
Homework 3
PAC, VC dimension, Neural Networks

CMU 10-701: Machine Learning (Fall 2016)
https://piazza.com/class/is95mzbrvpn63d

OUT: October 10th
DUE: October 24th, 11:59 PM

START HERE: Instructions

• Collaboration policy: Collaboration on solving the homework is allowed, after you have thought
about the problems on your own. It is also OK to get clarification (but not solutions) from books
or online resources, again after you have thought about the problems on your own. There are two
requirements: first, cite your collaborators fully and completely (e.g., “Jane explained to me what is
asked in Question 3.4”). Second, write your solution independently: close the book and all of your
notes, and send collaborators out of the room, so that the solution comes from you only.

• Late Submission Policy: Late submissions will not receive full credit. Half credit will be awarded
to correct solutions submitted within 48 hours of the original deadline. Otherwise, no credit will be
given.

• Submitting your work: Non-programming parts of the assignment should be submitted as PDFs
using Gradescope unless explicitly stated otherwise. Each derivation/proof should be completed on
a separate page. Submissions can be handwritten, but should be labeled and clearly legible. If your
writing is not legible, you will not be awarded marks. Alternatively, submissions can be written in
LaTeX. Upon submission, label each question using the template provided.

1

https://piazza.com/class/is95mzbrvpn63d

Problem 1: Probably Approximately Correct (PAC) learning [20]
(Hyun-Ah)

In this Problem, we will use following notations:

• X: a set called instance space. A set of all possible instances or examples. (e.g. all points in R2)

• c: a concept. A subset of the instance space c ⊆ X that exemplify some interesting rule. Our goal is
to approximate this concept. c : X → {0, 1}, where c(x) = 1 indicates x is a positive example of c.

• C: a concept class. A set of concepts c.

• D: fixed probability distribution over the instance space X. This is the target distribution where the
training and test examples are drawn from.

• S: a set of training examples.

• H: a set of concept hypotheses.

Given a set of training samples S, a learning algorithm L chooses a hypothesis hS from the hypotheses set
H that approximates c.

Then the generalization error of h with respect to the target concept c and distribution D is given as:

R(h) = Px∼D[h(x) 6= c(x)] = Ex∼D[1h(x) 6=c(x)] (1)

The empirical error given m training samples (average error of h on training sample S drawn from D) is
given as:

R̂S(h) = Px∼D̂[h(x) 6= c(x)] = Ex∼D̂[1h(x)6=c(x)] =
1

m

m∑
i=1

1h(x)6=c(x) (2)

And we observe that R(h) = ES∼Dm [R̂S(h)].

The formal definition of Provably Approximately Correct (PAC) learning is given as below:

Definition 1. PAC learnability A concept class C is PAC learnable if there exists a learning algorithm L
such that outputs a hypothesis hS such that:

1. for all c ∈ C, all distributions D, all ε > 0 and all δ > 0, the generalization error of hS is at most ε
with probability at least 1− δ, i.e. PS∼Dm [R(hS) ≤ ε] ≥ 1− δ

2. for samples S of size m that is bounded below by a polynomial in 1/ε and 1/δ.

Here, ε is an error parameter, i.e. accuracy is 1 − ε, and δ is the confidence parameter, i.e. confidence is
1− δ.

Now we will see some PAC learnable examples, and work out that they are PAC learnable.

1.1 Rectangle learning [10]

Consider an unknown axis-aligned rectangle R in R2 space. This R is our target rectangle that we would
like to approximate. Assume that you are given information on R by the following procedure: a point p is
drawn randomly from distribution D, and you are given the coordinate of this point p and its label indicating
whether this point p is included in the rectangle R or not. If the point p is included in R, then the label is
1 and −1 otherwise. Figure 1 shows the R and some points with labels.

2

Your goal is to use as few examples as possible to pick an approximate to R, i.e. a hypothesis rectangle
R′. We will call this “rectangle learning.” The error of R′ is computed as the probability that a randomly
chosen point fro D falls in regions R4 R′, where R4 R′ = (R− R′) ∪ (R′ − R).

Figure 1: An example of rectangle R and point samples.

1. [7 pt] Show that described rectangle learning is PAC learnable. (i.e. for any target rectangle R, and
any distribution D, for any small values of ε > 0 and δ > 0, for a suitably chosen value of the sample
size m, we can assert that with probability at least 1− δ, the tightest-fit rectangle has error at most ε
with respect to R and D.)
(hint 1: use union bound: “ for any finite or countable set of events, the probability that at least
one of the events happens is no greater than the sum of the probabilities of the individual events:
P (∪iAi) ≤

∑
i P (Ai)”

1, and hint 2: use the inequality 1− x ≤ exp(−x)))

2. [1 pt] What is the lower bound of the sample size m?

3. [1 pt] How does m change as we ask for more accuracy (smaller ε)?

4. [1 pt] How does m change as we ask for narrower confidence interval (smaller δ)?

1.2 Error bounds [10]

1. [5 pt] The theorem on the learning bound for finite H for consistent case is given as follows. (consistent
case means that hypotheses fits perfectly on the training data: hS(x) = c(x),∀x ∈ S, so that we have
R̂S(hS) = Px∼D̂[hS(x) 6= c(x)] = 0.)

