“Nonparametric” methods for Classification

Eric Xing

Lecture 2, September 12, 2016

Reading:
© Eric Xing @ CMU, 2006-2016
Classification

- Representing data:

- Hypothesis (classifier)
Clustering
Supervised vs. Unsupervised Learning
Univariate prediction without using a model: good or bad?

- Nonparametric Classifier (Instance-based learning)
 - Nonparametric density estimation
 - K-nearest-neighbor classifier
 - Optimality of kNN

- Spectrum clustering
 - Clustering
 - Graph partition and normalized cut
 - The spectral clustering algorithm

- Very little “learning” is involved in these methods

- But they are indeed among the most popular and powerful “machine learning” methods
Decision-making as dividing a high-dimensional space

- Class-specific Dist.: \(P(X|Y) \)
 - \(p(X|Y=1) = p_1(X; \mu_1, \Sigma_1) \)
 - \(p(X|Y=2) = p_2(X; \mu_2, \Sigma_2) \)

- Class prior (i.e., "weight"): \(P(Y) \)
 - \(\frac{P(Y|X)}{P(Y)} = \frac{P(X|Y)P(Y)}{\sum_{y} P(X|y)P(y)} \)
The Bayes Decision Rule for Minimum Error

- The \emph{a posteriori} probability of a sample

\[
P(Y = i | X) = \frac{p(X | Y = i)P(Y = i)}{p(X)} = \frac{\pi_i p_i(X | Y = i)}{\sum_i \pi_i p_i(X | Y = i)} \equiv q_i(X)
\]

- Bayes Test:

\[
\frac{q_i(x)}{q_j(x)} \geq 1 \implies \frac{\pi_i p_i(x | Y = i)}{\pi_j p_j(x | Y = j)} \geq 1 \implies \sqrt{\frac{p_i}{p_j}} \leq \sqrt{\frac{\pi_j}{\pi_i}}
\]

- Likelihood Ratio:

\[
\ell(X) = \frac{p_i}{p_j}
\]

- Discriminant function:

\[
h(X) = \log \left(\frac{l_i}{l_j} \right) = \log p_i - \log p_j \leq \log \pi_i - \log \pi_j.
\]
Example of Decision Rules

- When each class is a normal ...

- We can write the decision boundary analytically in some cases ... homework!!
Bayes Error

- We must calculate the *probability of error*
 - the probability that a sample is assigned to the wrong class
- Given a datum X, what is the *risk*?
 $$r(X) = \min[q_1(X), q_2(X)]$$
- The Bayes error (the expected risk):
 $$\epsilon = E[r(X)] = \int r(x)p(x)dx$$
 $$= \int \min[\pi_ip_1(x), \pi_2p_2(x)]dx$$
 $$= \pi_1 \int_{L_1} p_1(x)dx + \pi_2 \int_{L_2} p_2(x)dx$$
 $$= \pi_1 \epsilon_1 + \pi_2 \epsilon_2$$
More on Bayes Error

- Bayes error is the lower bound of probability of classification error
- Bayes classifier is the theoretically best classifier that minimize probability of classification error
- Computing Bayes error is in general a very complex problem. Why?
 - Density estimation:
 - Integrating density function:

\[
\epsilon_1 = \int_{\ln(\pi_1/\pi_2)}^{+\infty} p_1(x)dx \\
\epsilon_2 = \int_{-\infty}^{\ln(\pi_1/\pi_2)} p_2(x)dx
\]
Learning Classifier

- The decision rule:

\[h(X) = -\ln p_1(X) + \ln p_2(X) > \ln \frac{\pi_1}{\pi_2} \]

- Learning strategies
 - Generative Learning
 - Discriminative Learning
 - Instance-based Learning (Store all past experience in memory)
 - A special case of nonparametric classifier

- K-Nearest-Neighbor Classifier:
 where the \(h(X) \) is represented by **ALL the data**, and by an **algorithm**
Recall: Vector Space Representation

- Each document is a vector, one component for each term (= word).

<table>
<thead>
<tr>
<th></th>
<th>Doc 1</th>
<th>Doc 2</th>
<th>Doc 3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word 1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>Word 2</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>Word 3</td>
<td>12</td>
<td>1</td>
<td>10</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
</tbody>
</table>

- Normalize to unit length.
- High-dimensional vector space:
 - Terms are axes, 10,000+ dimensions, or even 100,000+
 - Docs are vectors in this space
Test Document = ?

- Sports
- Science
- Arts

© Eric Xing @ CMU, 2006-2016
1-Nearest Neighbor (kNN) classifier
2-Nearest Neighbor (kNN) classifier
3-Nearest Neighbor (kNN) classifier
K-Nearest Neighbor (kNN) classifier

Voting kNN

Sports
Science
Arts
Classes in a Vector Space

- Sports
- Science
- Arts
kNN Is Close to Optimal

- Cover and Hart 1967
- Asymptotically, the error rate of 1-nearest-neighbor classification is less than twice the Bayes rate [error rate of classifier knowing model that generated data]
- In particular, asymptotic error rate is 0 if Bayes rate is 0.
- Decision boundary:
Where does kNN come from?

