
Homework 2
SVM, Kernel methods, Ensemble learning, learning theory

CMU 10-701: Machine Learning (Fall 2016)
https://piazza.com/class/is95mzbrvpn63d

OUT: September 26th
DUE: October 10th, 11:59 PM

START HERE: Instructions

• Collaboration policy: Collaboration on solving the homework is allowed, after you have thought
about the problems on your own. It is also OK to get clarification (but not solutions) from books
or online resources, again after you have thought about the problems on your own. There are two
requirements: first, cite your collaborators fully and completely (e.g., “Jane explained to me what is
asked in Question 3.4”). Second, write your solution independently: close the book and all of your
notes, and send collaborators out of the room, so that the solution comes from you only.

• Late Submission Policy: Late submissions will not receive full credit. Half credit will be awarded
to correct solutions submitted within 48 hours of the original deadline. Otherwise, no credit will be
given.

• Submitting your work: Non-programming parts of the assignment should be submitted as PDFs
using Gradescope unless explicitly stated otherwise. Each derivation/proof should be completed on
a separate page. Submissions can be handwritten, but should be labeled and clearly legible. If your
writing is not legible, you will not be awarded marks. Alternatively, submissions can be written in
LaTeX. Upon submission, label each question using the template provided.
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Problem 1: SVM [30] (Brynn)

1.1 Soft-margin SVM

In real world applications, there are outliers in data. This can be dealt with using a soft margin, specified
in a slightly different optimization problem as below (soft-margin SVM):

min
1

2
w · w + C

N∑
i

ξi where ξi ≥ 0

s.t. y(i)(wTx(i) + b) ≥ 1− ξi
ξi represents the slack for each data point i, which allows misclassification of datapoints in the event that
the data is not linearly seperable. SVM without the addition of slack terms is known as hard-margin SVM.

1. [3 pt] Intuitively, where does a data point lie relative to where the margin is when ξi = 0 ? Is this
data point classified correctly?

2. [4 pt] Intuitively, where does a data point lie relative to where the margin is when 0 < ξi ≤ 1 ? Is this
data point classified correctly?

3. [3 pt] Intuitively, where does a data point lie relative to where the margin is when ξi > 1 ? Is this
data point classified correctly?

1.2 Kernel SVM

Support Vector Machines can be used to perform non-linear classification with a kernel trick. Recall the
hard-margin SVM from class:

min
1

2
w · w

s.t. y(i)(wTx(i) + b) ≥ 1

The dual of this primal problem can be specified as a procedure to learn the following linear classifier:

f(x) =

N∑
i

αiyi(x
T
i x) + b

Note that now we can replace xTi x with a kernel k(xi, x), and have a non-linear decision boundary.

In Figure 5, there are different SVMs with different shapes/patterns of decision boundaries. The training
data is labeled as yi ∈ {−1, 1}, represented as the shape of circles and squares respectively. Support vectors
are drawn in solid circles. Match the scenarios described below to one of the 6 plots (note that one of the
plots does not match to anything). Each scenario should be matched to a unique plot. Explain in less than
two sentences why it is the case for each scenario.
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Figure 1: Induced Decision Boundaries
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Figure 2: Training dataset

(b) Since we do not know the true parameter p∗
H , we would like to estimate it from observed data.

One estimate is the maximum likelihood estimate (MLE). This maximizes the likelihood function
of pH given the data.

3

Figure 1: SVM boundaries

1. [4 pt] A soft-margin linear SVM with C = 0.02.

2. [4 pt] A soft-margin linear SVM with C = 20.

3. [4 pt] A hard-margin kernel SVM with k(u, v) = u · v + (u · v)2

4. [4 pt] A hard-margin kernel SVM with k(u, v) = exp(−5||u− v||2)

5. [4 pt] A hard-margin kernel SVM with k(u, v) = exp(− 1
5 ||u− v||

2)
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Problem 2: Feature Representation and Kernels [30] (Brynn)

2.1 Designing Transformations

In this problem, we will design some transformations of the original data points, i.e., derive features, to try
to make a dataset linearly separable.
Note: for the following questions (1)–(5), if your answer is ‘Yes’, write out the expression for the transfor-
mation; if your answer is ‘No’, briefly explain why.

1. [4 pt] Consider the following 1-D dataset (as shown in Figure 2). Can you think of a 1-D transformation
that will make the points linearly separable?

Figure 2: Dataset for question (a) & (b)

2. [4 pt] Still consider the above 1-D dataset (as shown in Figure 2). Can you come up with a 2-D
transformation that makes the points linearly separable?

3. [4 pt] You may not always need to map to a higher dimensional space to make the data linearly separa-
ble. Consider the following 2-D dataset (as shown in Figure 3). Can you suggest a 1-D transformation
that will make the data linearly separable?

