Machine Learning

10-701, Fall 2016

Introduction to ML and Density Estimation

Eric Xing
Lecture 1, September 7, 2016

Reading: Mitchell: Chap 1,3

© Eric Xing @ CMU, 2006-2016
Class Registration

- **IF YOU ARE ON THE WAITING LIST**: This class is now fully subscribed. You may want to consider the following options:

 - Take the class when it is offered again in the Spring semester;

 - Come to the first several lectures and see how the course develops. We will admit as many students from the waitlist as we can, once we see how many registered students drop the course during the first two weeks.
Machine Learning 10-701

- Class webpage:
 - http://www.cs.cmu.edu/~mgormley/courses/10701-f16/

Announcements

- Class begins on Wednesday, September 7th, 2016. See you then!
- Please let us know if you cannot access Piazza. We encourage you to direct all your questions to Piazza. You can even send a private note to the instructor.
- IF YOU ARE ON THE WAITING LIST: If the class is fully subscribed, you may want to consider the following options:
 - Come to the first several lectures and see how the course develops. We will admit as many students from the waitlist as we can, once we see how many registered students drop the course during the first two weeks.
 - Take the class when it is offered again in the Spring semester.
- The class mailing list is 10701-announce@cs.cmu.edu. If you are registered for the course or on the waitlist, you have automatically been added to the mail group. If you use for some reason NOT receiving announcements, please let us know.
- If you wish to email only the instructors and TAs, the email is 10701-instructor@cs.cmu.edu. As mentioned above, we prefer questions to be posted on Piazza.

Last updated August 31, 2016.
This website is powered by Jekyll and Bootstrap.
The instructors

Eric Xing
Office Hours: Thu. 11am - 12pm
GHC 8103

Matt Gormley
Office Hours: Thu. 11am - 12pm
GHC 8277

Sandra Winder
GHC 8274

Assistant Instructor
Brynn Edmunds
GHC 8132

TAs
Petar Stojanov
Office Hours: Thu.

Hyun Ah Song
Office Hours: Thu.

Hemant Lamba
Office Hours: Thu.

Devedra Chaplot
Office Hours: Thu.

Siddharth Coyer
Office Hours: Thu.

Professor

Research interests: My principal research interests lie in the development of machine learning and computational methods for understanding the interplay between language and the mind. My past work has focused on generalization, robustness, and the use of inductive bias.

Current Students and Faculty:

- Yuwen Li, PhD student
- Dongbin Yoon, PhD student
- Xiangyu Guo, PhD student
- Hyun Ah Song, PhD student
- Hemant Lamba, PhD student
- Devedra Chaplot, PhD student
- Siddharth Coyer, PhD student

Past Students and Faculty:

- Matt Gormley, PhD student
- Eric Xing, PhD student

Research Interests

Natural language processing: grammar induction, dependency parsing, semantic parsing, knowledge base population, sentence verification, text similarity, computational semantics.

Machine learning: approximate inference, unsupervised learning, deep learning techniques, non-parametric, global approximations, non-negative learning, approximation methods.

N.B.

- Jun. 2014 - received an award for outstanding research at CMU.
- Mar. 2015 - published a paper on unsupervised learning for structured output prediction.
- Jun. 2014 - received an award for outstanding research at CMU.

© Eric Xing @ CMU, 2006-2016
Brynn Edmunds

- Previous Research
 - Medical Physics with specific interest in Radiotherapy and Radiation Oncology
 - Examination of DVH parameters for prostate treatments
 - Comparing clinicians with different training to look for treatment variability

- Currently: ML Assistant Instructor
● Devendra Chaplot
● Office Hour: Friday 11:00am -12:00pm
● Location: GHC 5412
● Interests: Concept Graph Learning, Computational models of human learning, Reinforcement Learning
- Siddharth Goyal
- Office Hour: Tue_{th} 4:00pm - 5:00pm
- Location: GHC 5 floor common area
- Interests: Bayesian optimization, Reinforcement learning
Hemank Lamba