- How to estimation \(p(X) \)?

- Nonparametric density estimation
 - Parzen density estimate

 E.g. (Kernel density est.):

 \[
 \hat{p}(X) = \frac{1}{N} \sum_{i=1}^{N} \kappa(X - x_i)
 \]

 More generally:
 \[
 \hat{p}(X) = \frac{1}{N} \frac{k(X)}{V}
 \]
Where does kNN come from?

- **Nonparametric density estimation**
 - Parzen density estimate
 \[
 \hat{p}(X) = \frac{1}{N} \frac{k(X)}{V}
 \]
 - kNN density estimate
 \[
 \hat{p}(X) = \frac{1}{N} \frac{(k - 1)}{V(X)}
 \]

- Bayes classifier based on kNN density estimator:
 \[
 h(X) = -\ln \frac{p_1(X)}{p_2(X)} = -\ln \frac{(k_1 - 1)N_2V_2(X)}{(k_2 - 1)N_1V_1(X)} < \ln \frac{\pi_1}{\pi_2}
 \]
 - Voting kNN classifier

Pick \(K_1\) and \(K_2\) implicitly by picking \(K_1+K_2=K\), \(V_1=V_2\), \(N_1=N_2\)
Asymptotic Analysis

- **Condition risk:** \(r_k(X, X_{NN}) \)
 - Test sample \(X \)
 - NN sample \(X_{NN} \)
 - Denote the event \(X \) is class I as \(X \leftrightarrow I \)

- Assuming \(k=1 \)

 \[
 r_1(X, X_{NN}) = Pr\left\{ \{X \leftrightarrow 1 \& X_{NN} \leftrightarrow 2\} \text{ or } \{X \leftrightarrow 2 \& X_{NN} \leftrightarrow 1\} | X, X_{NN} \right\}
 = Pr\left\{ \{X \leftrightarrow 1 \& X_{NN} \leftrightarrow 2\} \right\} + Pr\left\{ \{X \leftrightarrow 2 \& X_{NN} \leftrightarrow 1\} | X, X_{NN} \right\}
 = q_1(X)q_2(X_{NN}) + q_2(X)q_1(X_{NN})
 \]

- When an infinite number of samples is available, \(X_{NN} \) will be so close to \(X \)

 \[
 r_1^*(X) = 2q_1(X)q_2(X) = 2\xi(X)
 \]
Recall conditional Bayes risk:

\[r^*(X) = \min[q_1(X), q_2(X)] \]

\[= \frac{1}{2} - \frac{1}{2} \sqrt{1 - 4\xi(X)} \]

\[= \sum_{i=1}^{\infty} \frac{1}{i} \left(\frac{2^i - 2}{i - 1} \right) \xi^i(X) \]

This is called the MacLaurin series expansion

Thus the asymptotic condition risk

\[r_1^*(X) = 2\xi(X) \leq 2r^*(X) \]

It can be shown that \(\epsilon^*_1 \leq 2\epsilon^* \)

This is remarkable, considering that the procedure does not use any information about the underlying distributions and only the class of the single nearest neighbor determines the outcome of the decision.
In fact

\[\frac{1}{2} \epsilon^* \leq \epsilon_{2NN}^* \leq \epsilon_{4NN}^* \leq \ldots \leq \epsilon^* \leq \ldots \leq \epsilon_{3NN}^* \leq \epsilon_{NN}^* \leq 2\epsilon^* \]

- Example:

\[\hat{\epsilon}^* = \frac{4}{N} \]
\[\hat{\epsilon}_{NN} = \frac{6}{N} \]
\[\hat{\epsilon}_{2NN} = \frac{3}{N} \]

© Eric Xing @ CMU, 2006-2016
kNN is an instance of Instance-Based Learning

- What makes an Instance-Based Learner?
 - A distance metric
 - How many nearby neighbors to look at?
 - A weighting function (optional)
 - How to relate to the local points?
Distance Metric

- **Euclidean distance:**
 \[D(x, x') = \sqrt{\sum_i \sigma_i^2 (x_i - x_i')^2} \]
- Or equivalently,

\[D(x, x') = \sqrt{(x - x')^T \Sigma (x - x')} \]

- **Other metrics:**
 - L₁ norm: |x-x'|
 - Lₘ norm: max |x-x'| (elementwise …)
 - Mahalanobis: where Σ is full, and symmetric
 - Correlation
 - Angle
 - Hamming distance, Manhattan distance
 - …
Case Study:
kNN for Web Classification

- Dataset
 - 20 News Groups (20 classes)
 - Download: (http://people.csail.mit.edu/jrennie/20Newsgroups/)
 - 61,118 words, 18,774 documents
 - Class labels descriptions

