Machine Learning

10-701, Fall 2016

Graphical Models
and
Exact Inference

Reading: Chap. 8, C.B book
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Recap of Basic Prob. Concepts o

e Representation: what is the joint probability dist. on multiple

variables?
P(X,, X, X5, X, X, X, X0 Xy)
A ]
e How many state configurations in total? --- 28
Are they all needed to be represented? ¢ g
[ J H
e Do we get any scientific/medical insight?

e Learning: where do we get all this probabilities?
e Maximal-likelihood estimation? but how many data do we need?
e Are there other est. principles?

e Where do we put domain knowledge in terms of plausible relationships between variables, and
plausible values of the probabilities?

e Inference: If not all variables are observable, how to compute the
conditional distribution of latent variables given evidence?

e Computing p(H|A) would require summing over all 26 configurations of the

unobserved variables o
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: : 0000
What is a Graphical Model? 13
--- Multivariate Distribution in High-D Space °
e A possible world for cellular signal transduction:
[ReceptorA ] X [ReceptorB ] X,
[ Kinase C ] X; [ Kinase D ] X, [ Kinase E ] X5
[ TF F } X,
[ Gene G ] X, [ Gene H ] X,
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000
GM: Structure Simplifies 3
Representation oo
e Dependencies among variables
[ Receptor A ] X, [ Receptor B ] X,
S l _____________________________________________________________________ M e_lzlP_r?zl_e_i
[ Kinase C ] X, [ Kinase D ] X, [ Kinase E X5
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Probabilistic Graphical Models -

a If Xi's are conditionally independent (as described by a PGM;, the

joint can be factored to a product of simpler terms, e.g.,

P(X1, Xy, X3, Xy Xg, Xg, X7, Xg)

= P(Xp) P(Xp) POX3 Xp) POX,[ X)) POXg| X,)
P(Xgl X3, Xg) P(X7| Xg) P(Xg| X5, Xg)

Stay tune for what are these independencies!

a Why we may favor a PGM?

a Incorporation of domain knowledge and causal (logical) structures
1+1+2+2+2+4+2+4=18, a 16-fold reduction from 28 in representation cost !
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GM: Data Integration

Rt Kinase D

Receptor B
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More Data Integration -

e Text + Image + Network =>» Holistic Social Media

e (Genome + Proteome + Transcritome + Phenome + ... =
PanOmic Biology
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Probabilistic Graphical Models -

a If Xi's are conditionally independent (as described by a PGM;, the

joint can be factored to a product of simpler terms, e.g.,

P(X1, X5, X3, X4y Xg, Xg, X7, Xg)
= P(X;) P(X4| X)) P(Xs5| X5)

a Why we may favor a PGM?

0 Incorporation of domain knowledge and causal (logical) structures
2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28 in representation cost !

0 Modular combination of heterogeneous parts — data fusion
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Rational Statistical Inference ot

The Bayes Theorem:

, Likelithood Prior
Posterior .
l probability

probability
p(d [ h) p(h)

PO =S o e

e

Sum over space
of hypotheses

e This allows us to capture uncertainty about the model in a principled way

e But how can we specify and represent a complicated model?

e Typically the number of genes need to be modeled are in the order of thousands!
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GM: MLE and Bayesian Learning

e Probabilistic statements of ® is conditioned on the values of the

observed variables A, . and prior p( |y)

¢l [Db [ E]

e [ H]

(ABCDE,..)=(T,EETE,...) llll.lll‘.” '<

A= (ABCDE,...)=(T.ET/TFE...

(A,BCDE,..)=(ETT,TE...)

@Bayes i j@ p(@ l A:Z) d@
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Probabilistic Graphical Models -

a If Xi's are conditionally independent (as described by a PGM;, the

joint can be factored to a product of simpler terms, e.g.,

P(X1, X5, X3, X4y Xg, Xg, X7, Xg)

= P(Xp) P(Xp) POX3 Xp) POX,[ X)) POXg| X,)
P(Xgl X3, Xg) P(X7| Xg) P(Xg| X5, Xg)

a Why we may favor a PGM?

0 Incorporation of domain knowledge and causal (logical) structures
2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28 in representation cost !

