Definition: Classification

\[D = \{ (x^{(i)}, y^{(i)}) \}_{i=1}^{N} \]

\[\forall i, \; x^{(i)} \in \mathbb{R}^M \]

\[\forall i, \; y^{(i)} \in \{\pm 1\} \]

\[M = \# \text{ features} \]

\[N = \# \text{ training examples} = |D| \]

Definition: Binary Classification

Classification where \(|Y| = 2\)

\[\forall i, \; y^{(i)} \in \{\pm 1\} \]

\[e \in \{\text{red, blue}\} \]

Definition: Hypothesis (aka. Decision Rule) for Binary Class.

\[h : \mathbb{R}^M \rightarrow \{\pm 1\} \]

Train time

Learn \(h \)

Test time

Given \(\hat{x} \), predict \(\hat{y} = h(\hat{x}) \)

Example: 2D Binary Classification (\(M = 2 \), \(|Y| = 2\))

\[h(x_1, x_2) \]
Choosing k for KNN

Assume D is 40% $y^{(i)} = 0$ best k on validation

60% $y^{(i)} = 1$

Linear Decision Boundary

Nonlinear Decision Boundary