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* Announcements:

* Exam 1 on 2/19 from 7 PM -9 PM

Front Matter

- Exam 1 practice problems released on the

course website, under Coursework
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http://www.cs.cmu.edu/~mgormley/courses/10601/coursework.html

* Previously:

* (Unknown) Target function, c*: X - Y
* Classifier, h : X = Y
Probabilistic * Goal: find a classifier, h, that best approximates c*

Learning * Now:
* (Unknown) Target distribution, y ~ p*(Y|x)
* Distribution, p(Y|x)

* Goal: find a distribution, p, that best approximates p”*
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Likelihood
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* Given N independent, identically distribution (iid)

samples D = {x(l), o x(N)} of a random variable X

* If X is discrete with probability mass function (pmf)
p(X]0), then the likelihood of D is

N
L) = | [p(x10)
n=1

* If X is continuous with probability density function
(pdf) f(X]60), then the likelihood of D is

N
Lo = | [rxmie)
n=1



Log-Likelihood
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* Given N independent, identically distribution (iid)

samples D = {x(l), o x(N)} of a random variable X

* If X is discrete with probability mass function (pmf)
p(X|0), then the log-likelihood of D is

N N
2(0) = logl_[p(x(”)|9) = z logp(x(”)|9)
n=1 n=1

* If X is continuous with probability density function
(pdf) f(X]60), then the log-likelihood of D is

N N
2©) =log| [f(x™16) = ) 1ogf(x™]6)
n=1 n=1



Maximum
Likelihood

Estimation
(MLE)
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* Insight: every valid probability distribution has a finite

amount of probability mass as it must sum/integrate to 1

* |dea: set the parameter(s) so that the likelihood of the

samples is maximized

* Intuition: assign as much of the (finite) probability mass

to the observed data at the expense of unobserved data
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Source: https://en.wikipedia.org/wiki/Exponential distribution#/media/File:Exponential probability density.svg
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Maximum
Likelihood

Estimation
(MLE)
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* Insight: every valid probability distribution has a finite

amount of probability mass as it must sum/integrate to 1

* |dea: set the parameter(s) so that the likelihood of the

samples is maximized

* Intuition: assign as much of the (finite) probability mass

to the observed data at the expense of unobserved data
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Maximum
Likelihood

Estimation
(MLE)
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* Insight: every valid probability distribution has a finite

amount of probability mass as it must sum/integrate to 1

* |dea: set the parameter(s) so that the likelihood of the

samples is maximized

* Intuition: assign as much of the (finite) probability mass

to the observed data at the expense of unobserved data
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* The pdf of the exponential distribution is

fFlxlA) = Ae™™
* Given N iid samples {x(l), ...,x(N)}, the likelihood is
N N
: L(2) = Hf (x™12) = Hae-ﬁx”‘)
Exponential 12 12

Distribution
MLE
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Exponential

Distribution
MLE
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* The pdf of the exponential distribution is

f(x|A) = e

* Given N iid samples {x(l) x(N)} the log-likelihood is

@) = Z log f (x™14) = Z log Ae =A™

N
= Z log A + log e~ ™ = logd— A4 z x ™)

n=1

- Taking the partial derivative and setting it equal to O gives

0f N
oL A

n=1

x (M

10



Exponential

Distribution
MLE
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* The pdf of the exponential distribution is

f(x|A) = e

* Given N iid samples {x(l) x(N)} the log-likelihood is

@) = Z log f (x™14) = Z log Ae =A™

N
= Z log A + log e~ ™ = logd— A4 z x ™)

n=1

- Taking the partial derivative and setting it equal to O gives

N N

N N . N
T—Zx(")=0—>7=2x(")—>/1=
A yl N_ xm

n=1 n=1
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Building a
Probabilistic

Classifier
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* Define a decision rule

- Given a test data point x’, predict its label ¥ using

the posterior distribution P(Y = y|x')

* Common choice: y = argmax P(Y = y|x')
y

* |dea: model P(Y|x) as some parametric function of x

12



Modelling the

Posterior
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* Suppose we have binary labels y € {0,1} and