Theorem 1. let H be a finite set of functions of X to {0, 1}, and L a learning algorithm that for any
target concept c ∈ H, and sample S returns a consistent hypothesis hS : R̂S(hS) = 0. Then for any
δ > 0, with probability at least 1− δ,

R(hS) ≤ 1

m
(log |H|+ log

1

δ
) (3)

Prove above theorem.
(hint 1: use union bound, and hint 2: use the inequality 1− x ≤ exp(−x))

2. [5 pt] The theorem on the learning bound for finite H for inconsistent case is given as follows:

1https://en.wikipedia.org/wiki/Boole%27s inequality

3

Theorem 2. let H be a finite set, then for any δ > 0, with probability at least 1− δ,

∀h ∈ H, R(h) ≤ R̂S(h) +

√
log |H|+ log 2

δ

2m
(4)

For the case of inconsistent h, we need following corollary.
Corollary 1. for any ε > 0, and any hypothesis h : X → {0, 1}, the following inequality holds:

P [|R(h)− R̂(h)| ≥ ε]≤2 exp(−2mε2) (5)

Use the corollary on Hoeffding’s inequaltiy to prove above theorem.
(note: Hoeffding’s inequality provides an upper bound on the probability that the sum of random vari-
ables deviates from its expected value. 2)

2https://en.wikipedia.org/wiki/Hoeffding%27s inequality

4

Problem 2: VC Dimension [10] (Brynn)

2.1 Vapnik-Chervonenkis (VC) Dimension [10]

For each one of the following function classes, state what the VC dimension is and explain how you found
that number.

1. [2 pt] Circles in R2. An example is labeled positive if it lies within the circle, and negative otherwise.
Assume you may shift the circle and change its size.

2. [2 pt] Consider the same scenario as in part 1, but now assume the circle is centered around the origin.
3. [3 pt]Consider X ∈ R1, where we want to learn c : X → {0, 1}. What is the VC dimension of
H = {Y = sign(sin(w1x+ w2))} (Figure 2)

Figure 2: Sine wave classifier

4. [3 pt] Prove that the VC dimension of a finite class |C| <∞ is bounded from above:
V Cdim(C) ≤ log2|C|

5

Problem 3: Perceptron [30] (Siddharth)

3.1 Proving convergence in linear separability [10]

Consider the scenario where we are using linear classifiers (passing through origin) as our learning model
(h(x) = sign(wTx)), and the perceptron algorithm as our learning algorithm. Given a dataset of n samples
of d-dimensional vectors (xi) with class labels (yi), where the labels can take only 2 values +1 or −1, assume
that there exists a weight vector w∗ that linearly separates the positive and negative samples, such that:

yi(w
∗)Txi ≥ γ,∀i (6)

where, γ > 0(γ ∈ R), xi ∈ Rd, yi ∈ {+1,−1}, w∗ ∈ Rd.

The perceptron algorithm starts with w(0) = 0 (superscript denotes update-step number), and updates the
weight vector at the kth step when it encounters a misclassified sample, w(k) = w(k−1) + ykxk. A sample
(x, y) is misclassified (at a step i) if:

y(w(i−1))
T
x ≤ 0 (7)

Assume further that for all training input vectors, the L2 norm is bounded, ||xi||2 ≤ V (∀i = 1..n).

Show that the number of updates (t) to the weight vector starting from w(0) = 0 in such a scenario is

bounded by
V 2||w∗||22

γ2 .

For proving this result:

1. Try to lower bound w∗Tw(t), using Equation 6. Specifically show that w∗Tw(t) ≥ tγ.

2. Now, upper bound ||w(t)||2 using the update rule (Equation 7), and show that ||w(t)||22 ≤ tV 2.

3. Now use the above two parts to get the desired result. (Hint: use cosine of w∗, w(t))

3.2 Implementing perceptron algorithm [7]

Let’s consider the linear classification model with a bias term,

h(x) = sign(wTx + b) (8)

where sign(v) outputs +1 if v ≥ 0, and −1 otherwise.

The perceptron learning algorithm can be expressed as follows (for a given dataset D = {xi, yi}, i = 1..n,xi ∈
Rd, yi ∈ {+1,−1}):

Let w = 0, i = 0, numIter = 100
while !(all samples correctly classfied) AND i < numIter do

for s = 1, 2, ..n do
if ys(w

Txs + b) ≤ 0 then
w = w + ysxs;
b = b+ ys ;

end

end
i = i+ 1 ;

end
return w, b, i

Algorithm 1: Perceptron algorithm on training samples

6

This algorithm can be used to obtain w and b, which can then be used to predict labels of the test samples
using equation 8. Implement this algorithm for the task of classification on the dataset given here (filenames
with ‘parta’ prefix). Report your accuracy on the test set, and the number of iterations it took the algorithm
to converge on the training set.