Office Hours: Tuesday, 11 to Noon

Location: TBD

Research
• Graph Mining
• Data Mining
• Anomaly Detection
• Social Good Applications
Hyun Ah Song
Office hour: Friday 1pm-2pm
Office: GHC 8003
Interests: time series analysis
Petar Stojanov

Office Hours: Wednesday, 4:30 to 5:30pm (starting next week)

Location: TBD

Research
• Transfer Learning
• Domain Adaptation
• Multitask Learning
Logistics

- **Text book**
 - Chris Bishop, *Pattern Recognition and Machine Learning* (required)
 - Kevin Murphy, *Machine Learning, a probabilistic approach*
 - Tom Mitchell, *Machine Learning*
 - David Mackay, *Information Theory, Inference, and Learning Algorithms*

- **Mailing Lists:**
 - To contact the instructors: 10701-instructors@cs.cmu.edu
 - Class announcements list: 10701-announce@cs.cmu.edu.

- **Piazza …**
Logistics

- 5 homework assignments: 35% of grade
 - Theory exercises
 - Implementation exercises

- **Final project: 35% of grade**
 - Applying machine learning to your research area
 - NLP, IR, vision, robotics, computational biology …
 - Outcomes that offer real utility and value
 - Search all the wine bottle labels,
 - An iPhone app for landmark recognition
 - Theoretical and/or algorithmic work
 - a more efficient approximate inference algorithm
 - a new sampling scheme for a non-trivial model …
 - 3-member team to be formed in the first two weeks, proposal, mid-way report, poster & demo, final report.

- **One Midterm: 30%**
 - Theory exercises and/or analysis. Dates already set (no “ticket already booked”, “I am in a conference”, etc. excuse …)

- Policies …
What is Learning

Learning is about seeking a **predictive and/or executable** understanding of natural/artificial subjects, phenomena, or activities from …

Grammatical rules
Manufacturing procedures
Natural laws
…

Apoptosis + Medicine

Inference:
what does this mean?
Any similar article?
…
Machine Learning (ML)
A short definition

- Study of **algorithms** and **systems** that
 - improve their **performance** \(P \)
 - at some **task** \(T \)
 - with **experience** \(E \)

well-defined learning task: \(<P,T,E> \)
Elements of Modern ML
ML methodologies, system paradigms, & hardware infrastructure

- New mathematical tools
- New theory and algorithms
- New system architecture
- Moore’s Law

Parameter Server and SSP
Where Machine Learning is being used or can be useful?

- Speech recognition
- Information retrieval
- Computer vision
- Robotic control
- Games
- Pedigree
- Evolution
- Planning
Amazing Breakthroughs
Paradigms of Machine Learning

- Supervised Learning
 - Given $D = \{X_i, Y_i\}$, learn $f(\cdot): Y_i = f(X_i)$, s.t. $D_{\text{new}} = \{X_j\} \Rightarrow \{Y_j\}$

- Unsupervised Learning
 - Given $D = \{X_i\}$, learn $f(\cdot): Y_i = f(X_i)$, s.t. $D_{\text{new}} = \{X_j\} \Rightarrow \{Y_j\}$

- Semi-supervised Learning

- Reinforcement Learning
 - Given $D = \{\text{env, actions, rewards, simulator/trace/real game}\}$

 learn policy: $e, r \rightarrow a$, utility: $a, e \rightarrow r$, s.t. $\{\text{env, new real game}\} \Rightarrow a_1, a_2, a_3 \ldots$

- Active Learning
 - Given $D \sim G(\cdot)$, learn $D_{\text{new}} \sim G'(\cdot)$ and $f(\cdot)$, s.t. $D_{\text{all}} \Rightarrow G'(\cdot), \text{policy, } \{Y_j\}$

- Transfer learning

- Deep xxx …
Machine Learning - Theory

For the learned $F(\theta)$

- Consistency (value, pattern, …)
- Bias versus variance
- Sample complexity
- Learning rate
- Convergence
- Error bound
- Confidence
- Stability
- …

PAC Learning Theory

(supervised concept learning)

examples (m)

representational complexity (H)

error rate (ε)

failure probability (δ)

$$m \geq \frac{1}{\varepsilon} \left(\ln |H| + \ln \left(\frac{1}{\delta} \right) \right)$$
Why machine learning?

