_i x_i
\]

- How to predict:

\[
w^T x_{\text{new}} + b \leq 0
\]
The SMO algorithm

- Consider solving the unconstrained opt problem:
 \[
 \alpha^* = \arg\max_{\alpha} W(\alpha_1, \alpha_2, \ldots, \alpha_m)
 \]

- We've already seen three opt algorithms!
 - Coordinate ascent
 - Gradient ascent
 - Newton-Raphson

- Coordinate ascent:
 \[
 \begin{align*}
 \frac{\partial W}{\partial \alpha_i} &= \frac{dW}{dx_i} \\
 \frac{\partial^2 W}{\partial \alpha_i^2} &= \frac{d^2W}{dx_i dx_i} = \left(\frac{d^2W}{dx_1 dx_1}, \frac{d^2W}{dx_2 dx_2}, \ldots \right) \\
 \alpha_i &= \frac{1}{\frac{dW}{dx_i} \frac{d^2W}{dx_i dx_i}}
 \end{align*}
 \]
Coordinate ascend
Sequential minimal optimization

- Constrained optimization:

\[
\max_{\alpha} \quad J(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (x_i^T x_j)
\]

\[
\text{s.t.} \quad 0 \leq \alpha_i \leq C, \quad i = 1, \ldots, m
\]

\[
\sum_{i=1}^{m} \alpha_i y_i = 0.
\]

- Question: can we do coordinate along one direction at a time (i.e., hold all \(\alpha_{[-i]}\) fixed, and update \(\alpha_i\)?)

\[
\Delta \alpha_i = \frac{\partial J}{\partial \alpha_i} = \sum_{i \neq j} \alpha_j y_j (x_i^T x_j)
\]

\[
\sum_{i \neq j} \alpha_i y_i = 0
\]
The SMO algorithm

Repeat till convergence

1. Select some pair α_i and α_j to update next (using a heuristic that tries to pick the two that will allow us to make the biggest progress towards the global maximum).

2. Re-optimize $J(\alpha)$ with respect to α_i and α_j, while holding all the other α_k's ($k \neq i; j$) fixed.

Will this procedure converge?
Convergence of SMO

\[\max_\alpha J(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (x_i^T x_j) \]

KKT:

\[\begin{align*}
0 & \leq \alpha_i \leq C, \quad i = 1, \ldots, k \\
\sum_{i=1}^{m} \alpha_i y_i & = 0.
\end{align*} \]

- Let's hold \(\alpha_3, \ldots, \alpha_m \) fixed and reopt \(J \) w.r.t. \(\alpha_1 \) and \(\alpha_2 \)
Convergence of SMO

- The constraints:
 \[\alpha_1 y_1 + \alpha_2 y_2 = \xi \]
 \[0 \leq \alpha_1 \leq C \]
 \[0 < \alpha_2 < C \]

- The objective:
 \[J(\alpha_1, \alpha_2, \ldots, \alpha_m) = J((\xi - \alpha_2 y_2) y_1, \alpha_2, \ldots, \alpha_m) \]

- Constrained opt:
Advanced topics in Max-Margin Learning

\[\max_\alpha J(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (x_i^T x_j) \]

\[w^T x_{\text{new}} + b \leq 0 \]

- Kernel
- Point rule or average rule
- Can we predict vec(y)?
Outline

- The Kernel trick
- Maximum entropy discrimination
- Structured SVM, aka, Maximum Margin Markov Networks
1) Non-linear Decision Boundary

- So far, we have only considered large-margin classifier with a linear decision boundary
- How to generalize it to become nonlinear?
- Key idea: transform \(x_i \) to a higher dimensional space to “make life easier”
 - Input space: the space the point \(x_i \) are located
 - Feature space: the space of \(\phi(x_i) \) after transformation
- Why transform?
 - Linear operation in the feature space is equivalent to non-linear operation in input space
 - Classification can become easier with a proper transformation. In the XOR problem, for example, adding a new feature of \(x_1x_2 \) make the problem linearly separable (homework)
Non-linear Decision Boundary
Transforming the Data

Note: feature space is of higher dimension than the input space in practice.
The Kernel Trick

- Recall the SVM optimization problem

\[
\max_\alpha \quad J(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (x_i^T x_j)
\]

s.t. \(0 \leq \alpha_i \leq C, \quad i = 1, \ldots, m\)

\[
\sum_{i=1}^{m} \alpha_i y_i = 0.
\]

