

#### 10-301/10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

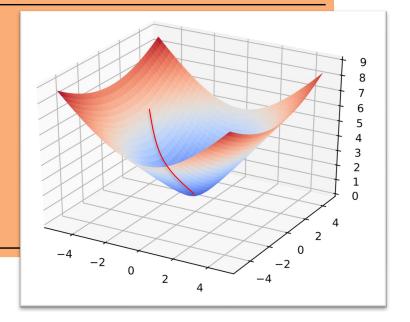
# Stochastic Gradient Descent + Binary Logistic Regression

Geoff Gordon Lecture 9 with thanks to Matt Gormley

# OPTIMIZATION METHOD #3: STOCHASTIC GRADIENT DESCENT

#### **Gradient Descent**

#### Algorithm 1 Gradient Descent

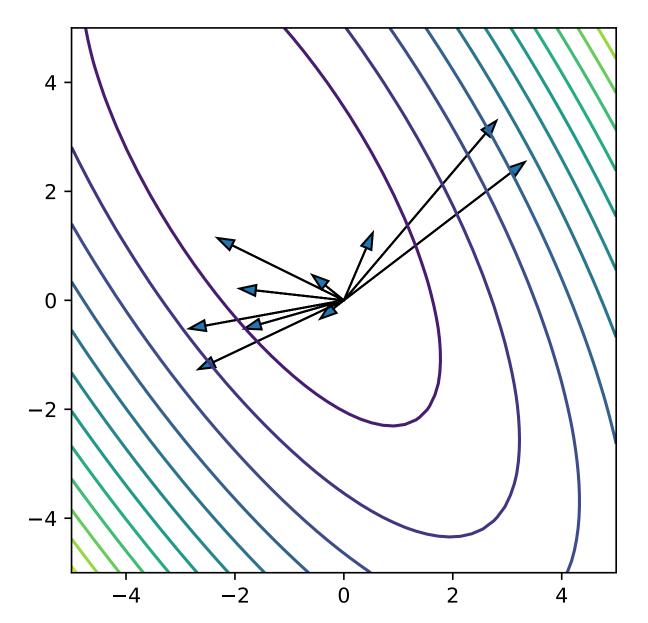

1: **procedure**  $GD(\mathcal{D}, \boldsymbol{\theta}^{(0)})$ 

 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$ 

while not converged do 3:

 $\theta \leftarrow \theta - \gamma \nabla J(\theta)$ 

return  $\theta$ 




per-example objective:

$$J^{(i)}(oldsymbol{ heta})$$

full objective: 
$$J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})$$

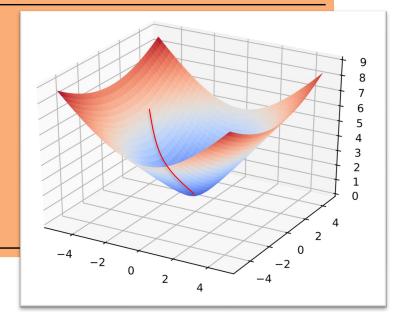
# Gradient is an average



Contours: loss Arrows: individual negative gradient terms

#### **Gradient Descent**

#### Algorithm 1 Gradient Descent


1: **procedure**  $GD(\mathcal{D}, \boldsymbol{\theta}^{(0)})$ 

 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$ 

while not converged do 3:

 $\theta \leftarrow \theta - \gamma \nabla J(\theta)$ 

return  $\theta$ 



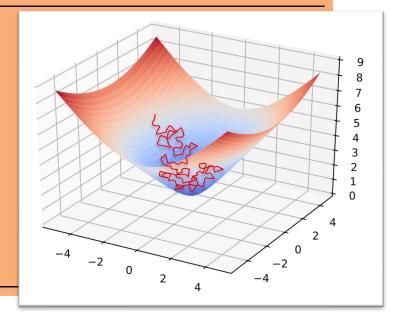
per-example objective:

$$J^{(i)}(oldsymbol{ heta})$$

full objective: 
$$J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})$$

# Stochastic Gradient Descent (SGD)

#### Algorithm 2 Stochastic Gradient Descent (SGD)


```
1: procedure SGD(\mathcal{D}, \boldsymbol{\theta}^{(0)})
                  \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}
```

while not converged do

 $i \sim \mathsf{Uniform}(\{1,2,\ldots,N\})$ 4:

 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \gamma \nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta})$ 5:

return  $\theta$ 6:



per-example objective:

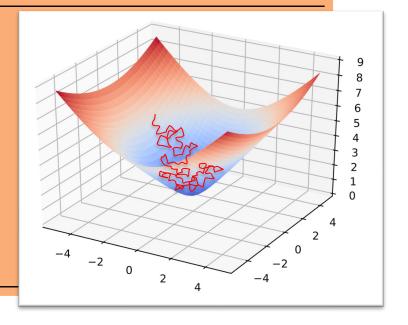
$$J^{(i)}(oldsymbol{ heta})$$

full objective: 
$$J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})$$

# Stochastic Gradient Descent (SGD)

#### Algorithm 2 Stochastic Gradient Descent (SGD)

```
1: procedure SGD(\mathcal{D}, \boldsymbol{\theta}^{(0)})
```


2: 
$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$$

3: **while** not converged **do** 

4: for 
$$i \in \mathsf{shuffle}(\{1,2,\ldots,N\})$$
 do

5: 
$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \gamma \nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta})$$

6: return  $\theta$ 



per-example objective:

$$J^{(i)}(oldsymbol{ heta})$$

full objective: 
$$J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})$$

In practice, it is common to use sampling without replacement (i.e., shuffle({1,2,...N}), even though most of the theory is for sampling with replacement (i.e., Uniform({1,2,...N})

# Why does SGD work?

# Background: Expectation of a function of a random variable

For any discrete random variable X

$$E_X[f(X)] = \sum_{x \in \mathcal{X}} P(X = x) f(x)$$

#### **Objective Function for SGD**

We assume the form to be:

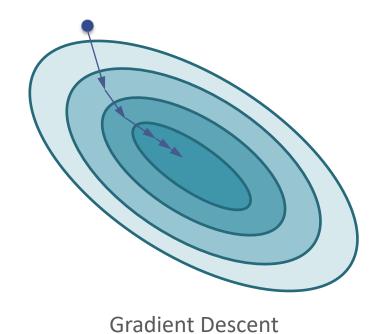
$$J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})$$

#### **Expectation of a Stochastic Gradient:**

• If we sample examples uniformly at random, the expected value of the pointwise gradient is the same as the full gradient!

$$E[\nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta})] = \sum_{i=1}^{N} \left( \text{probability of selecting } \boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)} \right) \nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta})$$

$$= \sum_{i=1}^{N} \left( \frac{1}{N} \right) \nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta})$$

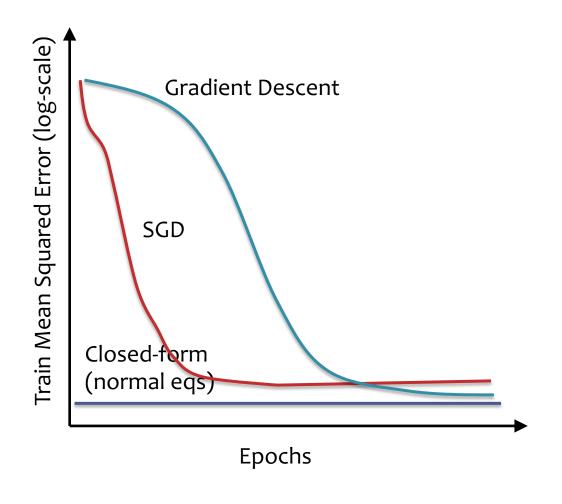

$$= \frac{1}{N} \sum_{i=1}^{N} \nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta})$$


$$= \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

 If we randomly shuffle and loop through, each data point is used exactly equally often

#### SGD VS. GRADIENT DESCENT

#### SGD vs. Gradient Descent






Stochastic Gradient Descent

#### SGD vs. Gradient Descent

• Empirical comparison:



- Def: an epoch is a single pass through the training data
- For GD, only one update per epoch
- For SGD, N updates
   per epoch
   N = (# train examples)
- SGD reduces MSE much more rapidly than GD
- For GD / SGD, training MSE is initially large due to uninformed initialization

