10-301/601: Introduction to Machine Learning Lecture 9 - Logistic Regression

Hoda Heidari, Henry Chai \& Matt Gormley
2/14/24

- Announcements:

Front Matter

- Exam 1 on 2/19 from 7 PM - 9 PM
- Exam 1 practice problems released on the course website, under Coursework
- Previously:
- (Unknown) Target function, $c^{*}: \mathcal{X} \rightarrow \mathcal{Y}$
- Classifier, $h: \mathcal{X} \rightarrow \mathcal{Y}$

Probabilistic Learning

- Now:
- (Unknown) Target distribution, $y \sim p^{*}(Y \mid x)$
- Distribution, $p(Y \mid \boldsymbol{x})$
- Goal: find a distribution, p, that best approximates p^{*}
- Given N independent, identically distribution (iid) samples $\mathcal{D}=\left\{x^{(1)}, \ldots, x^{(N)}\right\}$ of a random variable X
- If X is discrete with probability mass function (pmf) $p(X \mid \theta)$, then the likelihood of \mathcal{D} is

$$
L(\theta)=\prod_{n=1}^{N} p\left(x^{(n)} \mid \theta\right)
$$

- If X is continuous with probability density function (pdf) $f(X \mid \theta)$, then the likelihood of \mathcal{D} is

$$
L(\theta)=\prod_{n=1}^{N} f\left(x^{(n)} \mid \theta\right)
$$

- Given N independent, identically distribution (iid) samples $\mathcal{D}=\left\{x^{(1)}, \ldots, x^{(N)}\right\}$ of a random variable X
- If X is discrete with probability mass function (pmf) $p(X \mid \theta)$, then the log-likelihood of \mathcal{D} is

$$
\ell(\theta)=\log \prod_{n=1}^{N} p\left(x^{(n)} \mid \theta\right)=\sum_{n=1}^{N} \log p\left(x^{(n)} \mid \theta\right)
$$

- If X is continuous with probability density function (pdf) $f(X \mid \theta)$, then the log-likelihood of \mathcal{D} is

$$
\ell(\theta)=\log \prod_{n=1}^{N} f\left(x^{(n)} \mid \theta\right)=\sum_{n=1}^{N} \log f\left(x^{(n)} \mid \theta\right)
$$

- Insight: every valid probability distribution has a finite amount of probability mass as it must sum/integrate to 1
- Idea: set the parameter(s) so that the likelihood of the samples is maximized

Maximum Likelihood Estimation (MLE)

- Intuition: assign as much of the (finite) probability mass to the observed data at the expense of unobserved data
- Example: the exponential distribution

- Insight: every valid probability distribution has a finite amount of probability mass as it must sum/integrate to 1
- Idea: set the parameter(s) so that the likelihood of the samples is maximized

Maximum Likelihood Estimation (MLE)

- Intuition: assign as much of the (finite) probability mass to the observed data at the expense of unobserved data
- Example: the exponential distribution

$$
\begin{aligned}
& \left\{x^{(1)}=0.5\right. \\
& \left.x^{(2)}=1\right\}
\end{aligned}
$$

- Insight: every valid probability distribution has a finite amount of probability mass as it must sum/integrate to 1
- Idea: set the parameter(s) so that the likelihood of the samples is maximized

Maximum Likelihood Estimation (MLE)

- Intuition: assign as much of the (finite) probability mass to the observed data at the expense of unobserved data
- Example: the exponential distribution

- The pdf of the exponential distribution is

$$
f(x \mid \lambda)=\lambda e^{-\lambda x}
$$

Exponential Distribution MLE

- The pdf of the exponential distribution is

$$
f(x \mid \lambda)=\lambda e^{-\lambda x}
$$

Exponential Distribution MLE

- Given N iid samples $\left\{x^{(1)}, \ldots, x^{(N)}\right\}$, the log-likelihood is

$$
\begin{aligned}
\ell(\lambda) & =\sum_{n=1}^{N} \log f\left(x^{(n)} \mid \lambda\right)=\sum_{n=1}^{N} \log \lambda e^{-\lambda x^{(n)}} \\
& =\sum_{n=1}^{N} \log \lambda+\log e^{-\lambda x^{(n)}}=N \log \lambda-\lambda \sum_{n=1}^{N} x^{(n)}
\end{aligned}
$$