3.3 Implementing kernel perceptron algorithm [13]

Let’s consider a kernel-defined feature space φ(x) (φ(x) ∈ RE , E >> d), and the linear classification model
in that space. More precisely, the model is defined as:

g(x) = sign(wTφ(x)) (9)

(Note, that we are not considering the bias term in the new feature space). So in order to apply the
perceptron learning algorithm, the update rule will have to be modified. The update rule then becomes
w(t) = w(t)+yiφ(xi) for the misclassified example (xi, yi). But this generally turns out to be computationally
expensive, so we consider the dual version of the problem. Assuming n dual variables αi corresponding to
each training input vector (which are initialized to 0), the dual update rule is αi = αi + 1 (for the above ith
misclassified sample).

The weight vector (at iteration t) can be expressed as:

w(t) =

n∑
i=1

αiyiφ(xi) (10)

Subsequently, the function g (from equation 9), for an input x, can be written as:

g(x) = sign(

n∑
i=1

αiyiφ(xi)
Tφ(x)) (11)

(Note, xi is the ith point in the dataset).

Now, we can see that we can use kernel inner products instead of using φ(x) directly. Moreover, we don’t
need an explicit form of the weight vector to compute g(x), it can written as:

g(x) = sign(

n∑
i=1

αiyiκ(xi,x)) (12)

In conclusion, we only need values of αi for predicting labels for test samples.

The kernel perceptron algorithm can be written as follows (note: α ∈ Rn, αi is ith component (hence a
scalar)):

Let α = 0, i = 0, numIter = 100
while !(all samples correctly classified) AND i < numIter do

for s = 1, 2, ..n do
if ys ×

∑n
j=1(αjyjκ(xj,xs)) ≤ 0 then

αs = αs + 1 ;
end

end
i = i+ 1 ;

end
return α

Algorithm 2: Kernel perceptron algorithm on training samples

7

https://www.dropbox.com/sh/9gr4i9iolaea7xx/AADbOky_mDdXeR6SRqzQvCk-a?dl=0

Implement the kernel perceptron algorithm on this dataset (filenames with ’partb’ prefix) using a polynomial
kernel of degree 3 (which has the form κ(xi,xj) = (1 + xT

i xj)
c for degree c). Use the training dataset to

obtain suitable dual variables (the vector α), and use equation 12 to predict labels for the test samples. Use
numIter = 10 for the kernel perceptron algorithm, and compare its accuracy against that obtained by the
perceptron learning algorithm on this dataset (with numIter = 100 for perceptron learning algorithm).

8

https://www.dropbox.com/sh/9gr4i9iolaea7xx/AADbOky_mDdXeR6SRqzQvCk-a?dl=0

Problem 4: Neural networks [30] (Brynn)

4.1 Network Architecture [16]

Input
layer

Output
layer

1. [1 pt] What is the most common name of the neural network shown in the figure above, when sigmoid
activation functions are being used?

2. [1 pt] What does the decision boundary of the neural network shown in the figure above look like
when sigmoid activation functions are being used?

Hidden
layer

Input
layer

Output
layer

3. [1 pt] Now consider the model shown in the figure above, instead of the previous one. Why might this
be a better model?

4. [1 pt] And why could it be worse?
5. [8 pt] Assume the following functional form for the network shown in the above figure:

h(x) = σ(Whx+ bh),

o(x) = σ(Woh(x) + bo),

where h corresponds to the vector of hidden node values, o corresponds to the output node value, σ(·)
is the sigmoid function and {Wh, bh,Wo, bo} are the parameters of the network. Assume that we use

9

the squared error loss function and that we have available training data {xi, yi}ni=1. Derive the gradient
of the total loss with respect to parameters bo and bh.
Hint: The total loss is the sum of loss for each data point where loss function for each data point is
given by the equation:

l(xi, yi) = ‖o(xi)− yi‖22

6. [1 pt] Which quantities in the above derivation correspond to the quantities that we back-propagate
in the back-propagation algorithm?

7. [1 pt] Why do we use back-propagation and not, let’s say, recursion using a forward pass on the neural
network, to compute the gradients?

Output
layer

(y0, ..., y4)

Hidden
layer

Input
layer

(x1, ..., x4)

8. [2 pt] Suppose we wish to learn the function f : 〈x1, x2, x3, x4〉 → y0, where y0 is the node depicted in
red. Consider this network, where we train it to produce outputs y1 = x1, y2 = x2, y3 = x3, y4 = x4,
as well as y0 = f(x1...x4). What is this network doing, and why might it be a useful way to train
f : 〈x1, x2, x3, x4〉 → y0?

4.2 Recurrent Neural Networks [14]

Consider the following recurrent neural network (RNN):

yt = w3xt,

xt = σ(w2xt−1 + w1it)

where it denotes some input, xt denotes some hidden unit, and yt denotes a target output.

Suppose you wish to train this network using gradient descent to fit the input/output time series
〈
〈i1, y1〉...〈iT , yT 〉

〉
.

Derive the gradient descent rule for training this network. That is, calculate the gradient including each

10

network parameter, and give the training algorithm. Derive your algorithm to minimize the sum of squared
errors

∑T
t=1(ŷt − yt)2. Assume when calculating y1, that x0 = 1.

11