0 Modular combination of heterogeneous parts — data fusion

0 Bayesian Philosophy =

e Knowledge meets data
© Eric Xing @ CMU, 2006-2016 11



So What Is a PGM After All? ot

In a nutshell:

PGM = Multivariate Statistics + Structure

GM = Multivariate Obj. Func. + Structure



So What Is a PGM After All? ot

e The informal blurb:

e Itis a smart way to write/specify/compose/design exponentially-large probability
distributions without paying an exponential cost, and at the same time endow the
distributions with structured semantics

P(X,X5,X5,X4,X5,X,X5,Xg) P(X.5) = P(X)P(X,)P(X; | X, X,)P(X,4 | X,)P(X5| X,)
e A more formal description: P(X4[X5, X)P(X7[X)P(Xg|X5, Xo)

e It refers to a family of distributions on a set of random variables that are
compatible with all the probabilistic independence propositions encoded by a
graph that connects these variables
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Two types of GMs oo

e Directed edges give causality relationships (Bayesian
Network or Directed Graphical Model):

P(Xy, Xo, Xz, X4 Xe, Xer X1 Xg)

= P(Xp) P(Xy) P(X5| Xp) PCX,| Xp) P(Xs| X,)
P(Xel X3 X,) POX7| Xg) P(Xg| X5, X¢)

e Undirected edges simply give correlations between variables
(Markov Random Field or Undirected Graphical model):

P(Xy, X0 Xay Xy Xes X, Xy Xo)
G x|
= 1/Z exp{E(X)+E(CX,)+E(X;, X)+E(X,, X)+E(X;, X)) s
+ E(Xg: X3, X)TE(X7, X)+E(Xg, X5, Xe)} . e
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Towards structural specification of 3
probability distribution oo

e Separation properties in the graph imply independence
properties about the associated variables

e For the graph to be useful, any conditional independence
properties we can derive from the graph should hold for the
probability distribution that the graph represents

e The Equivalence Theorem

For a graph G,

Let 9, denote the family of all distributions that satisfy 1(G),

Let 9, denote the family of all distributions that factor according to G,
Then 9,=9,.

© Eric Xing @ CMU, 2006-2016 15



Bayesian Networks .o

Structure: DAG

« Meaning: a node is o
conditionally independent
of every other node in the ota M

network outside its Markov
blanket

 Local conditional distributions Xyﬂ‘
(CPD) and the DAG <@ N
completely determine the \\‘ -

joint dist. m \‘

- Children's co-parent ]

« Give causality relationships,
and facilitate a generative
process

Descendent
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Markov Random Fields

Structure: undirected graph

 Meaning: a node is conditionally
independent of every other node
in the network given its Directed
neighbors

» Local contingency functions
(potentials) and the cliques in
the graph completely determine
the joint dist.

* Give correlations between
variables, but no explicit way to
generate samples

© Eric Xing @ CMU, 2006-2016
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0000
T
GMs are your old friends -
m,s

O
Parametric and nonparametric methods X X
X Y
Linear, conditional mixture, nonparametric o O

Generative and discriminative approach X X
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An
(incomplete)
genealogy -
of graphical
models

SBEM,
EBoltzmann
Machines

Wector
Juantization

/

Factarizl HRWIM
dyn ]
Cooperative

mix - mixiure

red-dim : reduced
dimensiaon
dyn Jdynamics

nonlin D nonlinear
switch  switching

(Picture by Zoubin
Ghahramani and
Sam Rowels)

dyn HMWM
Mixture of
Gaussians H
Q) G [RALE
edd-0lm
Mixture of
H MM =
[malks
. hixture of
Ciaussian Factor Analyzers
red-dirm
dyn
mix
Factor Analysis Switching
PCA
(FCA) State-space
_ dyn Models
nanlin
Linear
1ICA Dynamical
Systerns (S5Ms) N
dyn i
nonin Mixture of
LDSs
MNonlinear MNorlinear
G .
E;ufSSIEFI Cynamical
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Fancier GMs:
machine translation

usreatricted submarise warfars. We shall sadesvos
tn aplte of thin 1o kesp the United Btstes of
amsrics neutrsl. In the eveni of ihls mot esccesd-
ing, ve maxe Mexlec & propossl of sliisnce on tBe
folleving basis: mnke war together, SKe peate
nogether, gemerous finazelsl SEpEOrt An AN under=
sianding en sur pari that Mexzfco 8 o reconguer
the et territery in Tex Mexico, and
arizens. The sstilsssnt la detail Lo laft o you.
—_——e fou will 1n the Preaident of the sbove mest
wecrelly £8 #oos 68 the outbresk of war with the
Btales of Americs 18 certain and add the
nte own Imitdstive,
nee and at the ssas

i
auggeatien 1
bt Japhn 1o lmmediste ad
mediate Betwsen Japan and ourselves. Plesss
£all the Presidest's sttesticn te the fact that

the ruthless ssployee
offers ihe
faw memihs to make pence.” &1

he showld, €3

of eur submsrines new
apsllisg Englam

capett of

€i
() g
\_/ B
3

Q Om in

@
@

The HM-BIiTAM model
(B. Zhao and E.P Xing,
. ACL 2006)
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Fancier GMs:
solid state physics