Figure 3: Dataset for question 3

4. [4 pt] Using ideas from the above two datasets, can you suggest a 2-D transformation of the following
dataset (as shown in Figure 4) that makes it linearly separable?
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Figure 4: Dataset for question 4

5. [2 pt] What is the kernel corresponding to the transformation you designed in question (4)? Explicitly
write out the expression for this kernel.

2.2 Kernel or Not?

For each of the following functions, prove or disprove that it is a valid kernel.

1. [2 pt] k(x, z) = (xz + 1)2

2. [2 pt] k(x, z) = (xz − 1)3
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Problem 3: Ensemble Learning [40] (Hyun-Ah)

In this problem, we will explore various ensemble learning methods, and see their effects on the bias and
variance.

3.1 Bias and variance decomposition [5] (Hyun-Ah)

In this problem, you will show that expected prediction error can be decomposed into bias, variance and
noise.
Let’s think about a (unobservable) true function y = f(x) + ε, where ε ∼ N (0, σ2). Given a set of training
dataset D = {(xi, yi)}, we can fit a hypothesis h(x|D) = wTx + b to the given data D to minimize squared
error

∑
i(yi − h(xi|D))2 so that h(x|D) approximates the true function f(x).

Given a new data point x
′
, and observed value y

′
= f(x

′
) + ε, we would like to minimize the expected

prediction error ED,ε[(h(x
′ |D)− y′

)2].

1. [5 pt] The bias of x‘ is the difference between the expected value of hypotheses and the true value
f(x‘). The variance of x‘ is how far a set of hypotheses learned on different Dataset D are spread out
from their mean ED[h(x‘|D)].
Show that expected prediction error of x‘ ( ED,ε[(h(x

′ |D)− y′
)2]) can be decomposed into (bias(x

′
))2,

variance(x
′
), and noise, where bias(x

′
)= ED[h(x

′ |D)]−f(x
′
), variance(x

′
)= ED[(h(x

′ |D)−ED[h(x
′ |D)])2],

and noise=σ2

You have just shown that the expected prediction error that we want to minimize can be decomposed into
bias and variance. Now let’s see how the ensemble methods effect these values and thus affect the expected
prediction error.

3.2 Bootstrap aggregating (Bagging) [5] (Hyun-Ah)

Bootstrap aggregating or bagging is one of the ensemble methods. Below is the pseudocode for bagging
method. Given a set of training samples, bootstrap size, and a learning algorithm, bagging method returns
a set of hypothesis learned on each of the bootstrap samples hb. For a test sample xi, we can determine the

label by weighted voting of the hypothesis: yi =
∑

b hb(xi)

B .

Data: A set S of m labeled training samples: S = {(xi, yi)}, i = 1, · · · ,m, where yi ∈ R are a real-valued
output from a function , bootstrap size B, a learning algorithm

Result: A set of hypothesis H = {hb, b = 1, · · · , B}
for b = 1, · · · , B do

Create a bootstrap sample Sb;
(Randomly draw |S| samples from S with replacement);
Learn a hypothesis hb by applying a learning algorithm on data Sb

end
Algorithm 1: Bagging algorithm

1. [3 pt] Write down the bias and the variance for using the bagging method. By looking at the bias and
the variance, is there any change in the expected prediction error compared to the case that does not
use bagging method?

2. [2 pt] What kind of classifiers do you think will benefit from bagging method? Give a few examples
of classifiers that will benefit from bagging method and explain why you think so.
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We have briefly learned about one of the ensemble method. Now let’s take a look at another ensemble
method called ‘Adaboost method’.

3.3 Adaboost [30] (Hyun-Ah)

Adaboost method is one of the commonly used ensemble method. Adaboost learns weights for both training
samples and the classifiers. Unlike Bagging method, Adaboost method makes final decision by weighted
voting of the classifiers. Every iteration, Adaboost updates the weights on training samples so that classifier
can focus on learning samples that are difficult for classification. Adaboost reduces both bias and variance
thus is effective in reducing the prediction error.

Data: A set S of m labeled training samples: S = {(xi, yi), i = 1, · · · ,m}, where yi ∈ {−1, 1} are labels,
number of iterations T , a set of hypothesis H = {hj} from a learning algorithm

Result: A set of weights A = {αt, t = 1, · · · , T} and classifiers selected at each iteration {ht, t = 1, · · · , T}
Initialize the weights D1(i) = 1

m ;
for t = 1, · · · , T do

Select a weak classifier with smallest weighted error ht = arg minhj∈H εj , where
εj =

∑m
i=1Dt(i)1{yi 6=hj(xi)}, and let εt = minhj∈H εj ;

Compute the weight for the classifier αt = 1
2 log( 1−εt

εt
);

Update the weight Dt+1(i) = Dt(i) exp(−αtyiht(xi));
Normalize the weight Dt+1(i) = Dt+1(i)∑

iDt+1(i)
;

end
Return weights αt and classifiers ht t = 1, · · · , T .

