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 Representation: what is the joint probability dist. on multiple 
variables?

 How many state configurations in total? --- 28

 Are they all needed to be represented?
 Do we get any scientific/medical insight?

 Learning: where do we get all this probabilities? 
 Maximal-likelihood estimation? but how many data do we need?
 Are there other est. principles?
 Where do we put domain knowledge in terms of plausible relationships between variables, and 

plausible values of the probabilities?

 Inference: If not all variables are observable, how to compute the 
conditional distribution of latent variables given evidence?
 Computing p(H|A) would require summing over all 26 configurations of the 

unobserved variables
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Recap of Basic Prob. Concepts

© Eric Xing @ CMU, 2006-2016

A

C

F

G H

ED

BA

C

F

G H

ED

BA

C

F

G H

ED

BA

C

F

G H

ED

B

2



Receptor A

Kinase C

TF F

Gene G Gene H

Kinase EKinase D

Receptor BX1 X2

X3 X4 X5

X6

X7 X8

What is a Graphical Model?
--- Multivariate Distribution in High-D Space

 A possible world for cellular signal transduction: 
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GM: Structure Simplifies 
Representation

 Dependencies among variables
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 If Xi's are conditionally independent (as described by a PGM), the 
joint can be factored to a product of simpler terms, e.g.,

 Why we may favor a PGM?
 Incorporation of domain knowledge and causal (logical) structures

P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)

Probabilistic Graphical Models
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1+1+2+2+2+4+2+4=18, a 16-fold reduction from 28 in representation cost ! 

Stay tune for what are these independencies!
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GM: Data Integration
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More Data Integration
 Text + Image + Network   Holistic Social Media

 Genome + Proteome + Transcritome + Phenome + … 
PanOmic Biology
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 If Xi's are conditionally independent (as described by a PGM), the 
joint can be factored to a product of simpler terms, e.g., 

 Why we may favor a PGM?
 Incorporation of domain knowledge and causal (logical) structures

 Modular combination of heterogeneous parts – data fusion

Probabilistic Graphical Models

© Eric Xing @ CMU, 2006-2016

2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28 in representation cost ! 
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P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X2) P(X4| X2) P(X5| X2) P(X1) P(X3| X1) 
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)
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Rational Statistical Inference

 This allows us to capture uncertainty about the model in a principled way

 But how can we specify and represent a complicated model?
 Typically the number of genes need to be modeled are in the order of thousands!
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GM: MLE and Bayesian Learning
 Probabilistic statements of  is conditioned on the values of the 

observed variables Aobs and prior p( |)
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 If Xi's are conditionally independent (as described by a PGM), the 
joint can be factored to a product of simpler terms, e.g., 

 Why we may favor a PGM?
 Incorporation of domain knowledge and causal (logical) structures

 Modular combination of heterogeneous parts – data fusion

 Bayesian Philosophy
 Knowledge meets data

Probabilistic Graphical Models
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2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28 in representation cost ! 
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So What Is a PGM After All?
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In a nutshell: 

PGM   =   Multivariate Statistics + Structure

12

GM   =   Multivariate Obj. Func. + Structure



So What Is a PGM After All?
 The informal blurb:

 It is a smart way to write/specify/compose/design exponentially-large probability 
distributions without paying an exponential cost, and at the same time endow the 
distributions with structured semantics

 A more formal description:
 It refers to a family of distributions on a set of random variables that are 

compatible with all the probabilistic independence propositions encoded by a 
graph that connects these variables
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 Directed edges give causality relationships (Bayesian 
Network or Directed Graphical Model):

 Undirected edges simply give correlations between variables 
(Markov Random Field or Undirected Graphical model):

Two types of GMs

© Eric Xing @ CMU, 2006-2016
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P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)

P(X1, X2, X3, X4, X5, X6, X7, X8)

= 1/Z exp{E(X1)+E(X2)+E(X3, X1)+E(X4, X2)+E(X5, X2)
+ E(X6, X3, X4)+E(X7, X6)+E(X8, X5, X6)}
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Towards structural specification of 
probability distribution

 Separation properties in the graph imply independence 
properties about the associated variables

 For the graph to be useful, any conditional independence 
properties we can derive from the graph should hold for the 
probability distribution that the graph represents

 The Equivalence Theorem
For a graph G,
Let D1 denote the family of all distributions that satisfy I(G),
Let D2 denote the family of all distributions that factor according to G,
Then D1≡D2.
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Structure: DAG

• Meaning: a node is 
conditionally independent
of every other node in the 
network outside its Markov 
blanket

• Local conditional distributions 
(CPD) and the DAG
completely determine the 
joint dist. 