Ising/Potts model

© Eric Xing @ CMU, 2006-2016 21



A Generative Scheme for model
design

© Eric Xing @ CMU, 2006-2016 22



Why graphical models -

e A language for communication
e A language for computation
e A language for development

e Origins:
e Wright 1920’s

e Independently developed by Spiegelhalter and Lauritzen in statistics and Pearl in
computer science in the late 1980’s

© Eric Xing @ CMU, 2006-2016 23



Why graphical models

e Probability theory provides the glue whereby the parts are combined,
ensuring that the system as a whole is consistent, and providing ways to
interface models to data.

e The graph theoretic side of graphical models provides both an intuitively
appealing interface by which humans can model highly-interacting sets of
variables as well as a data structure that lends itself naturally to the design of
efficient general-purpose algorithms.

e Many of the classical multivariate probabilistic systems studied in fields
such as statistics, systems engineering, information theory, pattern
recognition and statistical mechanics are special cases of the general
graphical model formalism

e The graphical model framework provides a way to view all of these systems
as instances of a common underlying formalism.

--- M. Jordan
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Bayesian Network: Factorization Theorem | ¢

P(Xy, Xp Xa) X4 Xs, Xg, X, Xg)

= P(Xp) P(Xp) PO Xy) POX,[ X)) POXg| Xy)
P(Xgl X3, Xg) P(X7] Xg) P(Xg| X5, Xg)

e Theorem:

Given a DAG, The most general form of the probability distribution
that is consistent with the (probabilistic independence properties
encoded in the) graph factors according to “node given its parents”:

P(X) = TP(X,X,)

where X is the set of parents of xi. d is the number of nodes
(variables) in the graph.
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Example: a pedigree of people o

e Genetic Pedigree

[
/ ;‘ Harry @,,

|Hnmer
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Specification of a BN

e There are two components to any GM:

e the qualitative specification
e the quantitative specification

© Eric Xing @ CMU, 2006-2016
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Qualitative Specification

e \Where does the qualitative specification come from?

e Prior knowledge of causal relationships

e Prior knowledge of modular relationships

e Assessment from experts

e Learning from data

e We simply link a certain architecture (e.g. a layered graph)

© Eric Xing @ CMU, 2006-2016
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Bayesian Network: Factorization Theorem | ¢

P(Xy, Xp Xa) X4 Xs, Xg, X, Xg)

= P(Xp) P(Xp) PO Xy) POX,[ X)) POXg| Xy)
P(Xgl X3, Xg) P(X7] Xg) P(Xg| X5, Xg)

e Theorem:

Given a DAG, The most general form of the probability distribution
that is consistent with the (probabilistic independence properties
encoded in the) graph factors according to “node given its parents”:

P(X) = TP(X,X,)

where X is the set of parents of xi. d is the number of nodes
(variables) in the graph.
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Local Structures & 44
Independencies 8

e Common parent (B D
e Fixing B decouples A and C

"given the level of gene B, the levels of A and C are independent” @ O

e (Cascade

e Knowing B decouples A and C CA_ > CB_ > CC O

"given the level of gene B, the level gene A provides no
extra prediction value for the level of gene C"

e Knowing C couples A and B
because A can "explain away" B w.r.t. C CC D

"If A correlates to C, then chance for B to also correlate to B will decrease"

e The language is compact, the concepts are rich!
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A simple justification
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Graph separation criterion +-

e D-separation criterion for Bayesian networks (D for Directed
edges):

Definition: variables x and y are D-separated (conditionally
independent) given z if they are separated in the moralized
ancestral graph

e Example:

X
X x{ y—
. Y
— z Y = z y

original graph ancestral moral ancestral

© Eric Xing @ CMU, 2006-2016 32



Local Markov properties of DAGs | ¢

Structure: DAG TR

 Meaning: a node is o
conditionally independent
of every other node in the ota M

network outside its Markov
blanket

* Local conditional Xy‘ﬂ‘

distributions (CPD) and the -
DAG completely determine

the joint dist. m \‘

- Children's co-parent ]