- Facebook: 1B+ USERS, 30+ PETABYTES
- Wikipedia: 32 million pages
- YouTube: 100+ hours video uploaded every minute
- Twitter: 645 million users, 500 million tweets / day
Growth of Machine Learning

- Machine learning already the preferred approach to
 - Speech recognition, Natural language processing
 - Computer vision
 - Medical outcomes analysis
 - Robot control
 - …

- This ML niche is growing (why?)
Growth of Machine Learning

- Machine learning already the preferred approach to
 - Speech recognition, Natural language processing
 - Computer vision
 - Medical outcomes analysis
 - Robot control
 - ...

- This ML niche is growing
 - Improved machine learning algorithms
 - Increased data capture, networking
 - Software too complex to write by hand
 - New sensors / IO devices
 - Demand for self-customization to user, environment
Summary: What is Machine Learning

Machine Learning seeks to develop theories and computer systems for

- representing;
- classifying, clustering, recognizing, organizing;
- reasoning under uncertainty;
- predicting;
- and reacting to...

complex, real world data, based on the system's own experience with data, and (hopefully) under a unified model or mathematical framework, that

- can be formally characterized and analyzed
- can take into account human prior knowledge
- can generalize and adapt across data and domains
- can operate automatically and autonomously
- and can be interpreted and perceived by human.
Inference
Prediction
Decision-Making under uncertainty

→ Statistical Machine Learning
→ Function Approximation: $F(\mid \theta)$?
→ Density Estimation
Classification

- sickle-cell anemia
Function Approximation

- **Setting:**
 - Set of possible instances X
 - Unknown target function $f: X \rightarrow Y$
 - Set of function hypotheses $H=\{ h \mid h: X \rightarrow Y \}$

- **Given:**
 - Training examples $\{<x_i,y_i>\}$ of unknown target function f

- **Determine:**
 - Hypothesis $h \in H$ that best approximates f
Density Estimation

- A Density Estimator learns a mapping from a set of attributes to a **Probability**
Basic Probability Concepts

- A *sample space* S is the set of all possible outcomes of a conceptual or physical, repeatable experiment. (S can be finite or infinite.)

- E.g., S may be the set of all possible outcomes of a dice roll: $S \equiv \{1, 2, 3, 4, 5, 6\}$

- E.g., S may be the set of all possible nucleotides of a DNA site: $S \equiv \{A, T, C, G\}$

- E.g., S may be the set of all possible positions time-space positions of a aircraft on a radar screen: $S \equiv \{0, R_{\max}\} \times \{0, 360^\circ\} \times \{0, +\infty\}$
Random Variable

- A *random variable* is a function that associates a unique numerical value (a token) with every outcome of an experiment. (The value of the r.v. will vary from trial to trial as the experiment is repeated)
 - Discrete r.v.:
 - The outcome of a dice-roll
 - The outcome of reading a nt at site i: X_i
 - Binary event and indicator variable:
 - Seeing an "A" at a site $\Rightarrow X=1, \text{ o/w } X=0.$
 - This describes the true or false outcome a random event.
 - Can we describe richer outcomes in the same way? (i.e., $X=1, 2, 3, 4$, for being A, C, G, T) --- think about what would happen if we take expectation of X.
 - Unit-Base Random vector
 $$X_i=[X_i^A, X_i^T, X_i^G, X_i^C]' \quad X_i=[0,0,1,0]' \Rightarrow \text{seeing a "G" at site } i$$
 - Continuous r.v.:
 - The outcome of **recording** the true location of an aircraft: X_{true}
 - The outcome of **observing** the measured location of an aircraft X_{obs}
Random Variable