- Taking the partial derivative and setting it equal to 0 gives

$$
\frac{\partial \ell}{\partial \lambda}=\frac{N}{\lambda}-\sum_{n=1}^{N} x^{(n)}
$$

- The pdf of the exponential distribution is

$$
f(x \mid \lambda)=\lambda e^{-\lambda x}
$$

Exponential Distribution MLE

- Given N iid samples $\left\{x^{(1)}, \ldots, x^{(N)}\right\}$, the log-likelihood is

$$
\begin{aligned}
\ell(\lambda) & =\sum_{n=1}^{N} \log f\left(x^{(n)} \mid \lambda\right)=\sum_{n=1}^{N} \log \lambda e^{-\lambda x^{(n)}} \\
& =\sum_{n=1}^{N} \log \lambda+\log e^{-\lambda x^{(n)}}=N \log \lambda-\lambda \sum_{n=1}^{N} x^{(n)}
\end{aligned}
$$

- Taking the partial derivative and setting it equal to 0 gives

$$
\frac{N}{\hat{\lambda}}-\sum_{n=1}^{N} x^{(n)}=0 \rightarrow \frac{N}{\hat{\lambda}}=\sum_{n=1}^{N} x^{(n)} \rightarrow \hat{\lambda}=\frac{N}{\sum_{n=1}^{N} x^{(n)}}
$$

Building a Probabilistic Classifier

- Define a decision rule
- Given a test data point x^{\prime}, predict its label \hat{y} using the posterior distribution $P\left(Y=y \mid x^{\prime}\right)$
- Common choice: $\hat{y}=\operatorname{argmax} P\left(Y=y \mid x^{\prime}\right)$
y
- Idea: model $P(Y \mid \boldsymbol{x})$ as some parametric function of \boldsymbol{x}
- Suppose we have binary labels $y \in\{0,1\}$ and
D-dimensional inputs $\boldsymbol{x}=\left[1, x_{1}, \ldots, x_{D}\right]^{T} \in \mathbb{R}^{D+1}$
- Assume

1 prepended to \boldsymbol{x}

Modelling the Posterior

$$
P(Y=1 \mid \boldsymbol{x}, \boldsymbol{\theta})=\sigma\left(\boldsymbol{\theta}^{T} \boldsymbol{x}\right)=\frac{1}{1+\exp \left(-\boldsymbol{\theta}^{T} \boldsymbol{x}\right)}=\frac{\exp \left(\boldsymbol{\theta}^{T} \boldsymbol{x}\right)}{\exp \left(\boldsymbol{\theta}^{T} \boldsymbol{x}\right)+1}
$$

- This implies two useful facts:

$$
\begin{aligned}
& \text { 1. } P(Y=0 \mid \boldsymbol{x}, \boldsymbol{\theta})=1-P(Y=1 \mid \boldsymbol{x}, \boldsymbol{\theta})=\frac{1}{\exp \left(\boldsymbol{\theta}^{T} \boldsymbol{x}\right)+1} \\
& \text { 2. } \frac{P(Y=1 \mid \boldsymbol{x}, \boldsymbol{\theta})}{P(Y=0 \mid \boldsymbol{x}, \boldsymbol{\theta})}=\exp \left(\boldsymbol{\theta}^{T} \boldsymbol{x}\right) \rightarrow \log \frac{P(Y=1 \mid \boldsymbol{x}, \boldsymbol{\theta})}{P(Y=0 \mid \boldsymbol{x}, \boldsymbol{\theta})}=\boldsymbol{\theta}^{T} \boldsymbol{x}
\end{aligned}
$$

Logistic Function

Why use the Logistic Function?

$$
\begin{aligned}
& \hat{y}=\left\{\begin{array}{l}
1 \text { if } P(Y=1 \mid \boldsymbol{x}, \boldsymbol{\theta}) \geq \frac{1}{2} \\
0 \text { otherwise. }
\end{array}\right. \\
& \qquad P(Y=1 \mid \boldsymbol{x})=\sigma\left(\boldsymbol{\theta}^{T} \boldsymbol{x}\right)=\frac{1}{1+\exp \left(-\boldsymbol{\theta}^{T} \boldsymbol{x}\right)} \geq \frac{1}{2}
\end{aligned}
$$