• Give causality relationships, 
and facilitate a generative
process
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Bayesian Networks
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Structure: undirected graph

• Meaning: a node is conditionally 
independent of every other node 
in the network given its Directed 
neighbors

• Local contingency functions 
(potentials) and the cliques in 
the graph completely determine 
the joint dist. 

• Give correlations between 
variables, but no explicit way to 
generate samples

X

Y1 Y2

Markov Random Fields

© Eric Xing @ CMU, 2006-2016 17



Density estimation

Regression

Classification

Parametric and nonparametric  methods

Linear, conditional mixture, nonparametric

Generative and discriminative approach

Q
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X

X Y

m,s

X X

GMs are your old friends
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Clustering 
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(Picture by Zoubin 
Ghahramani and 
Sam Roweis)
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An 
(incomplete) 

genealogy 
of graphical 

models
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Fancier GMs: 
machine translation
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SMT

The HM-BiTAM model 
(B. Zhao and E.P Xing,  
ACL 2006)
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Fancier GMs: 
solid state physics

© Eric Xing @ CMU, 2006-2016

Ising/Potts model
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A Generative Scheme for model 
design
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Why graphical models

 A language for communication
 A language for computation
 A language for development

 Origins: 
 Wright 1920’s
 Independently developed by Spiegelhalter and Lauritzen in statistics and Pearl in 

computer science in the late 1980’s
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 Probability theory provides the glue whereby the parts are combined, 
ensuring that the system as a whole is consistent, and providing ways to 
interface models to data. 

 The graph theoretic side of graphical models provides both an intuitively 
appealing interface by which humans can model highly-interacting sets of 
variables as well as a data structure that lends itself naturally to the design of 
efficient general-purpose algorithms. 

 Many of the classical multivariate probabilistic systems studied in fields 
such as statistics, systems engineering, information theory, pattern 
recognition and statistical mechanics are special cases of the general 
graphical model formalism

 The graphical model framework provides a way to view all of these systems 
as instances of a common underlying formalism. 

--- M. Jordan

Why graphical models
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Bayesian Network: Factorization Theorem

 Theorem: 
Given a DAG, The most general form of the probability distribution 
that is consistent with the (probabilistic independence properties 
encoded in the) graph factors according to “node given its parents”:

where      is the set of parents of xi. d is the number of nodes 
(variables) in the graph.

P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)
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Example: a pedigree of people
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 Genetic Pedigree
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Specification of a BN
 There are two components to any GM:

 the qualitative specification
 the quantitative specification

A

C

F

G H

ED

BA

C

F

G H

ED

BA

C

F

G H

ED

B

0.9 0.1

c

d
c

0.2 0.8

0.01 0.99

0.9 0.1

dc
d
d

c

DC P(F | C,D)
0.9 0.1

c

d
c

0.2 0.8

0.01 0.99

0.9 0.1

dc
d
d

c

DC P(F | C,D)

27© Eric Xing @ CMU, 2006-2016



Qualitative Specification
 Where does the qualitative specification come from?

 Prior knowledge of causal relationships
 Prior knowledge of modular relationships
 Assessment from experts
 Learning from data
 We simply link a certain architecture (e.g. a layered graph) 
 …
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Bayesian Network: Factorization Theorem

 Theorem: 
Given a DAG, The most general form of the probability distribution 
that is consistent with the (probabilistic independence properties 
encoded in the) graph factors according to “node given its parents”:

where      is the set of parents of xi. d is the number of nodes 
(variables) in the graph.