- Notational convention
 - Univariate
 - Multivariate (random vector)
Discrete Prob. Distribution

- (In the discrete case), a probability distribution P on S (and hence on the domain of X) is an assignment of a non-negative real number $P(s)$ to each $s \in S$ (or each valid value of x) such that $\sum_{s \in S} P(s) = 1$. ($0 \leq P(s) \leq 1$)
 - intuitively, $P(s)$ corresponds to the frequency (or the likelihood) of getting s in the experiments, if repeated many times
 - call $\theta_s = P(s)$ the parameters in a discrete probability distribution

- A probability distribution on a sample space is sometimes called a probability model, in particular if several different distributions are under consideration
 - write models as M_1, M_2, probabilities as $P(X|M_1), P(X|M_2)$
 - e.g., M_1 may be the appropriate prob. dist. if X is from "fair dice", M_2 is for the "loaded dice".
 - M is usually a two-tuple of $\{\text{dist. family, dist. parameters}\}
Discrete Distributions

- Bernoulli distribution: $Ber(p)$

$$P(x) = \begin{cases} 1 - \theta & \text{if } x = 0 \\ \theta & \text{if } x = 1 \end{cases} \quad \Rightarrow \quad P(x) = p^x(1-p)^{1-x}$$

- Multinomial distribution: $Mult(1, \theta)$

 - Multinomial (indicator) variable:

$$X = \begin{bmatrix} X^1 \\ X^2 \\ X^3 \\ X^4 \\ X^5 \\ X^6 \end{bmatrix} \quad \text{where} \quad X^j \in \{0,1\}, \quad \sum_{j=1}^{6} X^j = 1 \quad \text{and} \quad \sum_{j=1}^{6} \theta_j = 1$$

$$p(x(j)) = P\{X^j = 1, \text{where } j \text{ index the dice-face}\} = \theta_j = \theta_A^{x_A} \times \theta_C^{x_C} \times \theta_G^{x_G} \times \theta_T^{x_T} = \prod_k \theta_k^{x_k} = \theta^x$$
Multinomial distribution: Mult(n, θ)

- Count variable:

$$X = \begin{bmatrix} x^1 \\ \vdots \\ x^K \end{bmatrix}, \quad \text{where } \sum_j x^j = n$$

$$p(x) = \frac{n!}{x^1!x^2!\cdots x^K!} \theta_1^{x^1} \theta_2^{x^2} \cdots \theta_K^{x^K} = \frac{n!}{x^1!x^2!\cdots x^K!} \theta^{x}$$
Density Estimation

- A Density Estimator learns a mapping from a set of attributes to a \textit{Probability}

\[
\text{Input Attributes} \xrightarrow{\text{Density Estimator}} \text{Probability}
\]

- Often know as \textit{parameter estimation} if the distribution form is specified
 - Binomial, Gaussian ...

- Three important issues:
 - Nature of the data (iid, correlated, …)
 - Objective function (MLE, MAP, …)
 - Algorithm (simple algebra, gradient methods, EM, …)
 - Evaluation scheme (likelihood on test data, predictability, consistency, …)
Density Estimation Schemes

Data

Learn parameters

Algorithm

Score param

Maximum likelihood

Bayesian

Conditional likelihood

Margin

Analytical

Gradient

EM

Sampling

...
Parameter Learning from \textit{iid} Data

- Goal: estimate distribution parameters θ from a dataset of N independent, identically distributed (\textit{iid}), fully observed, training cases

$$D = \{x_1, \ldots, x_N\}$$

- Maximum likelihood estimation (MLE)
 1. One of the most common estimators
 2. With iid and full-observability assumption, write $L(\theta)$ as the likelihood of the data:

$$L(\theta) = P(x_1, x_2, \ldots, x_N; \theta)$$

$$= P(x_1; \theta)P(x_2; \theta), \ldots, P(x_N; \theta)$$

$$= \prod_{i=1}^{N} P(x_i; \theta)$$

3. Pick the setting of parameters most likely to have generated the data we saw:

$$\theta^* = \arg \max_{\theta} L(\theta) = \arg \max_{\theta} \log L(\theta)$$
Example: Bernoulli model