Logistic
Regression
Decision
Boundary

$$
\begin{array}{r}
2 \geq 1+\exp \left(-\boldsymbol{\theta}^{T} \boldsymbol{x}\right) \\
1 \geq \exp \left(-\boldsymbol{\theta}^{T} \boldsymbol{x}\right) \\
\log (1) \geq-\boldsymbol{\theta}^{T} \boldsymbol{x} \\
0 \leq \boldsymbol{\theta}^{T} \boldsymbol{x}
\end{array}
$$

Logistic
 Regression
 Decision
 Boundary

Logistic Regression Decision Boundary

Logistic Regression Decision Boundary

- Find $\boldsymbol{\theta}$ that minimizes

Setting the

Parameters
via Minimum
Negative
Conditional
(log-)Likelihood
Estimation
(MCLE)

$$
\ell(\boldsymbol{\theta})=-\log P\left(y^{(1)}, \ldots, y^{(N)} \mid \boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(N)}, \boldsymbol{\theta}\right)=-\log \prod_{n=1}^{N} P\left(y^{(n)} \mid \boldsymbol{x}^{(n)}, \boldsymbol{\theta}\right)
$$

$$
=-\log \prod_{n=1}^{N} P\left(Y=1 \mid \boldsymbol{x}^{(n)}, \boldsymbol{\theta}\right)^{y^{(n)}}\left(P\left(Y=0 \mid \boldsymbol{x}^{(n)}, \boldsymbol{\theta}\right)\right)^{1-y^{(n)}}
$$

$$
=-\sum_{n=1}^{N} y^{(n)} \log P\left(Y=1 \mid \boldsymbol{x}^{(n)}, \boldsymbol{\theta}\right)+\left(1-y^{(n)}\right) \log P\left(Y=0 \mid \boldsymbol{x}^{(n)}, \boldsymbol{\theta}\right)
$$

$$
=-\sum_{n=1}^{N} y^{(n)} \log \frac{P\left(Y=1 \mid \boldsymbol{x}^{(n)}, \boldsymbol{\theta}\right)}{P\left(Y=0 \mid \boldsymbol{x}^{(n)}, \boldsymbol{\theta}\right)}+\log P\left(Y=0 \mid \boldsymbol{x}^{(n)}, \boldsymbol{\theta}\right)
$$

$$
=-\sum_{n=1}^{N} y^{(n)} \boldsymbol{\theta}^{T} \boldsymbol{x}^{(n)}-\log \left(1+\exp \left(\boldsymbol{\theta}^{T} \boldsymbol{x}^{(n)}\right)\right)
$$

$$
J(\boldsymbol{\theta})=\frac{1}{N} \ell(\boldsymbol{\theta})=-\frac{1}{N} \sum_{n=1}^{N} y^{(n)} \boldsymbol{\theta}^{T} \boldsymbol{x}^{(n)}-\log \left(1+\exp \left(\boldsymbol{\theta}^{T} \boldsymbol{x}^{(n)}\right)\right)
$$

Minimizing the Negative

$$
\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})=-\frac{1}{N} \sum_{n=1}^{N} y^{(n)} \nabla_{\boldsymbol{\theta}}\left(\boldsymbol{\theta}^{T} \boldsymbol{x}^{(n)}\right)-\nabla_{\boldsymbol{\theta}} \log \left(1+\exp \left(\boldsymbol{\theta}^{T} \boldsymbol{x}^{(n)}\right)\right)
$$

Conditional
(log-)Likelihood

$$
J(\boldsymbol{\theta})=-\frac{1}{N} \sum_{n=1}^{N} y^{(n)} \boldsymbol{\theta}^{T} \boldsymbol{x}^{(n)}-\log \left(1+\exp \left(\boldsymbol{\theta}^{T} \boldsymbol{x}^{(n)}\right)\right)
$$

$$
=-\frac{1}{N} \sum_{n=1}^{N} y^{(n)} \boldsymbol{x}^{(n)}-\frac{\exp \left(\boldsymbol{\theta}^{T} \boldsymbol{x}^{(n)}\right)}{1+\exp \left(\boldsymbol{\theta}^{T} \boldsymbol{x}^{(n)}\right)} \boldsymbol{x}^{(n)}
$$

$$
=\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}^{(n)}\left(P\left(Y=1 \mid \boldsymbol{x}^{(n)}, \boldsymbol{\theta}\right)-y^{(n)}\right)
$$