D-dimensional inputs x = [1, x4, ..., xp]! € RP*1

- Assume  TTTmmeee- 1 prepended to x

1 _ exp(0'x)
1+ exp(—0Tx) exp(0Tx) +1

P(Y =1|x,0) = a(07x) =

* This implies two useful facts:

1. P(Y =0[x,0) =1-P(Y =1|x,0) =
( |, 6) ( %,6) exp(07x) +1

P(Y =1|x,0)
2. = T
P(Y =0x9) PO X —log

P(Y =1|x,0)
P(Y=0|x,0)

07 x

13
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Source: https://en.wikipedia.org/wiki/Logistic_function#/media/File:Loqgistic-curve.svg
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Logistic
Regression
Decision
Boundary
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<

A

‘

1
1ifP(Y =1|x,0) > 5

0 otherwise.
1 1

P(Y =1|x) = a(0Tx) = [T o (=070 > 5

2>1+exp(—07x)
1 > exp(—0Tx)
log(1) > —0"x

0<0Tx
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Logistic
Regression
Decision
Boundary

2/14/24

o °
°.
°
°®
.. [ ] °
) ° °
® .0 [
°
v vv L] ° QO.. o ©®
v Yy ee % °
M ° 4 ° °
v yY Yo
\/ ;V v v ] .. [ ]
v v v vwy Voe
vy [ ]
vYYW ¥vv v v N O
v Yy v v v Y [ J
Vv M YveV o Vv
v v Yy Yov o
vvv,’v v OV V‘v vviv‘vw . v
v v
v yvv ; vvv V'vv;y: vV v
v‘," Y% vv
vvv ‘va v ' ;
v
v 'V | '; ; Yy v, ' v
v
v Y "VWV v o,V
v v VY
§v v
YvyY Vy v
v \ 4
o v
v
vy v v
v
v v v
v
| |
-2 0

Figure courtesy of Matt Gormley
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Logistic
Regression
Decision
Boundary
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Logistic Regression Distribution

Figure courtesy of Matt Gormley
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Classification with Logistic Regression

_ogistic
Regression
Decision

Boundary

2/14/24 Figure courtesy of Matt Gormley



Setting the
Parameters
via Minimum
Negative

Conditional
(log-)Likelihood
Estimation
(MCLE)
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Find @ that minimizes

£(0) = —logP(y(l), ...,y(N)|x(1), ...,x(N),B) = —log P(y(")|x("), 0)

A A
n=1

N
(n) —y™
= —log| [P(r = 1|x,0)"" (P(v = 0]x®,08))

n=1

z y@logP(Y = 1|x™,0) + (1 — y™)log P(Y = 0[x", 9)

N
1 1
J(©) = 22(8) = =~ » y™8Tx™ —log 1+ exp(67x™M))
n=1

20



1
](9) = — Nz y(")HTx(") — log (1 + eXp(eTx(n)))

n=1

Minimizing the e __z YWV (87x™) =V log (1 N exp(HTx(”)))
Negative =

Conditional & S
(log-)Likelihood *NZ ) __SPOXT)

1 + exp(8Tx(M)

N
1
1540t ey

n=1
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Gradient

Descent
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. o~~~ N
* Input: training dataset D = {(x(‘),y(‘))}izl and step size y
1. Initialize 8 to all zeros and set t = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

N
VG](Q(t)) — %z x(i)(p(y _ 1|x(i), H(t)) B y(i))
=1

b. Update 8: (D) « 9 — yv,1(9®)

c. Incrementt:t<t+1

- Qutput: 8

23



Poll Question 1:

What is the
computational
cost of one
iteration of
gradient
descent for
logistic
regression’?