* Give causality
relationships, and facilitate
a generative process

Descendent
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Global Markov properties of
DAGs

e X is d-separated (directed-separated) from Z given Y if we can't
send a ball from any node in X to any node in Z using the "Bayes-
ball" algorithm illustrated bellow (and plus some boundary

—_— |

conditions):
X Y Zz X Y V4
: | . | : :: :: :”

i « Defn: I(6)=all independence
properties that correspond to d-

@ ®
separation:
AR A
X_ V4 X Z

1(G) = X LZ|Y :dseps (X;Z|Y)}

(@) (b)
Q\ /-) Q\O/O - D-separation is sound and
7 S5 Ay
. | complete
(b)

(@) © Eric Xing @ CMU, 2006-2016 34



X e Complete the I(G) of this
4 graph:

X,

Essentially: A BN is a database of Pr. Independence statements among variables.
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Towards quantitative specification of | e3¢
probability distribution oo

e Separation properties in the graph imply independence
properties about the associated variables

e For the graph to be useful, any conditional independence
properties we can derive from the graph should hold for the
probability distribution that the graph represents

e The Equivalence Theorem

For a graph G,

Let 9, denote the family of all distributions that satisfy 1(G),

Let 9, denote the family of all distributions that factor according to G,
Then 9,=9,.
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Conditional probability tables
(CPTs)

a |0.75

al 10.25

bO

0.33

b1

0.67

P(a)P(b)P(c|a,b)P(d|c)

P(a,b,c.d) =

a%h0 aob’ a'bo a'b’
cV 0.45 1 0.9 0.7
c' 0.55 0 0.1 0.3
cO c'
d® (0.3 [0.5
d’ 07 |0.5

© Eric Xing @ CMU, 2006-2016
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Conditional probability density sece
func. (CPDs) os

P(a,b,c.d) =
A~N(u,, £,) B~N(u,, Z,) P(a)P(b)P(c|a,b)P(d|c)

‘ D~N(p,+C, 2,) 5 c
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Conditional Independencies

Label

Features

What is this model

1. When Y is observed?
2. WhenY is unobserved?

© Eric Xing @ CMU, 2006-2016 39



Conditionally Independent 1
Observations os

Model parameters

@ @___ ° Data = {y,,...y,,}

© Eric Xing @ CMU, 2006-2016 40



“Plate” Notation oo

‘ Model parameters

Data = {x,,...X,}

I=1:n

Plate = rectangle in graphical model

variables within a plate are replicated
in a conditionally independent manner
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000
0000
HE:
Example: Gaussian Model oo
‘ ’ Generative model:
\
p(X1,...Xn | H, G) = P p(xi | ks 0)
= p(data | parameters)
= p(D |0)
1I=1:n where 0 = {, ¢}
= Likelihood = p(data | parameters)
=p(D]6)
=L (0)

= Likelihood tells us how likely the observed data are conditioned
on a particular setting of the parameters

= Often easier to work with log L (6)
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Bayesian models




Summary

e Represent dependency structure with a directed acyclic graph

e Node <-> random variable

e Edges encode dependencies
Absence of edge -> conditional independence

e Plate representation
e A GM is a database of prob. Independence statement on variables

O«+—0+—=0

e The factorization theorem of the joint probability
e Local specification - globally consistent distribution
e Local representation for exponentially complex state-space

e Itis a smart way to write/specify/compose/design exponentially-large
probability distributions without paying an exponential cost, and at the
same time endow the distributions with structured semantics

e Support efficient inference and learning

© Eric Xing @ CMU, 2006-2016 44




Inference and Learning o

e \We now have compact representations of probability
distributions: BN

e A BN M describes a unique probability distribution P

e Typical tasks:

e Task 1: How do we answer queries about P?

We use inference as a name for the process of computing answers to such
queries

e Task 2: How do we estimate a plausible model M from data D?

I.  We use learning as a name for the process of obtaining point estimate of M.
ii. But for Bayesian, they seek p(M |D), which is actually an inference problem.

iii. When not all variables are observable, even computing point estimate of M
need to do inference to impute the missing data.