Algorithm 2: Adaboost algorithm

1. [8 pt] In this problem, you will prove the error bound of the Adaboost. Let’s denote H as the strong
classifier. The decision of the strong classifier on new sample x∗ is given as H(x∗) = sign(

∑
t αtht(x)).

Recall that “weak” classifiers are defined as classifiers that do slightly better job than random guessing,
εt = 1

2 − γt, where γt > 0 is a small value.
The upper bound of the training error of the strong classifier H is given as

err(H) ≤
T∏
t

2
√
εt(1− ε) (1)

=

T∏
t

√
1− 4γ2t (2)

≤ exp(−2

T∑
t

γ2t ) (3)

Now you will prove this bound step-by-step through (a)-(d).
For notational simplicity, let f(x) =

∑
t αtht(x), so that H(x) = sign(f(x)). Let Zt denote a normal-

izing constant for weak classifier t: Zt =
∑
iDt+1(i)

(a) [2 pt] First, show that DT+1(i) = 1
m

1∏T
t Zt

exp(−yif(xi)).

(b) [2 pt] Show that error of the strong classifier H is upper bounded by the product of Zt:

err(H) ≤
∏T
t Zt.

(hint 1: the error of the strong classifier H is given as: err(H) = 1
m

∑
i 1{yi 6=H(xi)}, hint 2: use

the fact that 0-1 loss is upper bounded by exponential loss - recall that we are using 0-1 loss here
by defining error as 1{yi 6=H(xi)}).
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(c) [2 pt] Now show that Zt = 2
√
εt(1− εt)

(hint 1: start from the Zt =
∑
iDt+1(i) =

∑
iDt(i) exp(−αtyiht(xi)). hint 2: separate the Zt

expression for correctly classified cases and incorrectly classified cases. hint 3: express in terms
of εt. hint 4: plug in αt)

(d) [2 pt] Combining (b) and (c), now we have upper bound on the error as err(H) ≤
∏T
t 2
√
εt(1− εt).

Now show the following: err(H) ≤ exp(−2
∑T
t γ

2
t ).

(hint 1: use the definition of weak classifierεt = 1
2 − γt, and plug in εt . hint 2: use the fact that

1− x ≤ exp−x)

2. [22 pt] Now let’s implement the Adaboost method. Download the training and the test data 1. In the
folder, there are two csv files “train.txt” and “test.txt”. “train.txt” has ten training samples (m = 10)
of a two-dimensional vector xi ∈ R2. Each row has three columns, where each column means (xi1, xi2,
yi) for each training sample. In Figure 5, the 10 training samples are plotted in blue * and red + for
label -1 and label +1 respectively. “test.txt” has 10, 201 test samples. Each column is for (x∗i1, x∗i2) of
each test sample.
For the learning algorithm, we will use decision stump that learns a vertical or horizontal hyperplane
for classification. Construct a set of finite hypotheses H based on the training samples.
(tip: In Figure 6, an example of hypothesis is shown. In this example we have two training samples:
x1 = (8, 13), x2 = (12, 11). Given these two training samples, we can construct one decision boundary
that separates these points for each dimension - vertical or horizontal. This gives us two hypotheses
from given training samples. And there are two possibilities for assigning labels, -1 or +1 for the left
part of the decision boundary. Therefore, we can construct four hypotheses from two training samples.

h1(xi) = 2 ∗ (1{xi1<=10} − 0.5)

h2(xi) = 2 ∗ (1{xi1>=10} − 0.5)

h3(xi) = 2 ∗ (1{xi2<=12} − 0.5)

h4(xi) = 2 ∗ (1{xi2>=12} − 0.5)

For constructing a set of hypothesis H, you will need to store four information: (dimension - either
vertical or horizontal, decision value, label assigned to the left part of the hyperplane, label assigned
to the right part of the hyperplane))
Implement the Adaboost method as described in the pseudocode above. Let T = 50. Use the given
training samples to learn a set of hypothesis {ht, t = 1, · · · , T} and a set of weights for each hypothesis

{αt, t = 1, · · · , T}. Test the strong classifier for test sample x∗i : H(x∗i ) = sign(
∑T
t=1 αtht(x

∗
i )).

Plot the test samples of different labels with different colors and markers (e.g. magenta o for label +1
and green x for label -1), and also the training samples (e.g. red+ for label +1 and blue * for label -1).
In the report, attach the plot. Submit your code to AutoLab.