- The data points only appear as inner product

- As long as we can calculate the inner product in the feature space, we do not need the mapping explicitly

- Many common geometric operations (angles, distances) can be expressed by inner products

- Define the kernel function \(K\) by

\[
K(x_i, x_j) = \phi(x_i)^T \phi(x_j)
\]

© Eric Xing @ CMU, 2006-2016
An Example for feature mapping and kernels

- Consider an input \(x = [x_1, x_2] \)
- Suppose \(\phi(.) \) is given as follows
 \[
 \phi\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = 1, \sqrt{2} x_1, \sqrt{2} x_2, x_1^2, x_2^2, \sqrt{2} x_1 x_2
 \]
- An inner product in the feature space is
 \[
 \langle \phi\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right), \phi\left(\begin{bmatrix} x_1' \\ x_2' \end{bmatrix}\right)\rangle = (1 + x_1 x_1' + \sqrt{2} x_1 x_2 + x_1^2 + x_1^2 + 2 x_1 \sqrt{2} x_1 x_2 + x_1'^2 + 2 x_1 x_1' x_2' + 2 x_1 x_1' x_2' + x_2'^2 + 2 x_2 x_1 x_2' + x_2^2 + 2 x_2 x_1' x_2')
 \]
 \[
 = (1 + x_1 x_1')^2
 \]
 kernel function:

- So, if we define the kernel function as follows, there is no need to carry out \(\phi(.) \) explicitly
 \[
 K(x, x') = (1 + x^T x')^2
 \]
More examples of kernel functions

- Linear kernel (we've seen it)

\[K(x, x') = x^T x' \]

- Polynomial kernel (we just saw an example)

\[K(x, x') = (1 + x^T x')^p \]

where \(p = 2, 3, \ldots \). To get the feature vectors we concatenate all \(p \)th order polynomial terms of the components of \(x \) (weighted appropriately).

- Radial basis kernel

\[K(x, x') = \exp \left(-\frac{1}{2} \|x - x'\|^2 \right) \]

In this case the feature space consists of functions and results in a non-parametric classifier.
The essence of kernel

- Feature mapping, but “without paying a cost”
 - E.g., polynomial kernel
 \[K(x, z) = (x^T z + c)^d \]
 - How many dimensions we’ve got in the new space?
 - How many operations it takes to compute K()?

- Kernel design, any principle?
 - \(K(x, z) \) can be thought of as a similarity function between x and z
 - This intuition can be well reflected in the following “Gaussian” function
 (Similarly one can easily come up with other K() in the same spirit)
 \[K(x, z) = \exp \left(- \frac{||x - z||^2}{2\sigma^2} \right) \]
 - Is this necessarily lead to a “legal” kernel?
 (in the above particular case, K() is a legal one, do you know how many dimension \(\phi(x) \) is?)
Kernel matrix

- Suppose for now that K is indeed a valid kernel corresponding to some feature mapping ϕ, then for x_1, \ldots, x_m, we can compute an $m \times m$ matrix $K = \{K_{i,j}\}$, where
 $$K_{i,j} = \phi(x_i)^T \phi(x_j)$$

- This is called a kernel matrix!

- Now, if a kernel function is indeed a valid kernel, and its elements are dot-product in the transformed feature space, it must satisfy:
 - Symmetry
 - proof
 $$K_{i,j} = \phi(x_i)^T \phi(x_j) = \phi(x_j)^T \phi(x_i) = K_{j,i}$$
 - Positive–semidefinite
 - proof?
 $$y^T K y \geq 0 \quad \forall y$$
Mercer kernel

Theorem (Mercer): Let \(K : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R} \) be given. Then for \(K \) to be a valid (Mercer) kernel, it is necessary and sufficient that for any \(\{x_i, \ldots, x_m\}, (m < \infty) \), the corresponding kernel matrix is symmetric positive semi-definite.
SVM examples

linear

2nd order polynomial

4th order polynomial

8th order polynomial
Examples for Non Linear SVMs – Gaussian Kernel

Linear

Gaussian
(2) Model averaging

- Inputs \mathbf{x}, class $y = +1, -1$
- data $\mathcal{D} = \{ (x_1, y_1), \ldots, (x_m, y_m) \}$