- **Data:**
 - We observed \(N \) iid coin tossing: \(D = \{1, 0, 1, \ldots, 0\} \)

- **Representation:**
 - Binary r.v: \(x_n = \{0, 1\} \)

- **Model:**
 \[
P(x) = \begin{cases}
1 - \theta & \text{for } x = 0 \\
\theta & \text{for } x = 1
\end{cases} \quad \Rightarrow \quad P(x) = \theta^x (1 - \theta)^{1-x}
\]

- **How to write the likelihood of a single observation \(x_i \)?**
 \[
P(x_i) = \theta^{x_i} (1 - \theta)^{1-x_i}
\]

- **The likelihood of dataset \(D = \{x_1, \ldots, x_N\} \):**
 \[
P(x_1, x_2, \ldots, x_N \mid \theta) = \prod_{i=1}^{N} P(x_i \mid \theta) = \prod_{i=1}^{N} (\theta^{x_i} (1 - \theta)^{1-x_i}) = \theta^{\sum_{i=1}^{N} x_i} (1 - \theta)^{\sum_{i=1}^{N} (1-x_i)} = \theta^{\text{\#head}} (1 - \theta)^{\text{\#tails}}
\]
Maximum Likelihood Estimation

- Objective function:

\[
\ell (\theta; D) = \log P(D \mid \theta) = \log \theta^{n_h} (1 - \theta)^{n_i} = n_h \log \theta + (N - n_h) \log(1 - \theta)
\]

- We need to maximize this w.r.t. \(\theta \)

- Take derivatives wrt \(\theta \)

\[
\frac{\partial \ell}{\partial \theta} = \frac{n_h}{\theta} - \frac{N - n_h}{1 - \theta} = 0
\]

\[\hat{\theta}_{MLE} = \frac{n_h}{N} \quad \text{or} \quad \hat{\theta}_{MLE} = \frac{1}{N} \sum_i x_i\]

- Sufficient statistics
 - The counts, \(n_h \), where \(n_h = \sum_i x_i \), are sufficient statistics of data \(D \)

© Eric Xing @ CMU, 2006-2016
Overfitting

- Recall that for Bernoulli Distribution, we have

\[\hat{\theta}_{ML}^{head} = \frac{n^{head}}{n^{head} + n^{tail}} \]

- What if we tossed too few times so that we saw zero head? We have \(\hat{\theta}_{ML}^{head} = 0 \), and we will predict that the probability of seeing a head next is zero!!!

- The rescue: "smoothing"
 - Where \(n' \) is know as the pseudo- (imaginary) count

\[\hat{\theta}_{ML}^{head} = \frac{n^{head} + n'}{n^{head} + n^{tail} + n'} \]

- But can we make this more formal?
Bayesian Parameter Estimation

- Treat the distribution parameters θ also as a random variable
- The a posteriori distribution of θ after seem the data is:

$$p(\theta | D) = \frac{p(D | \theta)p(\theta)}{p(D)} = \frac{p(D | \theta)p(\theta)}{\int p(D | \theta)p(\theta)d\theta}$$

This is Bayes Rule

$$\text{posterior} = \frac{\text{likelihood} \times \text{prior}}{\text{marginal likelihood}}$$

The prior $p(.)$ encodes our prior knowledge about the domain
Frequentist Parameter Estimation

Two people with different priors $p(\theta)$ will end up with different estimates $p(\theta|D)$.

