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Front Matter

� Announcements: 

� Exam 1 on 2/19 from 7 PM – 9 PM

� Exam 1 practice problems released on the 
course website, under Coursework
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http://www.cs.cmu.edu/~mgormley/courses/10601/coursework.html


Probabilistic 
Learning

� Previously: 
� (Unknown) Target function, 𝑐∗: 𝒳 → 𝒴

� Classifier, ℎ ∶ 𝒳 → 𝒴

� Goal: find a classifier, ℎ, that best approximates 𝑐∗

� Now:

� (Unknown) Target distribution, 𝑦 ∼ 𝑝∗ 𝑌 𝒙

� Distribution, 𝑝 𝑌 𝒙

� Goal: find a distribution, 𝑝, that best approximates 𝑝∗
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Likelihood 

� Given 𝑁 independent, identically distribution (iid) 

samples 𝒟 = 𝑥 " , … , 𝑥 # of a random variable 𝑋

� If 𝑋 is discrete with probability mass function (pmf) 

𝑝 𝑋|𝜃 , then the likelihood of 𝒟 is 

𝐿 𝜃 =7
$%"

#

𝑝 𝑥 $ |𝜃

� If 𝑋 is continuous with probability density function 

(pdf) 𝑓 𝑋|𝜃 , then the likelihood of 𝒟 is 

𝐿 𝜃 =7
$%"

#

𝑓 𝑥 $ |𝜃
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Log-Likelihood 

� Given 𝑁 independent, identically distribution (iid) 

samples 𝒟 = 𝑥 " , … , 𝑥 # of a random variable 𝑋

� If 𝑋 is discrete with probability mass function (pmf) 

𝑝 𝑋|𝜃 , then the log-likelihood of 𝒟 is 

ℓ 𝜃 = log7
$%"

#

𝑝 𝑥 $ |𝜃 = =
$%"

#

log 𝑝 𝑥 $ |𝜃

� If 𝑋 is continuous with probability density function 

(pdf) 𝑓 𝑋|𝜃 , then the log-likelihood of 𝒟 is 

ℓ 𝜃 = log7
$%"

#

𝑓 𝑥 $ |𝜃 = =
$%"

#

log 𝑓 𝑥 $ |𝜃
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Maximum 
Likelihood 
Estimation 
(MLE)

� Insight: every valid probability distribution has a finite 

amount of probability mass as it must sum/integrate to 1

� Idea: set the parameter(s) so that the likelihood of the 
samples is maximized

� Intuition: assign as much of the (finite) probability mass 
to the observed data at the expense of unobserved data

� Example: the 
exponential 
distribution 
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Maximum 
Likelihood 
Estimation 
(MLE)

� Insight: every valid probability distribution has a finite 

amount of probability mass as it must sum/integrate to 1

� Idea: set the parameter(s) so that the likelihood of the 
samples is maximized

� Intuition: assign as much of the (finite) probability mass 
to the observed data at the expense of unobserved data

� Example: the 
exponential 
distribution 
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>
?

𝑥 " = 0.5,
𝑥 & = 1

Source: https://en.wikipedia.org/wiki/Exponential_distribution#/media/File:Exponential_probability_density.svg 

https://en.wikipedia.org/wiki/Exponential_distribution


Maximum 
Likelihood 
Estimation 
(MLE)

� Insight: every valid probability distribution has a finite 

amount of probability mass as it must sum/integrate to 1

� Idea: set the parameter(s) so that the likelihood of the 
samples is maximized

� Intuition: assign as much of the (finite) probability mass 
to the observed data at the expense of unobserved data

� Example: the 
exponential 
distribution 
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>
?

𝑥 " = 2,
𝑥 & = 3

Source: https://en.wikipedia.org/wiki/Exponential_distribution#/media/File:Exponential_probability_density.svg 

https://en.wikipedia.org/wiki/Exponential_distribution


� The pdf of the exponential distribution is 
𝑓 𝑥|𝜆 = 𝜆𝑒'()

� Given 𝑁 iid samples 𝑥 " , … , 𝑥 # , the likelihood is

𝐿 𝜆 =7
$%"

#

𝑓 𝑥 $ |𝜆 =7
$%"

#

𝜆𝑒'() !