© Eric Xing @ CMU, 2006-2016 45



Inferential Query 1: eels
Likelihood oo

e Most of the queries one may ask involve evidence

e Evidence x, is an assignment of values to a set X, of nodes in the GM
over varialbe set X={X,, X,, ..., X.}

e Without loss of generality X ={X,., ..., X.},
o Write X;=X\X, as the set of hidden variables, X can be & or X

e Simplest query: compute probability of evidence

P(x,)=> P(Xy», X,) = 20ee 2P(Xppeee X X,)

e this is often referred to as computing the likelihood of x,

© Eric Xing @ CMU, 2006-2016 46



Inferential Query 2: eels
Conditional Probability oo

e Often we are interested in the conditional probability
distribution of a variable given the evidence

_ _ PXy,xy) P(Xy,Xy)
P | Xy =xv)= P(xy) _ZP(XH =Xy, Xy)

e this is the a posteriori belief in X, given evidence x,

e We usually query a subset Y of all hidden variables X,={Y,Z}
and "don't care" about the remaining, Z:

P(Y |xy)=> P(Y,Z=12]|x,)

e the process of summing out the "don't care" variables z is called
marginalization, and the resulting P(Y|x,) is called a marginal prob.
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Applications of a posteriori Belief |:

e Prediction: what is the probability of an outcome given the starting
condition ?

e the query node is a descendent of the evidence
e Diagnosis: what is the probability of disease/fault given symptoms
l)
C A O>=» L O>—»C >
e the query node an ancestor of the evidence
e Learning under partial observation

e fill in the unobserved values under an "EM" setting (more later)

e The directionality of information flow between variables is not
restricted by the directionality of the edges in a GM

e probabilistic inference can combine evidence form all parts of the network

© Eric Xing @ CMU, 2006-2016
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Inferential Query 3: eels
Most Probable Assignment oo

e In this query we want to find the most probable joint
assignment (MPA) for some variables of interest

e Such reasoning is usually performed under some given
evidence x,, and ignoring (the values of) other variables Z:

Y |x, =argmax, P(Y|x,)=argmax P(Y,Z=z|x
Y g y \ g y \

e this is the maximum a posteriori configuration of Y.
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Complexity of Inference -

Thm:
Computing P(X;;=x4| x,) In an arbitrary GM is NP-hard

e Hardness does not mean we cannot solve inference

e It implies that we cannot find a general procedure that works
efficiently for arbitrary GMs

e For particular families of GMs, we can have provably efficient
procedures

© Eric Xing @ CMU, 2006-2016 50



Approaches to inference

e Exact inference algorithms

e The elimination algorithm
e Belief propagation
e The junction tree algorithms  (but will not cover in detail here)

e Approximate inference techniques

e Variational algorithms
e Stochastic simulation / sampling methods
e Markov chain Monte Carlo methods

© Eric Xing @ CMU, 2006-2016
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Marginalization and Elimination '+
B W
OG

e A food web: 4
O G

What is the probability that hawks are leaving given that the grass condition is poor?

Query: P(h) PM=>>>%>>>"P(ab,c.d.e, f,g,h)
g f e d ¢ b a
- o a naive summation needs to
V enumerate over an exponential
number of terms

e By chain decomposition, we get

=>.2.2.2.2.2.2 P(@P(b)P(c|b)P(d|a)P(e|c,d)P(f |a)P(g|e)P(h|e, f)
g f e d ¢ b a
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Variable Elimination

e Query: P(A |h) ©

e Need to eliminate: B,C,D,E.F.G,H

e Initial factors: O 0

P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h]e, f) e 6
e Choose an elimination order: H6,F.E.D,C B e m
o Step 1:

~

e Conditioning (fix the evidence node (i.e., h) on its observed value (i.e., h)):
m,(e, f)=p(h=h|e, f)

e This step is isomorphic to a marginalization step: (TS

m,(e, f)=> p(hle, )s(h=h) B

© Eric Xing @ CMU, 2006-2016
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(Y X
'YX X
'Y XX
: .. : 000
Example: Variable Elimination .
e Query: P(B |h)
e Need to eliminate: B,C,D,E.F,G 0 o
e |Initial factors: Q 0
P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h]e, f) e e
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)m, (e, )
&
e Step 2: Eliminate &
e compute
m,(e)=) p(gle)=1
g B W
= P(@)P(b)P(c|b)P(d |a)P(e|c,d)P(f [a)m,(e)m, (e, T) ) Q)
(E) F