1https://www.dropbox.com/sh/wek8499y5f0265d/AACz3wbA7bf6a-SD-2Yhemroa?dl=0
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Figure 5: Training samples

Figure 6: An example of hypothesis
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Problem 4: Logistic Regression [20] (Devendra)

4.1 Multinomial Logistic Regression

Multinomial logistic regression is a classification method that generalizes logistic regression to multiclass
problems. It has the form

p (y = c | x,W) =
exp

(
wc0 + w>c x

)∑C
k=1 exp

(
wk0 + w>k x

) , ∀c ∈ {1, 2, ..., C} (4)

Here, C is the number of classes, and W is a C × (d + 1) weight matrix, and d is the dimension of input
vector x. In other words, W is a matrix whose rows are the weight vectors for each class.

Given a set of training data {xi, yi}ni=1, write the log likelihood of the data and derive the gradient ascent
rule for Multinomial Logistic Regression.

4.2 Ordinal Logistic Regression

In many applications, the classes in the data will have an ordering, such as predicting the discrete integer
rating given by an user among 1 to 5 stars. The multinomial logistic regression model doesn’t utilize any
information about the ordering of classes. The ordinal logistic regression model takes into account this
ordering by modeling the cumulative probability of class labels as follows:

p (y ≤ c | x,w) =
exp

(
αc −w>x

)
1 + exp (αc −w>x)

, ∀c ∈ {1, 2, ..., C − 1} (5)

Here, C is the number of classes, which are ordered from 1 to C, and w and x are vectors of dimension d.

Given a set of training data {xi, yi}ni=1, write the log likelihood of the data and derive the gradient ascent
rule for Ordinal Logistic Regression.

4.3 Comparison

1. Write one advantage and disadvantage of using ordinal logistic regression as compared to multinomial
logistic regression.

2. How is ordinal logistic regression different from doing multiple binary logistic regressions, one for each
class?
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Problem 5: SVM Implementation - Document Classification [45]
(Petar)

5.1 Dual of soft-margin SVM (20 points)

We learned about primal and dual forms of optimization problems. We are given the primal form of the
SVM problem (soft margin version):

min
β,β0,ξ

1

2
||β||22 + C

n∑
i=1

ξi (6)

s.t. ξi ≥ 0,∀i (7)

yi(xi
Tβ + β0) ≥ 1− ξi,∀i (8)

Where X is the data matrix with n rows corresponding to data points and d columns corresponding to
features. β is a column vector of d predictors, and β0 is a bias term. ξi correspond to slack variables, one or
each of the n data points. xi

T corresponds to ith row in X.

Derive the dual problem.

Now, can you express the optimal weight vector in the dual formalism? (More specifically, if let’s say αi’s are
the Lagrange multipliers in the Lagrangian corresponding to the n constraints of the form: yi(x

T
i β + β0) ≥

1− ξi, can you write the optimal weight vector in terms of the input points (and/or labels) and those α’s?)

In order to make a prediction given a new test point (under the dual formalism), you will need the optimal
bias term (β∗0), in addition to the optimal weight vector. The optimal bias term (β∗0) can be found by:

• Finding an i, such that αi > 0.

• Optimal β0 then can be obtained as:

β∗0 = yi −
n∑
j=1

yjαjxi
Txj (9)

5.2 Implementing soft-margin SVM (25 points)

We will now implement both the primal and the dual problem using the Quadprog function (in Matlab). We
will use a subset of the ”20 Newsgroups” dataset 2. There are two topics of documents for classification taken
from the talk.politics.misc and talk.religion.misc, for a total of 842 documents. Xtrain is a sparse matrix of
training data, where each row is a document and each column is a feature (a word). Xij = 1 corresponds
to the document i containing the j-th word. Ytrain is a vector of labels (1 or −1). Xtest and Ytest follow the
same pattern.

a. Use Quadprog to construct a solver for both the primal and the dual problems, using C = 1. For Quad-
prog in Matlab use the interior-point-convex algorithm. term in the objective. Please see:
http://www.mathworks.com/help/optim/ug/quadprog.html. We will also look at R and Python as options
and will post a reference on Piazza if we deem them appropriate.

b. Report the final objective values for both the primal and the dual problems.

c. Compare the β solutions for both the primal and the dual problem. Show a scatter plot of the two

2http://www.cs.cmu.edu/~mgormley/courses/10701-f16/homeworks/hw2/news.mat

11

 http://www.cs.cmu.edu/~mgormley/courses/10701-f16/homeworks/hw2/news.mat


vectors. What do you observe?

d. Calculate the mis-classification rate on the training and test data.

e. How many of the training points are: a) Missclassified?, b) Within the margin?. Report the dual
variable for each of these points.

5.3 BONUS: optimal bias (5 points)

As a short bonus question, can you prove that the optimal bias in the dual problem, is actually given by the
equation 9? (the points of this part are not included in the total of 45 for this question).
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