ℓ 𝜆 = =
$%"

#

log 𝜆 + log 𝑒'() ! = 𝑁 log 𝜆 − 𝜆=
$%"

#

𝑥 $

� Taking the partial derivative and setting it equal to 0 gives

𝜕ℓ
𝜕𝜆

=
𝑁
𝜆
−=
$%"

#

𝑥 $

Exponential 
Distribution
MLE
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� The pdf of the exponential distribution is 
𝑓 𝑥|𝜆 = 𝜆𝑒'()

� Given 𝑁 iid samples 𝑥 " , … , 𝑥 # , the log-likelihood is

ℓ 𝜆 = =
$%"

#

log 𝑓 𝑥 $ |𝜆 = =
$%"

#

log 𝜆𝑒'() !

ℓ 𝜆 = =
$%"

#

log 𝜆 + log 𝑒'() ! = 𝑁 log 𝜆 − 𝜆=
$%"

#

𝑥 $

� Taking the partial derivative and setting it equal to 0 gives

𝜕ℓ
𝜕𝜆

=
𝑁
𝜆
−=
$%"

#

𝑥 $

Exponential 
Distribution
MLE
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� The pdf of the exponential distribution is 
𝑓 𝑥|𝜆 = 𝜆𝑒'()

� Given 𝑁 iid samples 𝑥 " , … , 𝑥 # , the log-likelihood is

ℓ 𝜆 = =
$%"

#

log 𝑓 𝑥 $ |𝜆 = =
$%"

#

log 𝜆𝑒'() !

ℓ 𝜆 = =
$%"

#

log 𝜆 + log 𝑒'() ! = 𝑁 log 𝜆 − 𝜆=
$%"

#

𝑥 $

� Taking the partial derivative and setting it equal to 0 gives

𝜕ℓ
𝜕𝜆

=
𝑁
K𝜆
−=
$%"

#

𝑥 $ = 0 →
𝑁
K𝜆
= =

$%"

#

𝑥 $ → K𝜆 =
𝑁

∑$%"# 𝑥 $

Exponential 
Distribution
MLE
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Building a 
Probabilistic 
Classifier
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� Define a decision rule

� Given a test data point 𝒙*, predict its label M𝑦 using 
the posterior distribution 𝑃 𝑌 = 𝑦 𝒙′

� Common choice: M𝑦 = argmax
+

𝑃 𝑌 = 𝑦 𝒙′

� Idea: model 𝑃 𝑌 𝒙 as some parametric function of 𝒙



� Suppose we have binary labels 𝑦 ∈ {0,1}	and 

𝐷-dimensional inputs 𝒙 = 1, 𝑥", … , 𝑥, - ∈ ℝ,."

� Assume 

𝑃 𝑌 = 1 𝒙, 𝜽 = 𝜎 𝜽-𝒙 =
1

1 + exp −𝜽-𝒙
=

exp 𝜽-𝒙
exp 𝜽-𝒙 + 1

� This implies two useful facts:

1. 	𝑃 𝑌 = 0 𝒙, 𝜽 = 1 − 𝑃 𝑌 = 1 𝒙, 𝜽 =
1

exp 𝜽-𝒙 + 1

2.
𝑃 𝑌 = 1 𝒙, 𝜽
𝑃(𝑌 = 0|𝒙, 𝜽)

= exp 𝜽-𝒙 → log
𝑃 𝑌 = 1 𝒙, 𝜽
𝑃(𝑌 = 0|𝒙, 𝜽)

= 𝜽-𝒙

Modelling the 
Posterior
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1 prepended to 𝒙



Logistic 
Function

142/14/24 Source:  https://en.wikipedia.org/wiki/Logistic_function#/media/File:Logistic-curve.svg 

𝜎
𝑧
=

1
1
+
𝑒'

/
𝑧

https://en.wikipedia.org/wiki/Logistic_function


152/14/24 Source:  https://en.wikipedia.org/wiki/Logistic_function#/media/File:Logistic-curve.svg 

Why use the 
Logistic 
Function?

𝜎
𝜽-
𝒙
=

1
1
+
𝑒'

𝜽"
𝒙

𝜽-𝒙

https://en.wikipedia.org/wiki/Logistic_function


Logistic 
Regression 
Decision 
Boundary

16

M𝑦 = a1	if	𝑃 𝑌 = 1 𝒙, 𝜽 ≥
1
2

0	otherwise.	