=P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m,(e, f)
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000
0000
X XX J
: T 3
Example: Variable Elimination .
e Query: P(B |h)
e Need to eliminate: B,C,D,EF o o
e Initial factors: Q 0
P(@)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h]e, ) e e
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)m,(e, f)
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f [a)m, (e, ) & D
e Step 3: Eliminate F
e compute
m,(e,a)=) p(fa)m,(e, f)
f (8) A
@ @

= P(a)P(b)P(c|b)P(d |a)P(e|c,d)m,(a,e)
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000
0000
X X X J
Example: Variable Elimination :
e Query: P(B |h)
e Need to eliminate: B,C,D,E o o
e Initial factors: e 0
P(@)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h]e, f) e 6
= P(@)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)m,(e, f)
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m, (e, f) &
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)m, (a,e)
e Step 4: Eliminate E
° t
PP m@c,d)=Y pelc,d)m, (a.e)
e (B8) (A)
= P(a)P(b)P(c|b)P(d |a)m,(a,c,d) G.y
(E
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(YY)
0000
0000
| [ | [ | | ::.
Example: Variable Elimination .
e Query: P(B |h)
e Need to eliminate: B,C,D o o
e Initial factors: e 0
P@)P(b)P(c|b)P(d|a)P(e|c,d)P(f |a)P(g|e)P(h|e, f) e 0
= P(@)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)m,(e, f)
= P(@)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m, (e, f) e 0
= P(@)P(b)P(c|b)P(d |a)P(e|c,d)m,(a,e)
= P(@)P(b)P(c|b)P(d |a)m,(a,c,d)
e Step 5: Eliminate D (B) (3

e compute md (a, C) — Z p(d | a)me (a, C, d) ()
d

= P(a)P(b)P(c|d)m,(a,c)
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Example: Variable Elimination :
e Query: P(B |h)
e Need to eliminate: B,C 0 o
e Initial factors: e 0
P(@)P(b)P(c|d)P(d|a)P(e|c,d)P(f |a)P(g|e)P(h|e, f) e 6
= P(@)P(b)P(c|d)P(d|a)P(e|c,d)P(f |a)P(g|e)m,(e, f)
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)m,(e, T) (&) CH)
= P(a)P(b)P(c|d)P(d|a)P(e|c,d)m, (a,e)
= P(a)P(b)P(c|d)P(d|a)m,(a,c,d)
= P(a)P(b)P(c|d)m,(a,c)
e Step 6: Eliminate C

e compute m. (a, b) — Z p(C ‘ b)md (a, C)

= P(a)P(b)P(c|d)m,(a,c)
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Example: Variable Elimination 4+
e Query: P(B |h)
e Need to eliminate: B 0 o
e Initial factors: e o
P(@)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h|e, )
= P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f|a)P(g|e)m,(e, f) e 6
= P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f |a)m,(e, ) e 0
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)m, (a,e)
= P(a)P(b)P(c|d)P(d |a)m,(a,c,d)
= P(a)P(b)P(c|d)m,(a,c)
= P(a)P(b)m_(a,b)
e Step 7: Eliminate B @

e compute m, (a) = Z p(b)mc (a,b)

= P(a)m,(a)
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Example: Variable Elimination :
e Query: P(B |h)
e Need to eliminate: B 0 o
e Initial factors: e 0
P@)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h]e, ) e 6
= P(@)P(b)P(c|d)P(d|a)P(e|c,d)P(f|a)P(g|e)m, (e, f)
= P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f [a)m, (e, T) (6) (H)

= P(@)P(b)P(c|d)P(d|a)P(e|c,d)m, (a,e)
= P(a)P(b)P(c|d)P(d |a)m (a,c,d)

= P(@)P(b)P(c|d)m,(a,c)

= P(a)P(b)m_(a,b)

= P(@m,(a)

e Step8: Wrap-up  p(@ah)=p@my @, ph)=Y p@m,(a)

— p@m,()
=P =S aom @
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Complexity of variable 1
elimination -

e Suppose in one elimination step we compute

m (y19 9yk) Zm (X yla ayk)

m (X y19 9yk) Hm(X9YC)
This requires
o kelVal(X)|s]|Val(¥,)| multiplications

— For each value of x, yj, ..., y,, we do k multiplications

Val(X)|e [ |Val(¥., ) additions
— For each value of y,, ..., y,, we do [Val(X)| additions

Complexity is exponential in number of variables in the
intermediate factor
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Elimination Clique

e |nduced dependency during marginalization is captured in
elimination cliques
e Summation <-> elimination
e Intermediate term <-> elimination clique