Point Rule: $\mathbf{w}^T y$

- learn $f_{\text{opt}}(x)$ discriminant function from $\mathcal{F} = \{ f \}$ family of discriminants
- classify $y = \text{sign } f_{\text{opt}}(x)$

- E.g., SVM

$$f_{\text{opt}}(\mathbf{x}) = \mathbf{w}^T \mathbf{x}_{\text{new}} + b$$
Model averaging

- There exist many f with near optimal performance

- Instead of choosing f^{opt}, average over all f in F

 $$Q(f) = \text{weight of } f$$

 $$y(x) = \text{sign} \int_{F} Q(f) f(x) df$$

 $$= \text{sign} \langle f(x) \rangle_{Q}$$

- How to specify:
 $F = \{ f \}$ family of discriminant functions?

- How to learn $Q(f)$ distribution over F?
Recall Bayesian Inference

- Bayesian learning:
 \[p_0(w) \]
 \[D = \{(x_i, y_i)\}_{i=1}^N \]
 Bayes Thrm: \[p(w|D) = \frac{p(w)p(D|w)}{p(D)} \]

- Bayes Predictor (model averaging):
 \[h_1(x; p(w)) = \arg \max_{y \in \mathcal{Y}(x)} \int p(w)f(x, y; w)dw \]

 Recall in SVM: \[h_0(x; w) = \arg \max_{y \in \mathcal{Y}(x)} F(x, y; w) \]

- What \(p_0 \)?
How to score distributions?

- Entropy
 - Entropy $H(X)$ of a random variable X

 $$H(X) = - \sum_{i=1}^{N} P(x = i) \log_2 P(x = i)$$

 - $H(X)$ is the expected number of bits needed to encode a randomly drawn value of X (under most efficient code)
 - Why?

Information theory:
Most efficient code assigns $-\log_2 P(X=i)$ bits to encode the message $X=i$,
So, expected number of bits to code one random X is:

$$- \sum_{i=1}^{N} P(x = i) \log_2 P(x = i)$$
Maximum Entropy Discrimination

- Given data set \(\mathcal{D} = \{(x_i, y_i)\}_{i=1}^{N} \) find

\[
Q_{ME} = \arg \max \quad H(Q) \\
\text{s.t.} \\
y^i (f(x^i))_{Q_{ME}} \geq \xi_i, \quad \forall i \\
\xi_i \geq 0, \quad \forall i
\]

- solution \(Q_{ME} \) correctly classifies \(\mathcal{D} \)
- among all admissible \(Q, Q_{ME} \) has max entropy
- max entropy \(\rightarrow \) "minimum assumption" about \(f \)
Introducing Priors

- Prior \(Q_0(f) \)

- **Minimum Relative Entropy** Discrimination

\[
Q_{MRE} = \arg \min Q \left(\sum_i y_i \langle f(x_i) \rangle_{Q_{ME}} - \xi_i \right) \quad \text{s.t.} \quad \xi_i \geq 0 \quad \forall i
\]

- Convex problem: \(Q_{MRE} \) unique solution

- MER → "minimum additional assumption" over \(Q_0 \) about \(f \)
Solution: Q_{ME} as a projection

- Convex problem: Q_{ME} unique
- Theorem: $f(w) \geq \text{proj}_Q(w)$

\[Q_{MRE} \propto \exp\left\{ \sum_{i=1}^{N} \alpha_i y_i f(x_i; w) \right\} Q_0(w) \]

$\alpha_i \geq 0$ Lagrange multipliers

- finding Q_M: start with $\alpha_i = 0$ and follow gradient of unsatisfied constraints
Solution to MED

- Theorem (Solution to MED):
 - Posterior Distribution:
 \[Q(w) = \frac{1}{Z(\alpha)} Q_0(w) \exp \left\{ \sum_i \alpha_i y_i [f(x_i; w)] \right\} \]
 - Dual Optimization Problem:
 \[\text{D1} : \max_{\alpha} - \log Z(\alpha) - U^*(\alpha) \]
 \[\text{s.t.} \quad \alpha_i(y) \geq 0, \quad \forall i, \]
 \[U^*(\cdot) \text{ is the conjugate of the } U(\cdot), \text{ i.e., } U^*(\alpha) = \sup_\xi \left(\sum_{i,y} \alpha_i(y) \xi_i - U(\xi) \right) \]