𝑃 𝑌 = 1 𝒙 = 𝜎 𝜽-𝒙 =
1

1 + exp −𝜽-𝒙
≥
1
2

2 ≥ 1 + exp −𝜽-𝒙

1 ≥ exp −𝜽-𝒙

log 1 ≥ −𝜽-𝒙

0 ≤ 𝜽-𝒙
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Logistic 
Regression 
Decision 
Boundary

172/14/24 Figure courtesy of Matt Gormley



Logistic 
Regression 
Decision 
Boundary

182/14/24 Figure courtesy of Matt Gormley



Logistic 
Regression 
Decision 
Boundary

192/14/24 Figure courtesy of Matt Gormley



Setting the 
Parameters
via Minimum 
Negative 
Conditional 
(log-)Likelihood 
Estimation 
(MCLE)

202/14/24

� Find 𝜽 that minimizes

ℓ 𝜽 = −log𝑃 𝑦 ! , … , 𝑦 " 𝒙 ! , … , 𝒙 " , 𝜽 = −log-
#$!

"

𝑃 𝑦 # 𝒙 # , 𝜽

ℓ 𝜽 = −log-
#$!

"

𝑃 𝑌 = 1 𝒙 # , 𝜽
% !

𝑃 𝑌 = 0 𝒙 # , 𝜽
!&% !

ℓ 𝜽 = −1
#$!

"

𝑦 # log 𝑃 𝑌 = 1 𝒙 # , 𝜽 + 1 − 𝑦 # log 𝑃 𝑌 = 0 𝒙 # , 𝜽

ℓ 𝜽 = −1
#$!

"

𝑦 # log
𝑃 𝑌 = 1 𝒙 # , 𝜽
𝑃 𝑌 = 0 𝒙 # , 𝜽

+ log𝑃 𝑌 = 0 𝒙 # , 𝜽

ℓ 𝜽 = −1
#$!

"

𝑦 # 𝜽'𝒙 # − log 1 + exp 𝜽'𝒙 #

𝐽 𝜽 =
1
𝑁
ℓ 𝜽 = −

1
𝑁
1
#$!

"

𝑦 # 𝜽'𝒙 # − log 1 + exp 𝜽'𝒙 #



Minimizing the
Negative 
Conditional 
(log-)Likelihood
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∇𝜽𝐽 𝜽 = −
1
𝑁
=
$%"

#

𝑦 $ ∇𝜽 𝜽-𝒙 $ −∇𝜽 log 1 + exp 𝜽-𝒙 $

= −
1
𝑁
=
$%"

#

𝑦 $ 𝒙 $ −
exp 𝜽-𝒙 $

1 + exp 𝜽-𝒙 $ 𝒙 $

=
1
𝑁
=
$%"

#

𝒙 $ 𝑃 𝑌 = 1 𝒙 $ , 𝜽 − 𝑦 $

𝐽 𝜽 = −
1
𝑁
=
$%"

#

𝑦 $ 𝜽-𝒙 $ − log 1 + exp 𝜽-𝒙 $



Recall:
Gradient 
Descent
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Gradient 
Descent

� Input: training dataset 𝒟 = 𝒙 2 , 𝑦 2
2%"
#

and step size 𝛾

1. Initialize 𝜽 3 to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

∇𝜽𝐽 𝜽 4 =
1
𝑁
=
2%"

#

𝒙 2 𝑃 𝑌 = 1 𝒙 2 , 𝜽 4 − 𝑦 2

b. Update 𝜽: 𝜽 4." ← 𝜽 4 − 𝛾∇𝜽𝐽 𝜽 4

c. Increment 𝑡: 𝑡 ← 𝑡 + 1

� Output: 𝜽 4
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Poll Question 1: 

What is the 
computational 
cost of one 
iteration of 
gradient 
descent for 
logistic 
regression?

� Input: training dataset 𝒟 = 𝒙 2 , 𝑦 2
2%"
#

and step size 𝛾

1. Initialize 𝜽 3 to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

∇𝜽𝐽 𝜽 4 =
1
𝑁
=
2%"

#

𝒙 2 𝑃 𝑌 = 1 𝒙 2 , 𝜽 4 − 𝑦 2

b. Update 𝜽: 𝜽 4." ← 𝜽 4 − 𝛾∇𝜽𝐽 𝜽 4

c. Increment 𝑡: 𝑡 ← 𝑡 + 1

� Output: 𝜽 4
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Gradient 
Descent

� Input: training dataset 𝒟 = 𝒙 2 , 𝑦 2
2%"
#

and step size 𝛾

1. Initialize 𝜽 3 to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

∇𝜽𝐽 𝜽 4 =
1
𝑁
=
2%"