P(a)P(b)P(c|b)P(d|a)P(elc,d)P(fla)P(gle)P (h\e f)
= P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(gle)dn(e.
= P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(fla)dy(e)dn (e, f)
= P(a)P(b)P(c|b)P(d|a)P(e|c,d)ps(a,e) D
= P(a)P(b)P(c|b) P(d|a)o.(a, c,d ’
= P(a)P(b)P(c|b)py(a,c)
= P(a)P(b)o.(a,b
= P(a,)(,f)g)((.l)
= ¢(a)

e Can this lead to an generic
inference algorithm?

© Eric Xing @ CMU, 2006-2016

62



From Elimination to Message
Passing -

e Elimination = message passing on a clique tree

m,(a,c,d)

— Z p(e ‘ C, d)mg (e)mf (ao e)

e Messages can be reused
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From Elimination to Message i
Passing -

e Elimination = message passing on a clique tree
e Another query ...

e Messages m.and m, are reused, others need to be recomputed
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From elimination to message
passing

e Recall ELIMINATION algorithm:

Choose an ordering £ in which query node f is the final node

Place all potentials on an active list

Eliminate node i by removing all potentials containing i, take sum/product over x;.
Place the resultant factor back on the list

e Fora TREE graph:

Choose query node f as the root of the tree

View tree as a directed tree with edges pointing towards from f

Elimination ordering based on depth-first traversal

Elimination of each node can be considered as

message-passing (or Belief Propagation) directly

along tree branches, rather than on some transformed graphs

thus, we can use the tree itself as a data-structure to do general inference!!
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Message passing for trees :

Let m;(x;) denote the factor resulting
from eliminating variables from bellow
up to i, which is a function of x;:

ﬁ mzf(gjz) mji(x;) = Z(v(a'J)U(x.”:r:J) H m;\J(:I:J))
z) kEN(j)\i

This is reminiscent of a message sent
from j toi.

plzg) cv(ae) ] mer(y)

eeN(f)

m;;(X;) represents a "belief” of x; from x;!
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e Elimination on trees is equivalent to message passing along
tree branches!

ﬁmﬂ(xi) = Z(TP(%’W(%%) 11 mkj(%))
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The message passing protocol:

e A two-pass algorithm:

M1 (X 1)@ @ m12(X2)

mo3(X3)
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Belief Propagation (SP-algorithm): | 382:
Sequential implementation -

Sum-Propuct(T, F)

EVIDENCE(E)

f = CHOOSEROOT(V)

for e € N(f) £\
CoLLECT(f, €)

for e € N(f)
DISTRIBUTE(f, €)

forieV
COMPUTEMARGINAL(%)

EVIDENCE(E)
foriec E
YE (z;) = Y(z;)6(zi, Ti)
fori ¢ E
¥E (i) = (ai)
COLLECT(%, j)
for k € N(5)\i k

C()LLECT(_}, k)
SENDMESSAGE(7, ¢)

SENDMESSAGE T

DISTRIBUTE(%, j)
SENDMESSAGE(1, j)
for k € N(j)\i
DISTRIBUTE(7, k)

SENDMESSAGE(J, 1)

Trbji(;ﬂi)ZZ(’lZ)E(:ﬂj)ﬂ’(:ﬂ@,;ﬂj) H myj(xj))

Tj keN(i)\i DISTRIBUTE / \ DISTRIBUTE

COMPLTEMARGINAL( /)
p(x;) om/) H mi(x;) k
JEN(3) © Eric Xing @ CMU, 2006-2016 69



Inference on general GM o

e Now, what if the GM is not a tree-like graph?

e Can we still directly run message
message-passing protocol along its edges?

e For non-trees, we do not have the guarantee that message-passing
will be consistent!

e Then what?

e Construct a graph data-structure from P that has a tree structure, and run message-passing
on it!

—> Junction tree algorithm
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Summary o

e The simple Eliminate algorithm captures the key algorithmic
Operation underlying probabilistic inference:

--- That of taking a sum over product of potential functions

e The computational complexity of the Eliminate algorithm can be
reduced to purely graph-theoretic considerations.

e This graph interpretation will also provide hints about how to design
improved inference algorithms

e What can we say about the overall computational complexity of the
algorithm? In particular, how can we control the "size" of the
summands that appear in the sequence of summation operation.
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