- Algorithm: to compute \(\alpha_t, \ t = 1, \ldots, T \)
 - start with \(\alpha_t = 0 \) (uniform distribution)
 - iterative ascent on \(J(\alpha) \) until convergence
Examples: SVMs

- **Theorem**

For \(f(x) = w^T x + b \) where \(Q_0(w) = \text{Normal}(0, I) \) and \(Q_0(b) = \text{non-informative prior} \), the Lagrange multipliers \(\alpha \) are obtained by maximizing \(J(\alpha) \) subject to \(0 \leq \alpha_t \leq C \) and \(\sum_t \alpha_t y_t = 0 \), where

\[
J(\alpha) = \sum_t \left[\alpha_t + \log(1 - \alpha_t/C) \right] - \frac{1}{2} \sum_{s,t} \alpha_s \alpha_t y_s y_t x_s^T x_t
\]

- **Separable** \(D \rightarrow \text{SVM recovered exactly} \)
- **Inseparable** \(D \rightarrow \text{SVM recovered with different misclassification penalty} \)
SVM extensions

- Example: Leptograpsus Crabs (5 inputs, $T_{\text{train}}=80$, $T_{\text{test}}=120$)
(3) Structured Prediction

- Unstructured prediction

\[x = \begin{pmatrix} x_{11} & x_{12} & \cdots \\ x_{21} & x_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} \quad y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \end{pmatrix} \]

- Structured prediction

 - Part of speech tagging

 \[x = \text{“Do you want sugar in it?”} \quad \Rightarrow \quad y = \text{verb pron verb noun prep pron} > \]

 - Image segmentation

\[x = \begin{pmatrix} x_{11} & x_{12} & \cdots \\ x_{21} & x_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} \quad y = \begin{pmatrix} y_{11} & y_{12} & \cdots \\ y_{21} & y_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} \]
OCR example

Sequential structure

© Eric Xing @ CMU, 2006-2016
Classical Classification Models

- **Inputs:**
 - a set of training samples \(\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N \), where
 \[
x_i = [x_i^1, x_i^2, \ldots, x_i^d]^\top \quad \text{and} \quad y_i \in C \triangleq \{c_1, c_2, \ldots, c_L\}
\]

- **Outputs:**
 - a predictive function \(h(x) \):
 \[
y^* = h(x) \triangleq \arg \max_y F(x, y)
 \]
 \[
 F(x, y) = w^\top f(x, y)
 \]

- **Examples:**
 - SVM:
 \[
 \max_{w, \xi} \frac{1}{2} w^\top w + C \sum_{i=1}^N \xi_i \quad \text{s.t.} \quad w^\top f_i(y) \geq 1 - \xi_i, \quad \forall i, \forall y.
 \]
 - Logistic Regression:
 \[
 \max_w \mathcal{L}(\mathcal{D}; w) \triangleq \sum_{i=1}^N \log p(y_i|x_i)
 \]
 where
 \[
p(y|x) = \frac{\exp\{w^\top f(x, y)\}}{\sum_{y'} \exp\{w^\top f(x, y')\}}
 \]
Structured Models

\[h(x) = \arg \max_{y \in \mathcal{Y}(x)} F(x, y) \]

- Assumptions:
 - Linear combination of features
 - Sum of partial scores: index \(p \) represents a part in the structure
 - Random fields or Markov network features:

\[F(x, y) = w^\top f(x, y) = \sum_p w^\top f(x_p, y_p) \]
Discriminative Learning Strategies

- **Max Conditional Likelihood**
 - We predict based on:
 \[
 y^* \mid x = \arg \max_y p_w(y \mid x) = \frac{1}{Z(w, x)} \exp \left\{ \sum_c w_c f_c(x, y_c) \right\}
 \]
 - And we learn based on:
 \[
 w^* \mid \{y_i, x_i\} = \arg \max_w \prod_i p_w(y_i \mid x_i) = \prod_i \frac{1}{Z(w, x_i)} \exp \left\{ \sum_c w_c f_c(x_i, y_i) \right\}
 \]

- **Max Margin**:
 - We predict based on:
 \[
 y^* \mid x = \arg \max_y \sum_c w_c f_c(x, y_c) = \arg \max_y w^T f(x, y)
 \]
 - And we learn based on:
 \[
 w^* \mid \{y_i, x_i\} = \arg \max_w \left(\min_{y \neq y', \forall i} w^T (f(y_i, x_i) - f(y, x_i)) \right)
 \]
E.g. Max-Margin Markov Networks