P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)
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A CB

A

C

B
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B

C

Local Structures & 
Independencies
 Common parent

 Fixing B decouples A and C
"given the level of gene B, the levels of A and C are independent"

 Cascade
 Knowing B decouples A and C

"given the level of gene B, the level gene A provides no 
extra prediction value for the level of gene C"

 V-structure
 Knowing C couples A and B

because A can "explain away" B w.r.t. C
"If A correlates to C, then chance for B to also correlate to B will decrease"

 The language is compact, the concepts are rich!
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A simple justification

A

B

C
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Graph separation criterion
 D-separation criterion for Bayesian networks (D for Directed 

edges):

Definition: variables x and y are D-separated (conditionally 
independent) given z if they are separated in the moralized 
ancestral graph

 Example:
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Structure: DAG

• Meaning: a node is 
conditionally independent
of every other node in the 
network outside its Markov 
blanket

• Local conditional 
distributions (CPD) and the 
DAG completely determine 
the joint dist. 

• Give causality
relationships, and facilitate 
a generative process

X
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Descendent

Ancestor

Parent

Children's co-parentChildren's co-parent

Child

Local Markov properties of DAGs
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Global Markov properties of 
DAGs
 X is d-separated (directed-separated) from Z given Y if we can't 

send a ball from any node in X to any node in Z using the "Bayes-
ball" algorithm illustrated bellow (and plus some boundary 
conditions):

• Defn: I(G)all independence 
properties that correspond to d-
separation:

• D-separation is sound and 
complete

 );(dsep:)(I YZXYZXG G
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Example: 
 Complete the I(G) of this 

graph:

x1

x2

x4

x3

Essentially: A BN is a database of Pr. Independence statements among variables.
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Towards quantitative specification of 
probability distribution

 Separation properties in the graph imply independence 
properties about the associated variables

 For the graph to be useful, any conditional independence 
properties we can derive from the graph should hold for the 
probability distribution that the graph represents

 The Equivalence Theorem
For a graph G,
Let D1 denote the family of all distributions that satisfy I(G),
Let D2 denote the family of all distributions that factor according to G,
Then D1≡D2.

36© Eric Xing @ CMU, 2006-2016



a0 0.75
a1 0.25

b0 0.33
b1 0.67

a0b0 a0b1 a1b0 a1b1

c0 0.45 1 0.9 0.7
c1 0.55 0 0.1 0.3

A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D
c0 c1

d0 0.3 0.5
d1 07 0.5

Conditional probability tables 
(CPTs)
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A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D

A~N(μa, Σa) B~N(μb, Σb)

C~N(A+B, Σc)

D~N(μa+C, Σa)
D

C

P(
D
| 
C)

Conditional probability density 
func. (CPDs)
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Conditional Independencies

X1

Y

Features

Label

X2 Xn-1 Xn

What is this model

1. When Y is observed?
2. When Y is unobserved?
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Conditionally Independent 
Observations



Data = {y1,…yn}

Model parameters

X1 X2 Xn-1 Xn
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“Plate” Notation

Xi

i=1:n



Data = {x1,…xn}

Model parameters

Plate = rectangle in graphical model

variables within a plate are replicated
in a conditionally independent manner
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Example: Gaussian Model

xi

i=1:n

 Generative model:   

p(x1,…xn | , ) = P p(xi | , )
=   p(data | parameters)
=   p(D  | )     

where  = {, }



 Likelihood = p(data | parameters) 
= p( D |  ) 
= L () 

 Likelihood tells us how likely the observed data are conditioned 
on a particular setting of the parameters
 Often easier to work with log L () 
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Bayesian models

xi

i=1:n


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Summary
 Represent dependency structure with a directed acyclic graph

 Node <-> random variable
 Edges encode dependencies

 Absence of edge -> conditional independence
 Plate representation
 A GM is a database of prob. Independence statement on variables 

 The factorization theorem of the joint probability
 Local specification  globally consistent distribution
 Local representation for exponentially complex state-space
 It is a smart way to write/specify/compose/design exponentially-large 

probability distributions without paying an exponential cost, and at the 
same time endow the distributions with structured semantics

 Support efficient inference and learning
44© Eric Xing @ CMU, 2006-2016



Inference and Learning
 We now have compact representations of probability 

distributions:  BN

 A BN M describes a unique probability distribution P

 Typical tasks:

 Task 1: How do we answer queries about P?