#### SGD vs. Gradient Descent

#### Theoretical comparison:

Define convergence to be when  $J(\boldsymbol{\theta}^{(t)}) - J(\boldsymbol{\theta}^*) < \epsilon$ 

| Method           | Steps to Convergence | Computation per Step |
|------------------|----------------------|----------------------|
| Gradient descent | $O(\log 1/\epsilon)$ | O(NM)                |
| SGD              | $o(1/\epsilon)$      | O(M)                 |
|                  |                      |                      |

(with high probability under certain assumptions)

**Main Takeaway:** SGD takes many more steps, especially for small  $\epsilon$ ; SGD takes much better time per step;

 $\dots$  at  $\epsilon$  we care about, tradeoff is that SGD can be much faster

# SGD FOR LINEAR REGRESSION

# Linear Regression as Function Approximation

$$\mathcal{D}=\{\mathbf{x}^{(i)},y^{(i)}\}_{i=1}^N$$
 where  $\mathbf{x}\in\mathbb{R}^M$  and  $y\in\mathbb{R}$ 

$$\mathbf{x}^{(i)} \sim p^*(\cdot)$$
$$y^{(i)} = h^*(\mathbf{x}^{(i)})$$

2. Choose hypothesis space,  $\mathcal{H}$ : all linear functions in M-dimensional space

$$\mathcal{H} = \{h_{\boldsymbol{\theta}} : h_{\boldsymbol{\theta}}(\mathbf{x}) = \boldsymbol{\theta}^T \mathbf{x}, \boldsymbol{\theta} \in \mathbb{R}^M \}$$

3. Choose an objective function: mean squared error (MSE)

$$J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} e_i^2$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left( y^{(i)} - h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) \right)^2$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left( y^{(i)} - \boldsymbol{\theta}^T \mathbf{x}^{(i)} \right)^2$$

- 4. Solve the unconstrained optimization problem via favorite method:
  - gradient descent
  - closed form
  - stochastic gradient descent

$$\hat{\boldsymbol{\theta}} = \operatorname*{argmin}_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

5. Test time: given a new x, make prediction  $\hat{y}$ 

$$\hat{y} = h_{\hat{m{ heta}}}(\mathbf{x}) = \hat{m{ heta}}^T \mathbf{x}$$

#### Gradient Calculation for Linear Regression

Derivative of 
$$J^{(i)}(\boldsymbol{\theta})$$
: 
$$\frac{d}{d\theta_k}J^{(i)}(\boldsymbol{\theta}) = \frac{d}{d\theta_k}\frac{1}{2}(\boldsymbol{\theta}^T\mathbf{x}^{(i)} - y^{(i)})^2$$

$$= \frac{1}{2}\frac{d}{d\theta_k}(\boldsymbol{\theta}^T\mathbf{x}^{(i)} - y^{(i)})^2$$

$$= (\boldsymbol{\theta}^T\mathbf{x}^{(i)} - y^{(i)})\frac{d}{d\theta_k}(\boldsymbol{\theta}^T\mathbf{x}^{(i)} - y^{(i)})$$

$$= (\boldsymbol{\theta}^T\mathbf{x}^{(i)} - y^{(i)})\frac{d}{d\theta_k}\left(\sum_{j=1}^K \theta_j x_j^{(i)} - y^{(i)}\right)$$

$$= (\boldsymbol{\theta}^T\mathbf{x}^{(i)} - y^{(i)})x^{(i)}$$

$$\begin{split} \frac{d}{d\theta_k} J^{(i)}(\boldsymbol{\theta}) &= \frac{d}{d\theta_k} \frac{1}{2} (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)})^2 \\ &= \frac{1}{2} \frac{d}{d\theta_k} (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)})^2 \\ &= (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) \frac{d}{d\theta_k} (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) \\ &= (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) \frac{d}{d\theta_k} \left( \sum_{j=1}^K \theta_j x_j^{(i)} - y^{(i)} \right) \\ &= (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_k^{(i)} \end{split}$$

Gradient of 
$$J^{(i)}(\boldsymbol{\theta})$$
 [used by SGD] 
$$\nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta}) = \begin{bmatrix} \frac{d}{d\theta_1} J^{(i)}(\boldsymbol{\theta}) \\ \frac{d}{d\theta_2} J^{(i)}(\boldsymbol{\theta}) \\ \vdots \\ \frac{d}{d\theta_M} J^{(i)}(\boldsymbol{\theta}) \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_1^{(i)} \\ (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_2^{(i)} \\ \vdots \\ (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_N^{(i)} \end{bmatrix} = (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_N^{(i)}$$