<table>
<thead>
<tr>
<th>comp.graphics</th>
<th>comp.os.ms-windows.misc</th>
<th>comp.sys.ibm.pc.hardware</th>
<th>comp.sys.mac.hardware</th>
<th>comp.windows.x</th>
<th>rec.autos</th>
<th>rec.motorcycles</th>
<th>rec.sport.baseball</th>
<th>rec.sport.hockey</th>
<th>sci.crypt</th>
<th>sci.electronics</th>
<th>sci.med</th>
<th>sci.space</th>
</tr>
</thead>
<tbody>
<tr>
<td>misc.forsale</td>
<td>talk.politics.misc</td>
<td>talk.politics.guns</td>
<td>talk.politics.mideast</td>
<td>talk.religion.misc</td>
<td>alt.atheism</td>
<td>soc.religion.christian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Experimental Setup

- **Training/Test Sets:**
 - 50%-50% randomly split.
 - 10 runs
 - report average results

- **Evaluation Criteria:**

\[
\text{Accuracy} = \frac{\sum_{i\in \text{test set}} I(\text{predict}_i = \text{true label}_i)}{\# \text{ of test samples}}
\]
Results: Binary Classes

Accuracy

alt.atheism vs. comp.graphics

rec.autos vs. rec.sport.baseball

comp.windows.x vs. rec.motorcycles
Results: Multiple Classes

Random select 5-out-of-20 classes, repeat 10 runs and average

Accuracy

All 20 classes
Is kNN ideal? … more later
Effect of Parameters

- **Sample size**
 - The more the better
 - Need efficient search algorithm for NN

- **Dimensionality**
 - Curse of dimensionality

- **Density**
 - How smooth?

- **Metric**
 - The relative scalings in the distance metric affect region shapes.

- **Weight**
 - Spurious or less relevant points need to be downweighted

- **K**
Sample size and dimensionality

\[E[\hat{\epsilon}_{NN}] \simeq \epsilon_{NN} + \beta_1 f(X) \]
Neighborhood size

![Graph showing the relationship between neighborhood size and error rate. The graph compares different methods, including BAYES, with error rates ranging from 2% to 8%. The x-axis represents the neighborhood size, and the y-axis represents the error rate as a percentage.](image-url)
kNN for image classification: basic set-up

Antelope

Jellyfish

German Shepherd

Trombone

Kangaroo
Voting …

Antelope Jellyfish German Shepherd Kangaroo Trombone

5-NN

Count

0 1 2 3

Antelope Jellyfish German Shepherd Kangaroo Trombone

© Eric Xing @ CMU, 2006-2016
10K classes, 4.5M Queries, 4.5M training
KNN on 10K classes

- 10K classes
- 4.5M queries
- 4.5M training
- Features
 - BOW
 - GIST

Deng, Berg, Li & Fei-Fei, ECCV 2010
Nearest Neighbor Search in High Dimensional Metric Space

- Linear Search:
 - E.g. scanning 4.5M images!

- k-D trees:
 - axis parallel partitions of the data
 - Only effective in low-dimensional data

- Large Scale Approximate Indexing
 - Locality Sensitive Hashing (LSH)
 - Spill-Tree
 - NV-Tree
 - All above run on a single machine with all data in memory, and scale to millions of images

- Web-scale Approximate Indexing
 - Parallel variant of Spill-tree, NV-tree on distributed systems,
 - Scale to Billions of images in disks on multiple machines
Locality sensitive hashing

- **Approximate kNN**
 - Good enough in practice
 - Can get around curse of dimensionality

- **Locality sensitive hashing**
 - Near feature points \rightarrow (likely) same hash values
Example: Random projection

- $h(x) = \text{sgn}\ (x \cdot r)$, r is a random unit vector
- $h(x)$ gives 1 bit. Repeat and concatenate.
- $\text{Prob}[h(x) = h(y)] = 1 - \theta(x,y) / \pi$

Hash table

© Eric Xing @ CMU, 2006-2016
Example: Random projection

- $h(x) = \text{sgn} \ (x \cdot r)$, r is a random unit vector
- $h(x)$ gives 1 bit. Repeat and concatenate.
- $\text{Prob}[h(x) = h(y)] = 1 - \frac{\theta(x,y)}{\pi}$

$$
\begin{align*}
\text{h(x) = 0, h(y) = 0} & \\
\text{h(x) = 0, h(y) = 0} & \\
\text{h(x) = 0, h(y) = 0} & \\
\end{align*}
$$

Hash table

© Eric Xing @ CMU, 2006-2016
Locality sensitive hashing

Retrieved NNs

Hash table
Locality sensitive hashing

- 1000X speed-up with 50% recall of top 10-NN
- 1.2M images + 1000 dimensions
Summary: Nearest-Neighbor Learning Algorithm

- Learning is just storing the representations of the training examples in D.

- Testing instance x:
 - Compute similarity between x and all examples in D.
 - Assign x the category of the most similar example in D.

- Does not explicitly compute a generalization or category prototype.

- Efficient indexing needed in high dimensional, large-scale problems.

- Also called:
 - Case-based learning
 - Memory-based learning
 - Lazy learning
Bayes classifier is the best classifier which minimizes the probability of classification error.

Nonparametric and parametric classifier

A nonparametric classifier does not rely on any assumption concerning the structure of the underlying density function.

A classifier becomes the Bayes classifier if the density estimates converge to the true densities when an infinite number of samples are used.

The resulting error is the Bayes error, the smallest achievable error given the underlying distributions.