 We use inference as a name for the process of computing answers to such 
queries

 Task 2: How do we estimate a plausible model M from data D?

i. We use learning as a name for the process of obtaining point estimate of M.

ii. But for Bayesian, they seek p(M |D), which is actually an inference problem.

iii. When not all variables are observable, even computing point estimate of M 
need to do inference to impute the missing data.
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Inferential Query 1: 
Likelihood

 Most of the queries one may ask involve evidence

 Evidence xv is an assignment of values to a set Xv of nodes in the GM 
over varialbe set X={X1, X2, …, Xn}

 Without loss of generality Xv={Xk+1, … , Xn}, 

 Write XH=X\Xv as the set of hidden variables, XH can be or X

 Simplest query: compute probability of evidence

 this is often referred to as computing the likelihood of  xv
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 Often we are interested in the conditional probability 
distribution of a variable given the evidence

 this is the a posteriori belief in XH, given evidence xv

 We usually query a subset Y of all hidden variables XH={Y,Z}
and "don't care" about the remaining, Z:

 the process of summing out the "don't care" variables z is called 
marginalization, and the resulting P(Y|xv) is called a marginal prob.

 


Hx
VHH

VH

V

VH
VVH xxX

xX
x

xXxXX
),(

),(
)(

),()|(
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z

VV xzZYxY )|,()|( PP

Inferential Query 2: 
Conditional Probability
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 Prediction: what is the probability of an outcome given the starting 
condition

 the query node is a descendent of the evidence

 Diagnosis: what is the probability of disease/fault given symptoms

 the query node an ancestor of the evidence

 Learning under partial observation
 fill in the unobserved values under an "EM" setting (more later)

 The directionality of information flow between variables is not 
restricted by the directionality of the edges in a GM
 probabilistic inference can combine evidence form all parts of the network

A CB

A CB

?

?

Applications of a posteriori Belief
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 In this query we want to find the most probable joint 
assignment (MPA) for some variables of interest

 Such reasoning is usually performed under some given 
evidence xv, and ignoring (the values of) other variables Z:

 this is the maximum a posteriori configuration of Y.

 
z

VyVyV xzZYxYxY )|,(maxarg)|(maxarg|* PP

Inferential Query 3: 
Most Probable Assignment
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Thm:
Computing P(XH=xH| xv) in an arbitrary GM is NP-hard

 Hardness does not mean we cannot solve inference

 It implies that we cannot find a general procedure that works 
efficiently for arbitrary GMs

 For particular families of GMs, we can have provably efficient 
procedures

Complexity of Inference
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Approaches to inference
 Exact inference algorithms

 The elimination algorithm
 Belief propagation
 The junction tree algorithms      (but will not cover in detail here)

 Approximate inference techniques

 Variational algorithms 
 Stochastic simulation / sampling methods
 Markov chain Monte Carlo methods
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 A food web:

Query: P(h)

 By chain decomposition, we get

Marginalization and Elimination
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
g f e d c b a

hgfedcbaPhP ),,,,,,,()(

B A

DC

E F

G H

a naïve summation needs to 
enumerate over an exponential 
number of  terms

What is the probability that hawks are leaving given that the grass condition is poor?