Derivative of 
$$J(\boldsymbol{\theta})$$
: 
$$\frac{d}{d\theta_k}J(\boldsymbol{\theta}) = \frac{1}{N}\sum_{i=1}^N \frac{d}{d\theta_k}J^{(i)}(\boldsymbol{\theta})$$
$$= \frac{1}{N}\sum_{i=1}^N (\boldsymbol{\theta}^T\mathbf{x}^{(i)} - y^{(i)})x_k^{(i)}$$

$$\begin{aligned} & = (\boldsymbol{\theta} \cdot \mathbf{x}^{(i)} - y^{(i)}) \boldsymbol{x}_{k}^{(i)} \\ & \text{dient of } J^{(i)}(\boldsymbol{\theta}) \end{aligned} \qquad \begin{aligned} & \text{[used by SGD]} \\ & \nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta}) & = \begin{bmatrix} \frac{d}{d\theta_{1}} J^{(i)}(\boldsymbol{\theta}) \\ \frac{d}{d\theta_{2}} J^{(i)}(\boldsymbol{\theta}) \\ \vdots \\ \frac{d}{d\theta_{M}} J^{(i)}(\boldsymbol{\theta}) \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\theta}^{T} \mathbf{x}^{(i)} - y^{(i)}) \boldsymbol{x}_{1}^{(i)} \\ (\boldsymbol{\theta}^{T} \mathbf{x}^{(i)} - y^{(i)}) \boldsymbol{x}_{2}^{(i)} \\ \vdots \\ (\boldsymbol{\theta}^{T} \mathbf{x}^{(i)} - y^{(i)}) \boldsymbol{x}_{N}^{(i)} \end{bmatrix} = \begin{bmatrix} \frac{1}{N} \sum_{i=1}^{N} (\boldsymbol{\theta}^{T} \mathbf{x}^{(i)} - y^{(i)}) \boldsymbol{x}_{1}^{(i)} \\ \frac{1}{N} \sum_{i=1}^{N} (\boldsymbol{\theta}^{T} \mathbf{x}^{(i)} - y^{(i)}) \boldsymbol{x}_{M}^{(i)} \end{bmatrix} \\ & = \frac{1}{N} \sum_{i=1}^{N} (\boldsymbol{\theta}^{T} \mathbf{x}^{(i)} - y^{(i)}) \boldsymbol{x}_{M}^{(i)} \end{bmatrix} \end{aligned}$$

$$= \frac{1}{N} \sum_{i=1}^{N} (\boldsymbol{\theta}^{T} \mathbf{x}^{(i)} - y^{(i)}) \boldsymbol{x}_{M}^{(i)}$$

# SGD for Linear Regression

SGD applied to Linear Regression is called the "Least Mean Squares" algorithm

```
Algorithm 1 Least Mean Squares (LMS)

1: procedure LMS(\mathcal{D}, \theta^{(0)})

2: \theta \leftarrow \theta^{(0)} > Initialize parameters

3: while not converged do

4: for i \in \text{shuffle}(\{1, 2, \dots, N\}) do

5: \mathbf{g} \leftarrow (\theta^T \mathbf{x}^{(i)} - y^{(i)}) \mathbf{x}^{(i)} > Compute gradient

6: \theta \leftarrow \theta - \gamma \mathbf{g} > Update parameters

7: return \theta
```

# GD for Linear Regression

Gradient Descent for Linear Regression repeatedly takes steps opposite the gradient of the objective function

# Algorithm 1 GD for Linear Regression 1: procedure GDLR( $\mathcal{D}$ , $\theta^{(0)}$ ) 2: $\theta \leftarrow \theta^{(0)}$ > Initialize parameters 3: while not converged do 4: $\mathbf{g} \leftarrow \frac{1}{N} \sum_{i=1}^{N} (\theta^T \mathbf{x}^{(i)} - y^{(i)}) \mathbf{x}^{(i)}$ > Compute gradient 5: $\theta \leftarrow \theta - \gamma \mathbf{g}$ > Update parameters 6: return $\theta$