- Frequentists dislike this “subjectivity”.
- Frequentists think of the parameter as a fixed, unknown constant, not a random variable.
- Hence they have to come up with different "objective" estimators (ways of computing from data), instead of using Bayes’ rule.
 - These estimators have different properties, such as being “unbiased”, “minimum variance”, etc.
 - The maximum likelihood estimator, is one such estimator.
Discussion

θ or \(p(\theta) \), this is the problem!
Discussion

θ or $p(\theta)$, this is the problem!
Bayesian estimation for Bernoulli

- **Beta distribution:**

\[
P(\theta; \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha-1}(1-\theta)^{\beta-1} = B(\alpha, \beta)\theta^{\alpha-1}(1-\theta)^{\beta-1}
\]

- When \(x \) is discrete \(\Gamma(x+1) = x\Gamma(x) = x! \)

- **Posterior distribution of \(\theta \):**

\[
P(\theta \mid x_1, \ldots, x_N) = \frac{p(x_1, \ldots, x_N \mid \theta)p(\theta)}{p(x_1, \ldots, x_N)} \propto \theta^{n_h}(1-\theta)^{n_t} \times \theta^{\alpha-1}(1-\theta)^{\beta-1} = \theta^{n_h+\alpha-1}(1-\theta)^{n_t+\beta-1}
\]

- Notice the isomorphism of the posterior to the prior,
- such a prior is called a **conjugate prior**
- \(\alpha \) and \(\beta \) are hyperparameters (parameters of the prior) and correspond to the number of “virtual” heads/tails (pseudo counts)
Bayesian estimation for Bernoulli, con'd

- Posterior distribution of θ:

$$P(\theta \mid x_1, \ldots, x_N) = \frac{p(x_1, \ldots, x_N \mid \theta)p(\theta)}{p(x_1, \ldots, x_N)} \propto \theta^{n_h} (1 - \theta)^{n_i} \times \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} = \theta^{n_h + \alpha - 1} (1 - \theta)^{n_i + \beta - 1}$$

- Maximum a posteriori (MAP) estimation:

$$\theta_{MAP} = \arg \max_\theta \log P(\theta \mid x_1, \ldots, x_N)$$

- Posterior mean estimation:

$$\theta_{Bayes} = \int \theta p(\theta \mid D) d\theta = C \int \theta \times \theta^{n_h + \alpha - 1} (1 - \theta)^{n_i + \beta - 1} d\theta = \frac{n_h + \alpha}{N + \alpha + \beta}$$

- Prior strength: $A = \alpha + \beta$
 - A can be interopereated as the size of an imaginary data set from which we obtain the pseudo-counts

Bata parameters can be understood as pseudo-counts
Effect of Prior Strength

- Suppose we have a uniform prior ($\alpha = \beta = 1/2$), and we observe $\vec{n} = (n_h = 2, n_t = 8)$
- Weak prior $A = 2$. Posterior prediction:
 $$p(x = h | n_h = 2, n_t = 8, \bar{\alpha} = \bar{\alpha} \times 2) = \frac{1+2}{2+10} = 0.25$$
- Strong prior $A = 20$. Posterior prediction:
 $$p(x = h | n_h = 2, n_t = 8, \bar{\alpha} = \bar{\alpha} \times 20) = \frac{10+2}{20+10} = 0.40$$
- However, if we have enough data, it washes away the prior. e.g., $\vec{n} = (n_h = 200, n_t = 800)$. Then the estimates under weak and strong prior are $\frac{1+200}{2+1000}$ and $\frac{10+200}{20+1000}$, respectively, both of which are close to 0.2
Continuous Prob. Distribution

- A continuous random variable X can assume any value in an interval on the real line or in a region in a high dimensional space
 - A random vector $X=[x_1, x_2, \ldots, x_n]^T$ usually corresponds to a real-valued measurements of some property, e.g., length, position, ...