Recall:

Gradient Descent

- Input: training dataset $\mathcal{D}=\left\{\left(\boldsymbol{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{N}$ and step size γ

1. Initialize $\boldsymbol{\theta}^{(0)}$ to all zeros and set $t=0$
2. While TERMINATION CRITERION is not satisfied
a. Compute the gradient:

$$
\nabla_{\boldsymbol{\theta}} J\left(\boldsymbol{\theta}^{(t)}\right)=\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}^{(i)}\left(P\left(Y=1 \mid \boldsymbol{x}^{(i)}, \boldsymbol{\theta}^{(t)}\right)-y^{(i)}\right)
$$

b. Update $\boldsymbol{\theta}: \boldsymbol{\theta}^{(t+1)} \leftarrow \boldsymbol{\theta}^{(t)}-\gamma \nabla_{\boldsymbol{\theta}} J\left(\boldsymbol{\theta}^{(t)}\right)$
c. Increment $t: t \leftarrow t+1$

- Output: $\boldsymbol{\theta}^{(t)}$
A. $O(1)$ (TOXIC)
B. $O(N)$
C. $O(D)$
D. $O(N D)$

Poll Question 1:

What is the computational cost of one iteration of gradient descent for logistic regression?

- Input: training dataset $\mathcal{D}=\left\{\left(\boldsymbol{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{N}$ and step size γ

1. Initialize $\boldsymbol{\theta}^{(0)}$ to all zeros and set $t=0$
2. While TERMINATION CRITERION is not satisfied
a. Compute the gradient:

$$
\nabla_{\boldsymbol{\theta}} J\left(\boldsymbol{\theta}^{(t)}\right)=\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}^{(i)}\left(P\left(Y=1 \mid \boldsymbol{x}^{(i)}, \boldsymbol{\theta}^{(t)}\right)-y^{(i)}\right)
$$

b. Update $\boldsymbol{\theta}: \boldsymbol{\theta}^{(t+1)} \leftarrow \boldsymbol{\theta}^{(t)}-\gamma \nabla_{\boldsymbol{\theta}} J\left(\boldsymbol{\theta}^{(t)}\right)$
c. Increment $t: t \leftarrow t+1$

- Output: $\boldsymbol{\theta}^{(t)}$
- Input: training dataset $\mathcal{D}=\left\{\left(\boldsymbol{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{N}$ and step size γ

1. Initialize $\boldsymbol{\theta}^{(0)}$ to all zeros and set $t=0$
2. While TERMINATION CRITERION is not satisfied
a. Compute the gradient:

Gradient Descent

$$
\begin{aligned}
& O(N D)\left\{\nabla_{\boldsymbol{\theta}} J\left(\boldsymbol{\theta}^{(t)}\right)=\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}^{(i)}\left(P\left(Y=1 \mid \boldsymbol{x}^{(i)}, \boldsymbol{\theta}^{(t)}\right)-y^{(i)}\right)\right. \\
& \text { b. Update } \boldsymbol{\theta}: \boldsymbol{\theta}^{(t+1)} \leftarrow \boldsymbol{\theta}^{(t)}-\gamma \nabla_{\boldsymbol{\theta}} J\left(\boldsymbol{\theta}^{(t)}\right) \\
& \text { c. Increment } t: t \leftarrow t+1
\end{aligned}
$$

- Output: $\boldsymbol{\theta}^{(t)}$
- Input: training dataset $\mathcal{D}=\left\{\left(\boldsymbol{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{N}$ and step size γ