# Optimization (Learning) Objectives

#### You should be able to...

- Apply gradient descent to optimize a function
- Apply stochastic gradient descent (SGD) to optimize a function
- Set gradient to zero to identify a closed-form solution (if one exists) to an optimization problem
- Distinguish between (strictly/non-strictly) convex, concave, and nonconvex functions
- Obtain the gradient (and Hessian) of a (twice) differentiable function

#### PROBABILISTIC LEARNING

# Probabilistic Learning

#### **Function Approximation**

Previously, we assumed that our output was generated using a **deterministic target function**:

$$\mathbf{x}^{(i)} \sim p^*(\cdot)$$

$$y^{(i)} = c^*(\mathbf{x}^{(i)})$$

Our goal was to learn a hypothesis h(x) that best approximates  $c^*(x)$ 

#### **Probabilistic Learning**

Today, we assume that our output is sampled from a conditional probability distribution:

$$\mathbf{x}^{(i)} \sim p^*(\cdot)$$

$$y^{(i)} \sim p^*(\cdot|\mathbf{x}^{(i)})$$

Our goal is to learn conditional probability distributions p(y|x) that best approximate  $p^*(y|x)$ 

#### MAXIMUM LIKELIHOOD ESTIMATION

#### Likelihood Function

#### One R.V. per example

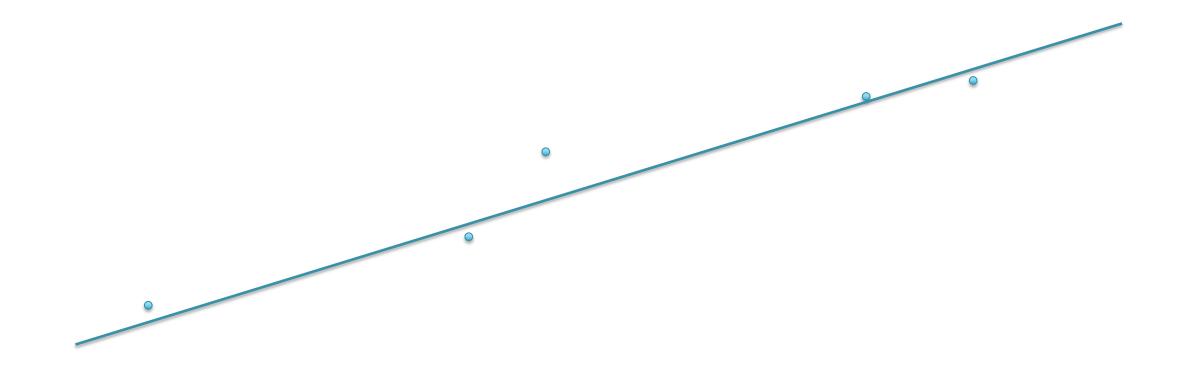
Given N independent, identically distributed (iid) samples  $D = \{x^{(1)}, x^{(2)}, ..., x^{(N)}\}$  from a discrete random variable X with probability mass function (pmf)  $p(x|\theta)$  ...

• Case 1: The **likelihood** function  $L(\theta) = p(x^{(1)}|\theta) p(x^{(2)}|\theta) \dots p(x^{(N)}|\theta)$  The **likelihood** tells us how likely one sample is relative to another

• Case 2: The log-likelihood function is  $\ell(\theta) = \log p(x^{(1)}|\theta) + ... + \log p(x^{(N)}|\theta)$ 

#### Likelihood Function

#### Two R.V.s per example


Given N iid samples D =  $\{(x^{(1)}, y^{(1)}), ..., (x^{(N)}, y^{(N)})\}$  from a pair of random variables X, Y where Y is discrete with probability mass function (pmf)  $p(y \mid x, \theta)$ 

• Case 3: The **conditional likelihood** function:

$$L(\theta) = p(y^{(1)} | x^{(1)}, \theta) ... p(y^{(N)} | x^{(N)}, \theta)$$

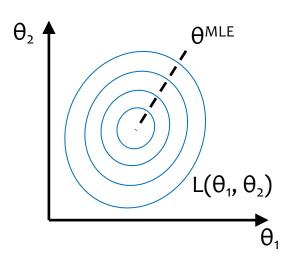
• Case 4: The conditional log-likelihood function is  $\ell(\theta) = \log p(y^{(1)} | x^{(1)}, \theta) + ... + \log p(y^{(N)} | x^{(N)}, \theta)$ 