- It is not possible to talk about the probability of the random variable assuming a particular value --- $P(x) = 0$

- Instead, we talk about the probability of the random variable assuming a value within a given interval, or half interval
 - $P(X \in [a, b])$,
 - $P(X < x) = P(X \in [-\infty, x])$
 - Arbitrary Boolean combination of basic propositions
Continuous Prob. Distribution

- The probability of the random variable assuming a value within some given interval from \(a\) to \(b\) is defined to be the area under the graph of the probability density function between \(a\) and \(b\).

- Probability mass: \(P(X \in [a, b]) = \int_a^b p(x)dx\),

 note that \(\int_{-\infty}^{+\infty} p(x)dx = 1\).

- Cumulative distribution function (CDF):
 \[P(x) = P(X < x) = \int_{-\infty}^{x} p(x')dx' \]

- Probability density function (PDF):
 \[p(x) = \frac{d}{dx}P(x) \]

\[\int_{-\infty}^{+\infty} p(x)dx = 1; \quad p(x) > 0, \forall x \]
Continuous Distributions

- **Uniform Probability Density Function**

 \[p(x) = \frac{1}{b - a} \quad \text{for} \quad a \leq x \leq b \]

 \[= 0 \quad \text{elsewhere} \]

- **Normal (Gaussian) Probability Density Function**

 \[p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

 - The distribution is symmetric, and is often illustrated as a bell-shaped curve.
 - Two parameters, \(\mu \) (mean) and \(\sigma \) (standard deviation), determine the location and shape of the distribution.
 - The highest point on the normal curve is at the mean, which is also the median and mode.
 - The mean can be any numerical value: negative, zero, or positive.

- **Multivariate Gaussian**

 \[p(X; \mu, \Sigma) = \frac{1}{(\sqrt{2\pi})^{n/2} |\Sigma|^{1/2}} \exp \left\{ -\frac{1}{2} (X - \mu)^T \Sigma^{-1} (X - \mu) \right\} \]
Example 2: Gaussian density

- **Data:**
 - We observed N iid real samples:
 \[D = \{-0.1, 10, 1, -5.2, \ldots, 3\} \]

- **Model:**
 \[P(x) = \left(2\pi\sigma^2\right)^{-1/2} \exp\left\{-(x - \mu)^2 / 2\sigma^2\right\} \]

- **Log likelihood:**
 \[\ell(\theta; D) = \log P(D | \theta) = -\frac{N}{2} \log(2\pi\sigma^2) - \frac{1}{2} \sum_{n=1}^{N} \frac{(x_n - \mu)^2}{\sigma^2} \]

- **MLE:** take derivative and set to zero:
 \[
 \frac{\partial \ell}{\partial \mu} = \left(1 / \sigma^2\right) \sum_n (x_n - \mu) \\
 \frac{\partial \ell}{\partial \sigma^2} = -\frac{N}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_n (x_n - \mu)^2 \\
 \mu_{MLE} = \frac{1}{N} \sum_n (x_n) \\
 \sigma_{MLE}^2 = \frac{1}{N} \sum_n (x_n - \mu_{ML})^2
 \]
MLE for a multivariate-Gaussian

- It can be shown that the MLE for μ and Σ is

$$
\mu_{MLE} = \frac{1}{N} \sum_n (x_n)
$$

$$
\Sigma_{MLE} = \frac{1}{N} \sum_n (x_n - \mu_{ML})(x_n - \mu_{ML})^T = \frac{1}{N} S
$$

where the scatter matrix is

$$
S = \sum_n (x_n - \mu_{ML})(x_n - \mu_{ML})^T = \left(\sum_n x_n x_n^T \right) - N \mu_{ML} \mu_{ML}^T
$$

- The sufficient statistics are $\Sigma_n x_n$ and $\Sigma_n x_n x_n^T$.
- Note that $X^T X = \Sigma_n x_n x_n^T$ may not be full rank (eg. if $N < D$), in which case Σ_{ML} is not invertible.
Bayesian estimation

- Normal Prior:
 \[P(\mu) = \left(2\pi\sigma_0^2\right)^{-1/2} \exp\left\{-(\mu - \mu_0)^2 / 2\sigma_0^2\right\} \]