1. Initialize $\boldsymbol{\theta}^{(0)}$ to all zeros and set $t=0$
2. While TERMINATION CRITERION is not satisfied
a. Randomly sample a data point from $\mathcal{D},\left(\boldsymbol{x}^{(i)}, y^{(i)}\right)$
b. Compute the pointwise gradient:

$$
\nabla_{\boldsymbol{\theta}} J^{(i)}\left(\boldsymbol{\theta}^{(t)}\right)=\boldsymbol{x}^{(i)}\left(P\left(Y=1 \mid \boldsymbol{x}^{(i)}, \boldsymbol{\theta}^{(t)}\right)-y^{(i)}\right)
$$

c. Update $\boldsymbol{\theta}: \boldsymbol{\theta}^{(t+1)} \leftarrow \boldsymbol{\theta}^{(t)}-\gamma \nabla_{\boldsymbol{\theta}} J^{(i)}\left(\boldsymbol{\theta}^{(t)}\right)$
d. Increment $t: t \leftarrow t+1$

- Output: $\boldsymbol{\theta}^{(t)}$
- If the example is sampled uniformly at random, the expected value of the pointwise gradient is the same as the full gradient!

Stochastic Gradient Descent (SGD)

$$
\begin{aligned}
E\left[\nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta})\right] & =\sum_{i=1}^{N}\left(\text { probability of selecting } \boldsymbol{x}^{(i)}, y^{(i)}\right) \nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta}) \\
& =\sum_{i=1}^{N}\left(\frac{1}{N}\right) \nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta})=\frac{1}{N} \sum_{i=1}^{N} \nabla_{\boldsymbol{J}} J^{(i)}(\boldsymbol{\theta})=\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})
\end{aligned}
$$

- In practice, the data set is randomly shuffled then looped through so that each data point is used equally often
- Input: training dataset $\mathcal{D}=\left\{\left(\boldsymbol{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{N}$ and step size γ

1. Initialize $\boldsymbol{\theta}^{(0)}$ to all zeros and set $t=0$
2. While TERMINATION CRITERION is not satisfied
a. For $i \in \operatorname{shuffle}(\{1, \ldots, N\})$
i. Compute the pointwise gradient:

$$
\nabla_{\boldsymbol{\theta}} J^{(i)}\left(\boldsymbol{\theta}^{(t)}\right)=\boldsymbol{x}^{(i)}\left(P\left(Y=1 \mid \boldsymbol{x}^{(i)}, \boldsymbol{\theta}^{(t)}\right)-y^{(i)}\right)
$$

ii. Update $\boldsymbol{\theta}: \boldsymbol{\theta}^{(t+1)} \leftarrow \boldsymbol{\theta}^{(t)}-\gamma \nabla_{\boldsymbol{\theta}} \boldsymbol{J}^{(i)}\left(\boldsymbol{\theta}^{(t)}\right)$
iii. Increment $t: t \leftarrow t+1$

- Output: $\boldsymbol{\theta}^{(t)}$

Stochastic Gradient Descent vs. Gradient Descent

- An epoch is a single pass through the entire training dataset
- Gradient descent updates the parameters once per epoch
- SGD updates the parameters N times per epoch

Stochastic Gradient Descent vs. Gradient Descent

- Theoretical comparison:
- Define convergence to be when $J\left(\boldsymbol{\theta}^{(t)}\right)-J\left(\boldsymbol{\theta}^{*}\right)<\epsilon$

Method	Steps to Convergence	Computation per Step
Gradient descent	$O(\log 1 / \epsilon)$	$O(N D)$
SGD	$O(1 / \epsilon)$	$O(D)$

(with high probability under certain assumptions)

- An epoch is a single pass through the entire training dataset
- Gradient descent updates the parameters once per epoch
- SGD updates the parameters N times per epoch

Stochastic Gradient Descent vs. Gradient Descent

Empirically, SGD
reduces the negative conditional loglikelihood much faster than gradient descent

You should be able to...

- Apply gradient descent to optimize a function
- Apply stochastic gradient descent (SGD) to optimize a function
- Apply knowledge of zero derivatives to identify a closed-form solution (if one exists) to an optimization problem
- Distinguish between convex, concave, and nonconvex functions
- Obtain the gradient (and Hessian) of a (twice) differentiable function

You should be able to...

- Apply the principle of maximum likelihood estimation (MLE) to learn the parameters of a probabilistic model

Logistic Regression Learning Objectives

- Given a discriminative probabilistic model, derive the conditional log-likelihood, its gradient, and the corresponding Bayes Classifier
- Explain the practical reasons why we work with the log of the likelihood
- Implement logistic regression for binary (and multiclass) classification
- Prove that the decision boundary of binary logistic regression is linear