# E.g., linear regression



We've been thinking of linear regression as just function optimization Could give it a conditional probability interpretation too:  $p(y \mid x)$  is high near the line, low away from the line (we'll see later that the two interpretations can be equivalent)

Suppose we have data  $\mathcal{D} = \{x^{(i)}\}_{i=1}^{N}$ 


#### Principle of Maximum Likelihood Estimation:

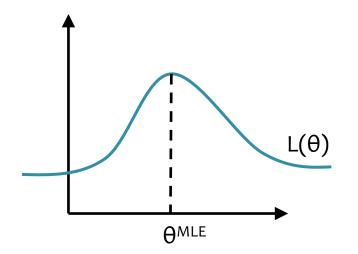
Choose the parameters that maximize the likelihood of the data. N

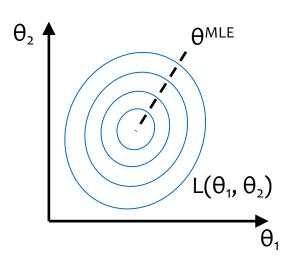
$$\boldsymbol{\theta}^{\mathsf{MLE}} = \operatorname*{argmax}_{\boldsymbol{\theta}} \prod_{i=1}^{r} p(\mathbf{x}^{(i)} | \boldsymbol{\theta})$$

Maximum Likelihood Estimate (MLE)






Suppose we have data  $\mathcal{D} = \{(y^{(i)}, \mathbf{x}^{(i)})\}_{i=1}^{N}$ 


#### **Principle of Maximum Likelihood Estimation:**

Choose the parameters that maximize the conditional likelihood of the data. N

$$\boldsymbol{\theta}^{\mathsf{MLE}} = \operatorname*{argmax}_{\boldsymbol{\theta}} \prod_{i=1}^{n} p(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta})$$

Maximum Likelihood Estimate (MLE)





Suppose we have data  $\mathcal{D} = \{(y^{(i)}, \mathbf{x}^{(i)})\}_{i=1}^{N}$ 

#### **Principle of Maximum Likelihood Estimation:**

Choose the parameters that maximize the conditional log-likelihood

of the data.

$$\boldsymbol{\theta}^{\mathsf{MLE}} = \operatorname*{argmax}_{\boldsymbol{\theta}} \prod_{i=1} p(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta})$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{i=1}^{N} \log p(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta})$$

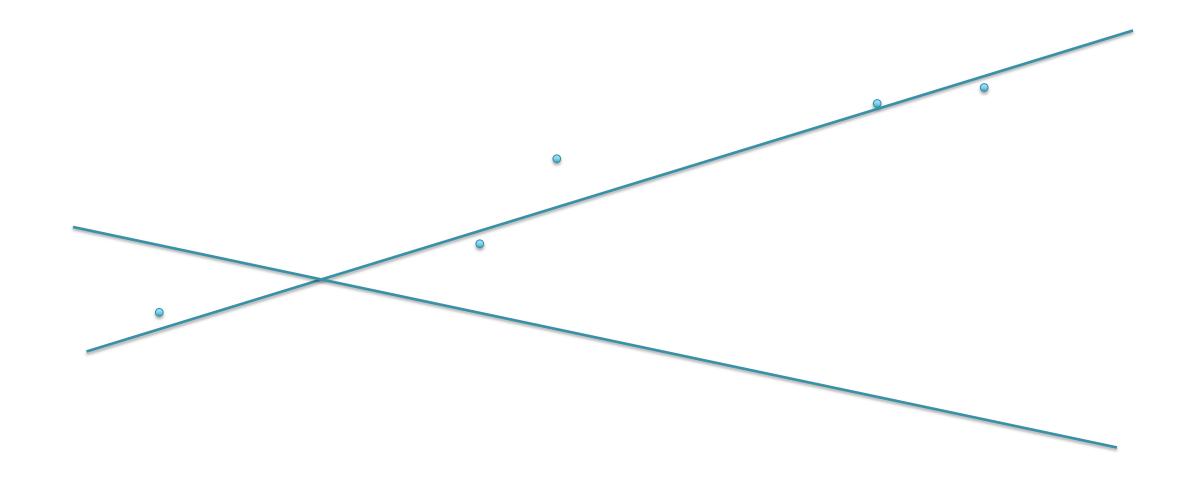
Suppose we have data  $\mathcal{D} = \{(y^{(i)}, \mathbf{x}^{(i)})\}_{i=1}^N$ 