- Convex Optimization Problem:

\[
P_0 (\mathcal{M}^3 \mathcal{N}) : \min_{w, \xi} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{N} \xi_i
\]

s.t. \(\forall i, \forall y \neq y_i : \quad w^\top \Delta f_i(x, y) \geq \Delta l_i(y) - \xi_i, \; \xi_i \geq 0 \),

- Feasible subspace of weights:

\[
\mathcal{F}_0 = \{ w : w^\top \Delta f_i(x, y) \geq \Delta l_i(y) - \xi_i; \; \forall i, \forall y \neq y_i \}
\]

- Predictive Function:

\[
h_0(x; w) = \arg \max_{y \in \mathcal{Y}(x)} F(x, y; w)
\]
OCR Example

- We want:
 \[
 \arg\max_{\text{word}} w^T f(\text{brace} , \text{word}) = \text{“brace”}
 \]

- Equivalently:
 \[
 w^T f(\text{brace} , \text{“brace”}) > w^T f(\text{brace} , \text{“aaaaa”})

 w^T f(\text{brace} , \text{“brace”}) > w^T f(\text{brace} , \text{“aaaab”})

 \ldots

 w^T f(\text{brace} , \text{“brace”}) > w^T f(\text{brace} , \text{“zzzzz”})
 \]
Brute force enumeration of constraints:
\[\min \frac{1}{2} \|w\|^2 \]
\[w^T f(x, y^*) \geq w^T f(x, y) + \ell(y^*, y), \quad \forall y \]
- The constraints are exponential in the size of the structure

Alternative: min-max formulation
- add only the most violated constraint

\[y' = \arg \max_{y \neq y^*} [w^T f(x_i, y) + \ell(y_i, y)] \]

add to QP: \[w^T f(x_i, y_i) \geq w^T f(x_i, y') + \ell(y_i, y') \]
- Handles more general loss functions
- Only polynomial # of constraints needed
- Several algorithms exist …
Results: Handwriting Recognition

Length: ~8 chars
Letter: 16x8 pixels
10-fold Train/Test
5000/50000 letters
600/6000 words

Models:
Multiclass-SVMs
M^3 nets

33% error reduction over multiclass SVMs

© Eric Xing @ CMU, 2006-2016
Discriminative Learning Paradigms

SVM

\[y = \text{sign}(w^T x + b) \]

\[
\begin{align*}
\min_{w, \xi} & \quad \frac{1}{2}||w||^2 + C \sum_{i=1}^{m} \xi_i \\
y^i(w^T x^i + b) & \geq 1 - \xi_i, \quad \forall i
\end{align*}
\]

M^3N

\[y = \arg \max_{y \in \mathcal{Y}(x)} F(x, y; w) \]

\[
\begin{align*}
\min_{w, \xi} & \quad \frac{1}{2}||w||^2 + C \sum_{i=1}^{m} \xi_i \\
w^T [f(x^i) - f(x^i, y)] & \geq \ell(y^i, y) - \xi_i, \quad \forall i, \forall y \neq y^i
\end{align*}
\]

MED

\[y = \text{sign}(\langle f(x, w) \rangle_{Q(w)}) \]

\[
\begin{align*}
\min_{Q} & \quad \text{KL}(Q \| Q_0) \\
y^i(f(x^i))_Q & \geq \xi_i, \quad \forall i
\end{align*}
\]

MED-MN

\[= \text{SMED} + \text{Bayesian M}^3\text{N} \]

See [Zhu and Xing, 2008]
Summary

- Maximum margin nonlinear separator
 - Kernel trick
 - Project into linearly separable space (possibly high or infinite dimensional)
 - No need to know the explicit projection function
- Max-entropy discrimination
 - Average rule for prediction,
 - Average taken over a posterior distribution of w who defines the separation hyperplane
 - P(w) is obtained by max-entropy or min-KL principle, subject to expected marginal constraints on the training examples
- Max-margin Markov network
 - Multi-variate, rather than uni-variate output Y
 - Variable in the outputs are not independent of each other (structured input/output)
 - Margin constraint over every possible configuration of Y (exponentially many!)