#

𝒙 2 𝑃 𝑌 = 1 𝒙 2 , 𝜽 4 − 𝑦 2

b. Update 𝜽: 𝜽 4." ← 𝜽 4 − 𝛾∇𝜽𝐽 𝜽 4

c. Increment 𝑡: 𝑡 ← 𝑡 + 1

� Output: 𝜽 4

25

𝑂(𝑁𝐷)
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Stochastic
Gradient 
Descent (SGD) 
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� Input: training dataset 𝒟 = 𝒙 2 , 𝑦 2
2%"
#

 and step size 𝛾

1. Initialize 𝜽 3  to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample a data point from 𝒟, 𝒙 2 , 𝑦 2

b. Compute the pointwise gradient:

∇𝜽𝐽 2 𝜽 4 = 𝒙 2 𝑃 𝑌 = 1 𝒙 2 , 𝜽 4 − 𝑦 2

c. Update 𝜽: 𝜽 4." ← 𝜽 4 − 𝛾∇𝜽𝐽 2 𝜽 4

d. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝜽 4



Stochastic
Gradient 
Descent (SGD) 

� If the example is sampled uniformly at random, the expected 

value of the pointwise gradient is the same as the full gradient!

𝐸 ∇𝜽𝐽 2 𝜽 ==
2%"

#

probability of selecting 𝒙 2 , 𝑦 2 ∇𝜽𝐽 2 𝜽

𝐸 ∇𝜽𝐽 2 𝜽 ==
2%"

#
1
𝑁 ∇𝜽𝐽 2 𝜽 =

1
𝑁=
2%"

#

∇𝜽𝐽 2 𝜽 = ∇𝜽𝐽 𝜽

� In practice, the data set is randomly shuffled then looped 

through so that each data point is used equally often
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Stochastic
Gradient 
Descent (SGD) 
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� Input: training dataset 𝒟 = 𝒙 2 , 𝑦 2
2%"
#

 and step size 𝛾

1. Initialize 𝜽 3  to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. For 𝑖 ∈ shufwle 1, … ,𝑁

i. Compute the pointwise gradient:

∇𝜽𝐽 " 𝜽 # = 𝒙 " 𝑃 𝑌 = 1 𝒙 " , 𝜽 # − 𝑦 "

ii. Update 𝜽: 𝜽 #$% ← 𝜽 # − 𝛾∇𝜽𝐽 " 𝜽 #

iii. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝜽 4



Stochastic
Gradient 
Descent vs. 
Gradient 
Descent
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Gradient Descent Stochastic Gradient Descent



Stochastic
Gradient 
Descent vs. 
Gradient 
Descent
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� An epoch is a single pass through the entire training dataset

� Gradient descent updates the parameters once per epoch

� SGD updates the parameters 𝑁 times per epoch

� Theoretical comparison:

� Define convergence to be when 𝐽 𝜽 𝒕 − 𝐽 𝜽∗ < 𝜖

Method
Steps to 

Convergence
Computation 

per Step

Gradient descent 𝑂 log z1 𝜖 𝑂 𝑁𝐷

SGD 𝑂 z1 𝜖 𝑂 𝐷

(with high probability under certain assumptions)



Stochastic
Gradient 
Descent vs. 
Gradient 
Descent
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SGD

Gradient 
Descent

Empirically, SGD 
reduces the negative 
conditional log-
likelihood much 

faster than gradient 
descent

� An epoch is a single pass through the entire training dataset

� Gradient descent updates the parameters once per epoch

� SGD updates the parameters 𝑁 times per epoch



Optimization 
for ML 
Learning 
Objectives

You should be able to…
� Apply gradient descent to optimize a function
� Apply stochastic gradient descent (SGD) to optimize a 

function
� Apply knowledge of zero derivatives to identify a 

closed-form solution (if one exists) to an optimization 
problem

� Distinguish between convex, concave, and nonconvex 
functions

� Obtain the gradient (and Hessian) of a (twice) 
differentiable function
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Logistic 
Regression 
Learning 
Objectives

You should be able to…
� Apply the principle of maximum likelihood estimation 

(MLE) to learn the parameters of a probabilistic 
model 

� Given a discriminative probabilistic model, derive the 
conditional log-likelihood, its gradient, and the 
corresponding Bayes Classifier 

� Explain the practical reasons why we work with the 
log of the likelihood 

� Implement logistic regression for binary (and 
multiclass) classification 

� Prove that the decision boundary of binary logistic 
regression is linear
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