#### Principle of Maximum Likelihood Estimation:

Choose the parameters that minimize the negative conditional log-

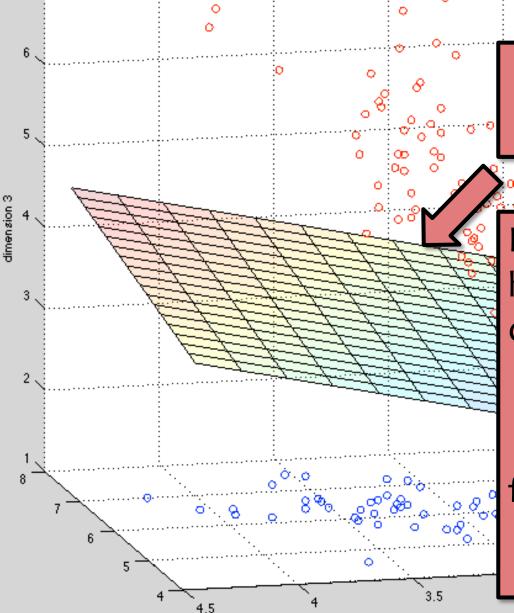
likelihood of the data. 
$$\pmb{\theta}^{\mathsf{MLE}} = \operatorname*{argmax}_{\pmb{\theta}} \prod_{i=1}^{N} p(y^{(i)} \mid \mathbf{x}^{(i)}, \pmb{\theta})$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{i=1}^{N} \log p(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta})$$


$$= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} - \sum_{i=1}^{N} \log p(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta})$$

What does maximizing likelihood accomplish?

- There is only a finite amount of probability mass (due to sum-to-one constraint)
- MLE tries to allocate as much probability mass as possible to the things we have observed...


... at the expense of the things we have not observed

# For example, linear regression MLE



#### **LOGISTIC REGRESSION**

# Linear Models for Classification



Key idea: Try to learn this hyperplane directly

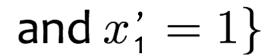
Directly modeling the hyperplane would use a decision function:

$$h(\mathbf{x}) = \operatorname{sign}(\boldsymbol{\theta}^T \mathbf{x})$$

for:

$$y \in \{-1, +1\}$$

# Background: Hyperplanes


Notation Trick: fold the bias b and the weights w into a single vector  $\boldsymbol{\theta}$  by prepending a constant to x and increasing dimensionality by one to get x'!

Hyperplane (Definition 1):

$$\mathcal{H} = \{ \mathbf{x} : \mathbf{w}^T \mathbf{x} + b = 0 \}$$

Hyperplane (Definition 2):

$$\mathcal{H} = \{\mathbf{x}': \boldsymbol{\theta}^T \mathbf{x}' = 0\}$$



$$m{ heta} = [b, w_1, \dots, w_M]^T$$
  
 $\mathbf{x}' = [1, x_1, \dots, x_M]^T$ 

Half-spaces:

$$\mathcal{H}^+ = \{\mathbf{x} : \boldsymbol{\theta}^T \mathbf{x} > 0 \text{ and } x_0^1 = 1\}$$

$$\mathcal{H}^- = \{\mathbf{x} : \boldsymbol{\theta}^T \mathbf{x} < 0 \text{ and } x_0^1 = 1\}$$

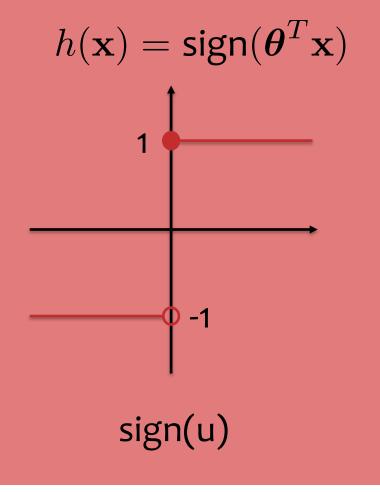
## Using gradient descent for linear classifiers