2/14/24

A. 0(1) (TOXIC) B.O(N) C.0(D) D. O(ND)
* Input: training dataset D = {(x(i),y(i))}livzl and step size y
1. Initialize 8 to all zeros and set t = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

N
1 . _ _
Vg](e(t)) — NZ x(l)(p(y — 1|x(l), H(t)) _ y(l))
=1

b. Update 8: (D) « 9 — yv,1(9®)

c. Incrementt:t<t+1

- Qutput: 8
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Gradient

Descent
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. o~~~ N
* Input: training dataset D = {(x(‘),y(‘))}izl and step size y
1. Initialize 8 to all zeros and set t = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

N
O(ND){ Ve](B(t)) = %z x(i)(p(y - 1|x(i), g(t)) — y(i))
i=1

b. Update 8: (D) « 9 — yv,1(9®)

c. Incrementt:t<t+1

- Qutput: 8
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. N
* Input: training dataset D = {(x(‘),y(‘))}izl and step size y
1. Initialize 8 to all zeros and sett = 0

2. While TERMINATION CRITERION is not satisfied
Stochastic a. Randomly sample a data point from D, (x(i),y(i))

Gradient b. Compute the pointwise gradient:
Descent (SG D) Vo/ D(60) = xD(P(y = 1|x®, 9®) — y©D)

c. Update 8: 0+D 9O _ yvej(i)(g(t))

d. Incrementt:t < t+1

- Qutput: 80

26

2/14/24



Stochastic
Gradient

Descent (SGD)
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* If the example is sampled uniformly at random, the expected

value of the pointwise gradient is the same as the full gradient!

N
E [Vg J© (9)] = Z(probability of selecting x®, y(i)) Vo D(0)
i=1

N

—~ z (%) Vo/D(0) = %i Vol (6) = V/(6)
=1

=1

* In practice, the data set is randomly shuffled then looped

through so that each data point is used equally often
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. N
* Input: training dataset D = {(x(‘),y(‘))}izl and step size y
1. Initialize 8 to all zeros and set t = 0

2. While TERMINATION CRITERION is not satisfied

Stochastic a. Fori € shuffle({1,...,N})

Gradient I.  Compute the pointwise gradient:

Descent (SGD) Vo) ©(6®) = xO(P(¥ = 1]x®,60) - y©)
i. Update 8: 911 « 9 — v, ] (g1)

iii. Incrementt:t<t+1

- Qutput: 80

2/14/24
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Stochastic
Gradient

Descent vs.

Gradient
Descent
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Gradient Descent

Stochastic Gradient Descent
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Stochastic
Gradient

Descent vs.

Gradient
Descent
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* An epoch is a single pass through the entire training dataset

- Gradient descent updates the parameters once per epoch

- SGD updates the parameters N times per epoch

* Theoretical comparison:

- Define convergence to be when ](H(t)) —J(0%) < €

Convergence per Step
Gradientdescent  0(log 1/) O(ND)
SGD o(1/e) 0(D)

\/_/

(with high probability under certain assumptions)

33



Stochastic
Gradient

Descent vs.

Gradient
Descent
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* An epoch is a single pass through the entire training dataset

- Gradient descent updates the parameters once per epoch

- SGD updates the parameters N times per epoch

A

Gradient Empirically, SGD
Descent reduces the negative
conditional log-
likelihood much

faster than gradient
SGD

Negative conditional
log-likelihood

descent

epochs
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Optimization
for ML

Learning
Objectives
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You should be able to...

* Apply gradient descent to optimize a function

* Apply stochastic gradient descent (SGD) to optimize a
function

- Apply knowledge of zero derivatives to identify a
closed-form solution (if one exists) to an optimization
problem

- Distinguish between convex, concave, and nonconvex
functions

* Obtain the gradient (and Hessian) of a (twice)
differentiable function

35



Logistic
Regression

Learning
Objectives
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You should be able to...
* Apply the principle of maximum likelihood estimation

(MLE) to learn the parameters of a probabilistic
model

* Given a discriminative probabilistic model, derive the

conditional log-likelihood, its gradient, and the
corresponding Bayes Classifier

* Explain the practical reasons why we work with the

log of the likelihood

* Implement logistic regression for binary (and

multiclass) classification

* Prove that the decision boundary of binary logistic

regression is linear
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