),|()|()|(),|()|()|()()( fehPegPafPdcePadPbcPbPaP
g f e d c b a




 Query: P(A |h)
 Need to eliminate: B,C,D,E,F,G,H

 Initial factors:

 Choose an elimination order: H,G,F,E,D,C,B

 Step 1: 
 Conditioning (fix the evidence node (i.e., h) on its observed value (i.e.,   )):

 This step is isomorphic to a marginalization step:

B A

DC

E F

G H

),|()|()|(),|()|()|()()( fehPegPafPdcePadPbcPbPaP

),|~(),( fehhpfemh 
h~

 
h

h hhfehpfem )~(),|(),( 

B A

DC

E F

G

Variable Elimination
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 Query: P(B |h)
 Need to eliminate: B,C,D,E,F,G

 Initial factors:

 Step 2: Eliminate G
 compute

B A

DC

E F

G H
),()|()|(),|()|()|()()(

),|()|()|(),|()|()|()()(
femegPafPdcePadPbcPbPaP

fehPegPafPdcePadPbcPbPaP

h

1)|()( 
g

g egpem
B A

DC

E F),()|(),|()|()|()()(

),()()|(),|()|()|()()(

femafPdcePadPbcPbPaP

fememafPdcePadPbcPbPaP

h

hg





Example: Variable Elimination
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 Query: P(B |h)
 Need to eliminate: B,C,D,E,F

 Initial factors:

 Step 3: Eliminate F
 compute

B A

DC

E F

G H

Example: Variable Elimination

),()|(),|()|()|()()(
),()|()|(),|()|()|()()(

),|()|()|(),|()|()|()()(

femafPdcePadPbcPbPaP
femegPafPdcePadPbcPbPaP

fehPegPafPdcePadPbcPbPaP

h

h





f

hf femafpaem ),()|(),(

),(),|()|()|()()( eamdcePadPbcPbPaP f

B A

DC

E
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B A

DC

E

 Query: P(B |h)
 Need to eliminate: B,C,D,E

 Initial factors:

 Step 4: Eliminate E
 compute

B A

DC

E F

G H

Example: Variable Elimination

),(),|()|()|()()(
),()|(),|()|()|()()(

),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

eamdcePadPbcPbPaP
femafPdcePadPbcPbPaP

femegPafPdcePadPbcPbPaP
fehPegPafPdcePadPbcPbPaP

f

h

h






e

fe eamdcepdcam ),(),|(),,(

),,()|()|()()( dcamadPbcPbPaP e

B A

DC
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 Query: P(B |h)
 Need to eliminate: B,C,D

 Initial factors:

 Step 5: Eliminate D
 compute

B A

DC

E F

G H

Example: Variable Elimination

),,()|()|()()(

),(),|()|()|()()(
),()|(),|()|()|()()(

),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

dcamadPbcPbPaP

eamdcePadPbcPbPaP
femafPdcePadPbcPbPaP

femegPafPdcePadPbcPbPaP
fehPegPafPdcePadPbcPbPaP

e

f

h

h








d

ed dcamadpcam ),,()|(),(

),()|()()( camdcPbPaP d

B A

C
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 Query: P(B |h)
 Need to eliminate: B,C

 Initial factors:

 Step 6: Eliminate C
 compute

B A

DC

E F

G H

Example: Variable Elimination

),()|()()( camdcPbPaP d


c

dc cambcpbam ),()|(),(

),()|()()(
),,()|()|()()(

),(),|()|()|()()(
),()|(),|()|()|()()(

),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

camdcPbPaP
dcamadPdcPbPaP

eamdcePadPdcPbPaP
femafPdcePadPdcPbPaP

femegPafPdcePadPdcPbPaP
fehPegPafPdcePadPdcPbPaP

d

e

f

h

h








B A

58© Eric Xing @ CMU, 2006-2016



 Query: P(B |h)
 Need to eliminate: B

 Initial factors:

 Step 7: Eliminate B
 compute

B A

DC

E F

G H

Example: Variable Elimination

),()()(
),()|()()(

),,()|()|()()(

),(),|()|()|()()(
),()|(),|()|()|()()(

),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

bambPaP
camdcPbPaP

dcamadPdcPbPaP

eamdcePadPdcPbPaP
femafPdcePadPdcPbPaP

femegPafPdcePadPdcPbPaP
fehPegPafPdcePadPdcPbPaP

c

d

e

f

h

h










b

cb bambpam ),()()(

)()( amaP b

A
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 Query: P(B |h)
 Need to eliminate: B

 Initial factors:

 Step 8: Wrap-up

B A

DC

E F

G H

Example: Variable Elimination

)()(
),()()(

),()|()()(
),,()|()|()()(

),(),|()|()|()()(
),()|(),|()|()|()()(

),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(
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bambPaP

camdcPbPaP
dcamadPdcPbPaP

eamdcePadPdcPbPaP
femafPdcePadPdcPbPaP

femegPafPdcePadPdcPbPaP
fehPegPafPdcePadPdcPbPaP

b

c

d

e

f

h

h










, )()()~,( amaphap b




a
b

b

amap
amaphaP

)()(
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
a

b amaphp )()()~(
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 Suppose in one elimination step we compute

This requires 
 multiplications

─ For each value of x, y1, …, yk, we do k multiplications

 additions

─ For each value of y1, …, yk , we do |Val(X)| additions

Complexity is exponential in number of variables in the 
intermediate factor


x

kxkx yyxmyym ),,,('),,( 11 





k

i
cikx i

xmyyxm
1

1 ),(),,,(' y


i

Ci
Xk )Val()Val( Y


i

Ci
X )Val()Val( Y

Complexity of variable 
elimination
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 Induced dependency during marginalization is captured in 
elimination cliques
 Summation <-> elimination
 Intermediate term <-> elimination clique

 Can this lead to an generic 
inference algorithm?

Elimination Clique

E F

H

A

E F

B A

C

E

G

A

DC

E

A

DC

B A A
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 Elimination  message passing on a clique tree

 Messages can be reused

E F

H

A

E F

B A

C

E

G

A

DC

E

A

DC

B A A

hm
gm

em
fm

bmcm

dm

From Elimination to Message 
Passing


e

fg

e

eamemdcep
dcam

),()(),|(
),,(
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E F

H

A

E F

B A

C

E

G

A

DC

E

A

DC

B A A

cm bm

gm

em

dm
fm

hm

From Elimination to Message 
Passing

 Elimination  message passing on a clique tree
 Another query ...

 Messages mf and mh are reused, others need to be recomputed
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From elimination to message 
passing
 Recall ELIMINATION algorithm:

 Choose an ordering Z in which query node f is the final node
 Place all potentials on an active list
 Eliminate node i by removing all potentials containing i, take sum/product over xi.
 Place the resultant factor back on the list

 For a TREE graph:
 Choose query node f as the root of the tree
 View tree as a directed tree with edges pointing towards from f
 Elimination ordering based on depth-first traversal
 Elimination of each node can be considered as 

message-passing (or Belief Propagation) directly 
along tree branches, rather than on some transformed graphs

 thus, we can use the tree itself as a data-structure to do general inference!!
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f

i

j

k l

Message passing for trees

Let mij(xi) denote the factor resulting 
from eliminating variables from bellow 
up to i, which is a function of xi:

This is reminiscent of a message sent 
from j to i.

mij(xi) represents a "belief" of xi from xj!
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 Elimination on trees is equivalent to message passing along 
tree branches!

f

i

j

k l
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m24(X 4)

X1

X2

X3
X4

The message passing protocol:
 A two-pass algorithm:

m21(X 1)

m32(X 2) m42(X 2)

m12(X 2)

m23(X 3)
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Belief Propagation (SP-algorithm): 
Sequential implementation
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Inference on general GM
 Now, what if the GM is not a tree-like graph?

 Can we still directly run message 
message-passing protocol along its edges?

 For non-trees, we do not have the guarantee that message-passing 
will be consistent!

 Then what?
 Construct a graph data-structure from P that has a tree structure, and run message-passing 

on it!

 Junction tree algorithm
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Summary
 The simple Eliminate algorithm captures the key algorithmic 

Operation underlying probabilistic inference:
--- That of taking a sum over product of potential functions

 The computational complexity of the Eliminate algorithm can be 
reduced to purely graph-theoretic considerations. 

 This graph interpretation will also provide hints about how to design 
improved inference algorithms 

 What can we say about the overall computational complexity of the 
algorithm? In particular, how can we control the "size" of the 
summands that appear in the sequence of summation operation. 
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