#### Key idea behind today's lecture:

- 1. Define a linear classifier (logistic regression)
- 2. Define an objective function (likelihood)
- 3. Optimize it with gradient descent to learn parameters
- 4. Predict the class with highest probability under the model

**Data:** Inputs are continuous vectors of length M. Outputs are discrete.

$$\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^N$$
 where  $\mathbf{x} \in \mathbb{R}^M$  and  $y \in \{0, 1\}$ 



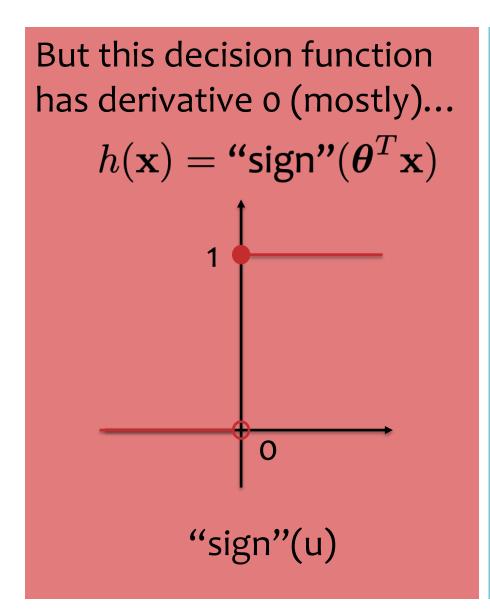

We are back to classification.

Despite the name logistic **regression**.


# $sign(\cdot) vs. sigmoid(\cdot)$

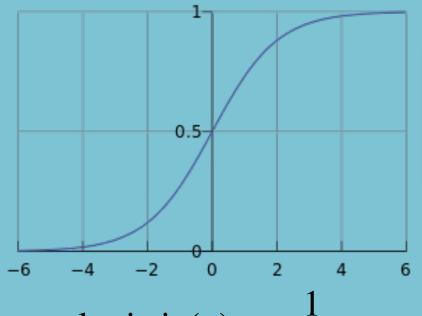
Suppose we wanted to learn a linear classifier, but instead of predicting  $y \in \{-1,+1\}$  we wanted to predict  $y \in \{0,1\}$ 




# $sign(\cdot) vs. sigmoid(\cdot)$

Suppose we wanted to learn a linear classifier, but instead of predicting  $y \in \{-1,+1\}$  we wanted to predict  $y \in \{0,1\}$ 




**Goal:** Learn a linear classifier with Gradient Descent

# $sign(\cdot) vs. sigmoid(\cdot)$



# Use a smoother function instead!

$$p_{\boldsymbol{\theta}}(y=1|\mathbf{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^T \mathbf{x})}$$



$$logistic(u) = \frac{1}{1 + e^{-u}}$$

The logistic function is also called the sigmoid function.

**Data:** Inputs are continuous vectors of length M. Outputs are discrete.

$$\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^N$$
 where  $\mathbf{x} \in \mathbb{R}^M$  and  $y \in \{0, 1\}$ 

**Model:** Logistic function applied to dot product of parameters with input vector.

$$p_{\boldsymbol{\theta}}(y=1|\mathbf{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^T \mathbf{x})}$$

**Learning:** finds the parameters that minimize some objective function.  ${m heta}^* = \mathop{\rm argmin}_{m heta} J({m heta})$ 

**Prediction:** Output is the most probable class.

$$\hat{y} = \operatorname*{argmax} p_{\boldsymbol{\theta}}(y|\mathbf{x})$$
$$y \in \{0,1\}$$

# Learning Logistic Regression

**Learning:** Four approaches to solving  $\theta^* = \underset{\theta}{\operatorname{argmin}} J(\theta)$ 

**Approach o:** Random Search (horridly slow because it lacks gradient information)

**Approach 1:** Gradient Descent (take large confident steps opposite the gradient)

**Approach 2:** Stochastic Gradient Descent (SGD) (take many small steps roughly opposite the gradient)

Approach Closed Form

(set derivatives equal to zero and solve for parameters)

Logistic Regression does not have a closed form solution for MLE parameters.

1. Model 2. Objective

3A. Derivatives

3B. Gradients

4. Optimization

5. Prediction