- Joint probability:
 \[P(x, \mu) = \left(2\pi\sigma^2\right)^{-N/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu)^2 \right\} \times \left(2\pi\sigma_0^2\right)^{-1/2} \exp\left\{-(\mu - \mu_0)^2 / 2\sigma_0^2\right\} \]

- Posterior:
 \[P(\mu | x) = \left(2\pi\tilde{\sigma}^2\right)^{-1/2} \exp\left\{-(\mu - \tilde{\mu})^2 / 2\tilde{\sigma}^2\right\} \]
 where \[\tilde{\mu} = \frac{N / \sigma^2}{N / \sigma^2 + 1 / \sigma_0^2} \bar{x} + \frac{1 / \sigma_0^2}{N / \sigma^2 + 1 / \sigma_0^2} \mu_0 \], and \[\tilde{\sigma}^2 = \left(\frac{N}{\sigma^2} + \frac{1}{\sigma_0^2}\right)^{-1} \]
Bayesian estimation: unknown μ, known σ

$$\mu_N = \frac{N / \sigma^2}{N / \sigma^2 + 1 / \sigma_0^2} \bar{x} + \frac{1 / \sigma_0^2}{N / \sigma^2 + 1 / \sigma_0^2} \mu_0,$$ \hspace{1cm} \tilde{\sigma}^2 = \left(\frac{N}{\sigma^2} + \frac{1}{\sigma_0^2} \right)^{-1}

- The posterior mean is a convex combination of the prior and the MLE, with weights proportional to the relative noise levels.
- The precision of the posterior $1/\sigma_N^2$ is the precision of the prior $1/\sigma_0^2$ plus one contribution of data precision $1/\sigma^2$ for each observed data point.

- Sequentially updating the mean
 - $\mu^* = 0.8$ (unknown), $(\sigma^2)^* = 0.1$ (known)
 - Effect of single data point
 $$\mu_1 = \mu_0 + (x - \mu_0) \frac{\sigma_0^2}{\sigma^2 + \sigma_0^2} = x - \frac{(x - \mu_0) \sigma_0^2}{\sigma^2 + \sigma_0^2}$$
 - Uninformative (vague/ flat) prior, $\sigma_0^2 \to \infty$
 $$\mu_N \to \mu_0$$
Summary

- Machine Learning is Cool and Useful!!

- Learning scenarios:
 - Data
 - Objective function
 - Frequentist and Bayesian

- Density estimation
 - Typical discrete distribution
 - Typical continuous distribution (recitation)
 - Conjugate priors
Some suggestions ...
How ML facilitates Applications (say, NLP)

- Question Answering
- Machine Translation
- Language Modeling
- POS tagging & Parsing
- Name Entity Recognition
- Sentiment Analysis
- Topic Clustering

Linguistic Theory: Syntax, Semantics ...

CRF, RNN, SVM, LSA, HMM
One way ...

- Question Answering
- Machine Translation
- Language Modeling
 - POS tagging & Parsing
 - Name Entity Recognition
- Sentiment Analysis
- Topic Clustering

© Eric Xing @ CMU, 2006-2016
Maybe highway ...?

- Deep Learning!
 - Question Answering
 - Machine Translation
 - Language Modeling
 - POS tagging & Parsing
 - Name Entity Recognition
 - Sentiment Analysis
 - Topic Clustering
Solution = deep domain knowledge + sounds methodology

- Topic Clustering
- Sentiment Analysis
- POS tagging
- Name Entity Recognition
- Parsing
- Machine Translation
- Question Answering
- ...

- Topic models/Latent space models
- Structured input/output predictive models
- Spectrum models
- Deep network models
- Distance metric
- Convex and non-convex optimization algorithms
- Monte Carlo algorithms
- Distributed ML systems
- Consistency/identifiability/convergence theories
- ...

© Eric Xing @ CMU, 2006-2016